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Abstract
Background: The heterogeneity statistic I2, interpreted as the percentage of variability due to
heterogeneity between studies rather than sampling error, depends on precision, that is, the size
of the studies included.

Methods: Based on a real meta-analysis, we simulate artificially 'inflating' the sample size under the
random effects model. For a given inflation factor M = 1, 2, 3,... and for each trial i, we create a M-

inflated trial by drawing a treatment effect estimate from the random effects model, using /M as

within-trial sampling variance.

Results: As precision increases, while estimates of the heterogeneity variance τ2 remain unchanged
on average, estimates of I2 increase rapidly to nearly 100%. A similar phenomenon is apparent in a
sample of 157 meta-analyses.

Conclusion: When deciding whether or not to pool treatment estimates in a meta-analysis, the
yard-stick should be the clinical relevance of any heterogeneity present. τ2, rather than I2, is the
appropriate measure for this purpose.

Background
In meta-analysis, three principal sources of heterogeneity
can be distinguished. These are (i) clinical baseline hetero-
geneity between patients from different studies, measured,
e.g., in patient baseline characteristics and not necessarily
reflected on the outcome measurement scale; (ii) statistical
heterogeneity, quantified on the outcome measurement
scale, that may or may not be clinically relevant and may
or may not be statistically significant, and (iii) heterogene-
ity from other sources, e.g. design-related heterogeneity. In
this article, we only deal with statistical heterogeneity.
References [1-7] give an introduction to the large literature

in this area. We do not discuss how to assess clinical base-
line heterogeneity.

In this paper, we show that I2 increases with the number
of patients included in the studies in a meta-analysis. In
the light of this, we argue that I2 is in general of limited use
in assessing clinically relevant heterogeneity.

The article is structured as follows. After introducing exist-
ing measures of heterogeneity in meta-analysis and dis-
cussing their properties, we illustrate the problem of
interpreting the measure I2 using an example from the lit-
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erature. We then present a simulation study which
explores the effect of sample size inflation on I2, and
finally conclude with a discussion.

Methods
Let k be the number of studies in a meta-analysis. Further,
let xi be the within-study treatment effect estimate (e.g., a

log odds ratio),  the within-study variance of xi, and wi

the weight of study i (i = 1,..., k). In this article, we always

use inverse variance weights, that is, wi = 1/  if the fixed

effect model is used, and wi = 1/(  + τ2) if the random

effects model is used (see below for definition and estima-

tion of the heterogeneity variance τ2). Several measures of
statistical heterogeneity are widely used:

1. Cochran's Q statistic, which under the null hypothesis
of no heterogeneity follows a χ2 distribution with k - 1
degrees of freedom [8]. Q is given by

2. Higgins' and Thompson's I2, derived from Cochran's Q
by defining [4]

3. the between-study variance, τ2, as estimated in a ran-
dom effects meta-analysis. There are several proposals for
estimating τ2 in a meta-analysis, such as the REML estima-
tor or the Hedges-Olkin estimator [5-7,9]. Nevertheless,
most reviewers use the moment-based estimate of τ2 [10],
implemented in RevMan [11] and calculated as

4. H2, derived from Cochran's Q by defining [4]

and

5. R2, similar to H2 and calculated from τ2 and a so-called
'typical' within-study variance σ2 (which must be esti-
mated), and defined as:

As seen here, and described elsewhere [4], some measures
are directly related, and others approximately related.
Table 1 shows key properties of the various measures;
more details are given in [4]. In summary:

1. Q, which follows a χ2 distribution with k - 1 degrees of
freedom under H0, is the weighted sum of squared differ-
ences between the study means and the fixed effect esti-
mate. It always increases with the number of studies, k, in
the meta-analysis.

2. In contrast to Q, the statistic I2 was introduced by Hig-
gins and Thompson [4] as a measure independent of k,
the number of studies in the meta-analysis. I2 is inter-
preted as the percentage of variability in the treatment
estimates which is attributable to heterogeneity between
studies rather than to sampling error.

3. τ2 describes the underlying between-study variability.
Its square root, τ, is measured in the same units as the out-
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Table 1: Properties of measures of heterogeneity.

Measure measured on increasing with

scale range number of studies in meta-analysis precision (size of studies)

Q absolute [0, ∞) yes yes
I2 percent [0, 100%] no yes
τ, τ2 outcome [0, ∞) no no
H, H2 absolute [1, ∞) no yes
R, R2 absolute [1, ∞) no yes
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come. Its estimates do not systematically increase with
either the number, or size, of studies in a meta-analysis.

4. H2 is a test statistic. It describes the relative difference
between the observed Q and its expected value in the
absence of heterogeneity. Thus it does not systematically
increase with the number of studies [4]. H corresponds to
the residual standard deviation in a radial (Galbraith) plot
[12]. H = 1 indicates perfect homogeneity.

5. R2 is the square of a statistic R which describes the infla-
tion of the random effects confidence interval compared
to that from the fixed effect model. It does not increase
with k. R2 = 1 indicates perfect homogeneity [4].

Notice that, in contrast to τ2, the measures Q, I2, H and R
all depend on the precision, which is proportional to
study size [13]. Thus, given an underlying model, if the
study sizes are enlarged, the confidence intervals become
smaller and the heterogeneity, measured (say) using I2,
increases. This is reflected in the interpretation: As I2 is the
percentage of variability that is due to between-study het-
erogeneity, 1 - I2 is the percentage of variability that is due
to sampling error. When the studies become very large,
the sampling error tends to 0 and I2 tends to 1. Such het-
erogeneity may not be clinically relevant.

We now explore this further using simulation. Note first
that simply looking at the effect of scaling up all sample
sizes by a common factor (leaving their treatment effects
unchanged) is not appropriate. This is because if study
sizes were truly to increase, estimates would approach the
true value for each study and not be fixed at the original
observed value. Instead, we simulate under the random

effects model. Under this model, μ and τ2 are assumed

constant, and the total variance in study i is  + τ2,

which decreases with increasing study sample size, even-

tually tending to τ2.

Study size inflation based on the random effects model

Suppose in a meta-analysis trial i reports treatment effect
estimate xi (e.g., on the log odds scale) with observed sam-

pling variance . Let τ2 denote the heterogeneity vari-

ance. The model is

where μ is the average treatment effect. For a given infla-
tion factor M = 1, 2, 3,..., the model with inflated sample
size (corresponding to an M-fold increase in precision) is

We generate an illustrative meta-analysis for each infla-
tion factor. For each trial in each meta-analysis, we gener-
ate a random M-inflated trial by drawing a treatment

effect estimate xM,i from this model, using /M as the

within-trial sampling variance and the DerSimonian-

Laird estimate  for the heterogeneity parameter τ2.

Results
We use data from a large meta-analysis (of 70 trials) to
estimate the effect of thrombolytic therapy in acute myo-
cardial infarction [14]. The original analysis using the
fixed effects model (Mantel-Haenszel method) gives an
odds ratio of 0.747 with a 95% confidence interval (95%
CI) of [0.705; 0.792]. Using the random effects model, the
odds ratio is 0.732, 95% CI [0.664; 0.808]. The DerSimo-
nian-Laird estimate of τ2 is 0.018 (H = 1.11, 95% CI [1;
1.29], I2 = 18.6%, 95% CI [0%; 40.1%]). As Q = 85, p =
0.0953, there is no evidence of heterogeneity.

We now explore the effect of increasing M. Figure 1 shows
forest plots of the original meta-analysis along with illus-
trative meta-analyses generated for M = 4, 16 and 64. The
behavior of the heterogeneity measures is shown in Table
2. It is clear that while the variation in τ2 is essentially ran-
dom, the values of Q, H and I2 increase rapidly with
increasing sample size.
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Table 2: Effect of increasing within trial precision (factor M) on heterogeneity measures (data in [14]).

Factor Measure

M Q (P-value) I2 H

1 0.018 85 (0.0953) 18.6% [0%; 40.1%] 1.11 [1; 1.29]
4 0.008 98 (0.0135) 29.2% [4.5%; 47.6%] 1.19 [1.02; 1.38]
16 0.027 454 (<0.0001) 84.8% [81.4%; 87.5%] 2.56 [2.32; 2.83]
64 0.028 1708 (<0.0001) 96.0% [95.4%; 96.5%] 4.98 [4.65; 5.32]

τ̂ 2
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Top left panel: Meta-analysis of thrombolytic therapy in acute myocardial infarction [14]Figure 1
Top left panel: Meta-analysis of thrombolytic therapy in acute myocardial infarction [14]. Other plots: illustrative 
randomly sampled versions of the same meta-analysis with sample-size inflation factors of M = 4, 16 and 64 (details in text).
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Figures 2 and 3 give two other perspectives on this. Figure
2 shows that as M increases, τ2 varies randomly, while (i)
the average of the within study variances; (ii) the esti-
mated total variance (under the model), and (iii) the
observed total variance, all decrease rapidly with increas-
ing M. Using the same data, Figure 3 shows how I2

behaves. Note how rapidly it approaches 100%.

Empirical evaluation: a sample of meta-analyses

In order to examine the behavior and the order of magni-
tude of I2 empirically, we further looked at a sample of
157 meta-analyses with binary endpoints. This data set

was kindly provided by Peter Jüni [15]. We calculated τ2

and I2 for each meta-analysis. Further, for each meta-anal-
ysis, we calculated the median study size of the contribut-
ing studies, denoted ni, i = 1,..., 157. After excluding all

meta-analyses with both τ2 = I2 = 0 (n = 58), we fitted a lin-
ear model to the remaining 99 meta-analyses with I2 as

outcome and  and log ni as covariates (thus implicitly

assuming a log-normal distribution for study size).

As expected, I2 increases with both heterogeneity (βτ =

65.873, SE = 4.788, p = 0.000) and median study size (βlog

n = 8.503, SE = 1.460, p = 0.000). The residual standard

error is 13.07 with an adjusted  = 0.6621 (F = 97.01,

df = 96, p = 0.000). That is, even after adjusting for

between-study variance τ2, I2 depends strongly on study
size. Figure 4 illustrates the results.

Light, grey and black dots and regression lines correspond
to the first, second and third tercile of the distribution of
τ2. Within each class of meta-analyses, I2 is increasing with
median study size.

τ̂ i

Radj
2

Within-study variation, decreasing with increasing sample size while heterogeneity remains constantFigure 2
Within-study variation, decreasing with increasing sample size while heterogeneity remains constant. Details in 
text.
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Discussion
The main advantage of the statistic I2 is that it does not
depend on the number of studies in a meta-analysis. Thus,
using I2 instead of Q, it is possible to compare the statisti-
cal heterogeneity of meta-analyses with different numbers
of studies [4]. Also, I2 is easily interpreted by clinicians as
the percentage of variability in the treatment estimates
which is attributable to heterogeneity between studies
rather than to sampling error.

However, an immediate (but often overlooked) conse-
quence of this interpretation is that I2 increases with the
number of patients included in the studies in a meta-anal-
ysis. In a recent simulation using continuous outcomes,
others found empirically that I2 increased with increasing
numbers of patients per trial though τ2 was kept fixed
[16]. Unfortunately, as demonstrated by a recent empiri-
cal study [17], reviewers seem to be unaware of this when
they use I2 to decide whether to pool studies in a meta-
analysis. Some authors also seem to be reluctant to call I2

a statistic, using instead words such as metric [18], index
[19], or even point estimate [17,18,20]. On the other
hand, the term 'statistical test' is used in connection with
I2 in one of these references [20], p. 915. In another refer-
ence [18], the authors proposed an algorithm for a sensi-
tivity analysis that successively excludes 'outlying' trials
until I2 falls below a prespecified level. In response to this
[21], Higgins showed that the exclusion of a large trial
with its effect close to the pooled estimate can be the most
efficient way to reduce I2.

Our simulation highlights the problem of interpreting
heterogeneity measured by I2 as clinical heterogeneity.
This is analogous to interpreting statistically significant
effects (P < 0.05) as clinically relevant. In our view the
decision on whether or not to pool studies in a meta-anal-
ysis should not solely be based on I2. Instead, studies with
relatively large I2 may usefully be pooled when the clini-
cally relevant heterogeneity (in efficacy and covariates) is
acceptably small.

Percentage I2 of variation due to heterogeneity rather than to sampling error against sample size (same simulation data as in Figure 2)Figure 3
Percentage I2 of variation due to heterogeneity rather than to sampling error against sample size (same simu-
lation data as in Figure 2).
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Further, as τ is measured on the same scale as the out-
come, it can be directly used to quantify variability.
Indeed, clinically meaningful heterogeneity on the out-
come scale could be pre-specified. Thus, in advance a
reviewer may decide that three studies with odds ratios of
0.8, 1 and 1.25 cannot be pooled; in other words the rel-
ative effect ratios of 0.8 = 1/1.25 are too great. This corre-

sponds to a standard deviation τ0 = - log 0.8 = log 1.25 =

0.22 =  on the log scale and thus a threshold of 

= 0.05 for the heterogeneity variance τ2.

While Higgins and Thompson in their papers [4,22] thor-
oughly described the properties of the various measures
and distinguished between them, we feel current guide-
lines are likely to let misconceptions persist. For example,

the 'Cochrane Handbook for Systematic Reviews of Inter-
ventions' (outdated Version 4.2.6, page 138) stated 'A
value [of I2] greater than 50% may be considered as sub-
stantial heterogeneity'. The recent Version 5.0.1, while
admitting that 'thresholds for the interpretation of I2 can
be misleading, since the importance of inconsistency
depends on several factors', nevertheless lists overlapping
ranges of I2 which provide 'a rough guide to interpreta-

0 05. τ 0
2

I2 against median study size in a sample of 157 meta-analysesFigure 4
I2 against median study size in a sample of 157 meta-analyses. Light, grey and black dots and regression lines corre-
spond to the first, second and third tercile of the distribution of τ2.
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Table 3: Ranges for interpretation of I2 following the Cochrane 
Handbook for Systematic Reviews of Interventions (Version 
5.0.1) [23].

0% to 40% might not be important
30% to 60% may represent moderate heterogeneity
50% to 90% may represent substantial heterogeneity
75% to 100% considerable heterogeneity
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tion' (see Table 3) [23]. The result is that some reviewers
conclude that studies must not be pooled if I2 > 50%
[24,25]. By contrast, Section 9.5.4 of the handbook states
'The choice between a fixed-effect and a random-effects
meta-analysis should never be made on the basis of a sta-
tistical test of heterogeneity'. Further some methodolo-
gists discourage reviewers from using tests for funnel plot
asymmetry if I2 > 50% [26].

We believe the interpretation issues stem from the con-
cept of I2 as 'the proportion of variance (un)explained',
referred to as 'widely familiar' to clinicians by Higgins and
Thompson [4] (Section 4). However, there is a fundamen-
tal difference between the interpretation of the coefficient

of determination  in regression analysis, which is sub-

consciously invoked by this phrase, and that of I2: On the

one hand,  (that is, the square of the correlation coef-

ficient) is a measure of the association between the
dependent and the independent variable, which homes in
on the true value as the sample size increases. However, I2

tends to 100% as the number of patients increases.
Although one may argue that the 'unit' corresponding to
the 'observation' in a regression is the study, not the
patient, this link is only strictly valid if sample size of new
studies are distributed similarly to those of existing stud-
ies. This is not universally true. Often small trials are fol-
lowed by larger ones. Thus I2 will tend to increase
artificially as evidence accumulates.

To address this, more weight should be given to often
overlooked comments by Higgins and Thompson, [4], p
1545, who state 'Note that we do not propose that our
measure should be independent of the precisions of esti-
mates observed in the studies. Thus sets of studies with
identical heterogeneity τ2, but with different degrees of
sampling error σ2, will produce different measures....
Describing the underlying between-study variability ...
can best be achieved simply by estimating the between-
study variance, τ2.'

Conclusion
When deciding whether or not to pool treatment esti-
mates in a meta-analysis, the yard-stick should be the clin-
ical relevance of any heterogeneity present. τ2, rather than
I2 is the appropriate measure for this purpose.
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