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Abstract

Background: The development of risk prediction models is of increasing importance in medical research - their use
in practice, however, is rare. Among other reasons this might be due to the fact that thorough validation is often
lacking. This study focuses on two Bayesian approaches of how to validate a prediction rule for the diagnosis of
pneumonia, and compares them with established validation methods.

Methods: Expert knowledge was used to derive a risk prediction model for pneumonia. Data on more than
600 patients presenting with cough and fever at a general practitioner’s practice in Switzerland were collected in
order to validate the expert model and to examine the predictive performance of it. Additionally, four modifications
of the original model including shrinkage of the regression coefficients, and two Bayesian approaches with the
expert model used as prior mean and different weights for the prior covariance matrix were fitted. We quantify
the predictive performance of the different methods with respect to calibration and discrimination, using
cross-validation.

Results: The predictive performance of the unshrinked regression coefficients was poor when applied to the Swiss
cohort. Shrinkage improved the results, but a Bayesian model formulation with unspecified weight of the
informative prior lead to large AUC and small Brier score, naïve and after cross-validation. The advantage of this
approach is the flexibility in case of a prior-data conflict.

Conclusions: Published risk prediction rules in clinical research need to be validated externally before they can be
used in new settings. We propose to use a Bayesian model formulation with the original risk prediction rule as
prior. The posterior means of the coefficients, given the validation data showed best predictive performance with
respect to cross-validated calibration and discriminative ability.
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Background
Over the past decade, there has been increasing interest
in the development and validation of prediction models
for disease risk. Knowledge about multiple predictor
variables and their weights enables physicians to esti-
mate the risk of disease presence [1-4]. This study fo-
cuses on the clinical diagnosis of pneumonia, which is a
concern when a patient presents with recent onset of
cough and fever to a general practitioner (GP). Based on
these symptoms and the results of physical examination,
the doctor needs to decide on further testing, e.g., chest
radiography and/or antibiotic treatment.
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In 2008, Miettinen et al. [5] derived a probability func-
tion for pneumonia by developing 36 hypothetical cases
(called vignettes) based on a set of 25 clinical-diagnostic
indicators. In contrast to the common approach of
developing a risk prediction model with a set of patients
in an epidemiologic study, the judgement of a set of
medical experts was the basis for this diagnostic prob-
ability function. Twenty-two clinical experts independ-
ently assigned risk probabilities to these 36 vignettes and
a logistic function of 14 of these diagnostic indicators
was fitted to the median probabilities (expert model). A
more detailed description of the development of the
expert model can be found in the Appendix.
The aim of this study is to validate and update this ex-

pert model. Data on more than 600 patients presenting
with cough and increased body temperature at a GP
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practice in Switzerland were collected between 2006 and
2009 [6]. Information about all 14 clinical-diagnostic
indicators identified by the expert panel was collected.
In addition to that, the GP’s diagnosis of pneumonia is
confirmed through chest radiography by experienced
radiologists, which serves as a reference standard.
We compare five different approaches to combine the

results of the expert model with those of the Swiss co-
hort study. The predictive performance of the different
approaches is measured with respect to discrimination,
calibration and overall accuracy of prediction as mea-
sured by the Brier score. We assessed these quantities in
a naïve way, and by leave-one-out cross validation.

Methods
When a patient presented with fever and cough at a par-
ticipating GP, he was asked to take part in this validation
study (Swiss cohort). After obtaining written informed
consent for participation data on the set of diagnostic
indicators was assessed. These indicators included the
following 14 variables: age, duration of new or worsened
cough (days), maximum temperature, dyspnea, dyspnea
at effort only, rigors, smoking (number of cigarettes per
day), current temperature, signs of upper respiratory in-
fection, prolonged expiration, percussion dullness, aus-
cultation friction rub, auscultation diminished
inspiration sound and auscultation abnormality breath
sound. The expert model includes quadratic terms for
four variables, while the other variables enter in a linear
fashion [5]. The dependent variable in the Swiss cohort
was pneumonia (yes/no) and the GP’s diagnosis was
confirmed through chest x-ray.

Imputation of auscultation friction rub
A large number (46%) of observations were missing for
the variable “auscultation friction rub” (AFR) in this co-
hort because the first version of the questionnaire acci-
dently did not ask for this variable. We imputed the
missing values of this indicator in the following way: we
fitted a logistic regression model to the available obser-
vations of the binary variable AFR, including all predic-
tors of the expert model. Based on this model, we
obtained the predicted probabilities for the missing
observations of AFR. In order to dichotomise these
probabilities, we chose the cut-off at 0.16 to keep the
overall prevalence of AFR at 5%.

Performance measures
We measure the predictive performance of the probabil-
ity functions for pneumonia by their discriminative abil-
ity, calibration and overall accuracy of prediction. The
discriminative ability of a risk model is typically mea-
sured by the area under the receiver operating character-
istic curve (AUC). For prediction models that can
distinguish well between high and low risk patients, the
AUC will be close to 1. For calibration, we visually assess
how well the model-based probabilities for pneumonia
agree with the observed outcomes.
When prediction models are applied to a new data set,

the predicted probabilities are typically too extreme [7]
and calibration plots with pointwise 95% confidence
intervals can depict this problem. The calibration slope
shows the amount of shrinkage needed for a model.
The Brier score (BS) is an overall measure of accuracy,

as it is a combination measure of discrimination and
calibration. The Brier score, or average prediction error
is defined as follows:

BS ¼ 1
n

Xn

i¼1

ðpi � yiÞ2; i ¼ 1; . . . ;n;

with pi : predicted probabilities by the model, yi : obser-
vations (0 or 1), and n: number of observations. Models
with smaller Brier score are to be preferred.
The Brier score has two different reference values.

One depends on the prevalence π ¼ 1
n

Pn
i¼1yi of the

event (here pneumonia) in the study population. It is
calculated by setting pi = π for all i, so BS = π(1-π). The
other one corresponds to coin flipping, and it is calcu-
lated by setting pi = 0.5 for all i, so BS = 0.25. A useful
prediction rule ought to have a Brier score smaller than
0.25 and ideally also smaller than π(1-π) ≤ 0.25. Bradley
et al. [8] propose a method to estimate confidence inter-
vals for Brier scores, which was used here.

Description of the approaches
Approach 1
We use the coefficients βexp given in the expert model
by Miettinen et al., and apply them directly to the Swiss
cohort to obtain the predicted pneumonia risk probabil-
ities p = X βexp, where X is the matrix of regressor vari-
ables of the Swiss cohort.

Approach 2
The coefficients of the expert model are likely subject to
overfitting, as there were 25 diagnostic indicators origin-
ally under examination, but only 36 vignettes. To quan-
tify the amount of overfitting, we determine the
shrinkage factor by studying the calibration slope b
when fitting the logistic regression model [9,10, page
272]:

logit P Y ¼ 1ð Þð Þ ¼ aþ b�logit pð Þ;

where p is the vector of predicted probabilities. The
slope b of the linear predictor defines the shrinkage fac-
tor. Well calibrated models have b � 1. Thus, we recali-
brate the coefficients of the genuine expert model by
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multiplying them with the shrinkage factor (shrinkage
after estimation).
Approach 3
An alternative to incorporate shrinkage is to use a
Bayesian approach and to shrink the regression coeffi-
cients during estimation. We specify a Bayesian logistic
regression model with an informative Gaussian prior dis-
tribution β ~ N(βexp , Σexp) for the regression parameter
vector β, assuming that the prior mean βexp are the coef-
ficients from the expert model. We derive Σexp directly
from Miettinen et al. paper in the following way:

X
exp

¼ _σ2ðXTXÞ�1; where_σ2

¼ 1
m� p� 1

Xm

i¼1

ðyi � _yiÞ2:

There were m = 36 vignettes in the expert study.
We solve the model using integrated nested Laplace

approximations (INLA), a recently developed approach
to statistical inference for latent Gaussian Markov ran-
dom field models [11]. An advantage of the INLA ap-
proach to Bayesian inference is its speed and its accurate
approximations to the marginal posterior distributions
of the hyper-parameters and latent variables. It also pro-
vides cross-validated predicted probabilities without the
need to refit the data [12].
Approach 4
We can increase the flexibility of the Bayesian Approach
3 by introducing an additional unknown factor g in the
prior covariance matrix: β ~ N(βexp , g*Σexp). We assume
that the parameter g is a priori unknown, following a
chi-squared distribution with one degree of freedom,
thus having mean 1 and variance 2. Other choices are
possible, of course. The parameter g is a measure for the
prior-data conflict: the larger g is a posteriori, the larger
is the discrepancy between the prior and the data, and
the weight of the prior distribution on the posterior
becomes small. The reference value g = 1 corresponds
to Approach 3 and no prior-data conflict. This extended
Bayesian approach can also be fitted with INLA.
Approach 5
In this approach we ignore the prior knowledge derived
from the expert model, and estimate the regression coef-
ficients directly from the Swiss cohort. This means, we
use the Swiss cohort for derivation and validation of the
model. We introduce Approach 5 to show the complete
spectrum from “only prior knowledge (Approach 1)” to
“no prior knowledge (Approach 5)”.
Cross validation
We compare the five approaches with respect to the
estimated regression coefficients, AUC, calibration plots
and Brier score in a naïve way. Additionally, we compute
AUC and Brier score with leave-one-out cross validation
for the Swiss cohort. Specifically, this means for Ap-
proach 2 that we repeat the estimation of the shrinkage
factor n times, each time leaving out the i-th observa-
tion, subsequently applying the shrinkage factor esti-
mated from the remaining n-1 observations to βexp for
the predicted probability for the omitted observation i.
In this way we obtain a cross-validated vector of fitted
values for each observation, and this is used for the cal-
culation of AUC and the Brier score. In Approaches 3
and 4, INLA software directly allows calculation of
cross-validated AUC and the Brier score, see Held et al.
[12] for details. In Approach 5 we derived the cross-
validated results by fitting the model n times to n-1
observations, each time estimating the regression coeffi-
cients based on n-1 observations and predicting the i-th
omitted observation.
All analyses were performed with R 2.14.2 [13] and

INLA [11].

Results
In the Swiss cohort study, data on 621 patients present-
ing with cough and elevated body temperature at their
GP were collected. Of these 621 patients, 127 had radio-
graphic signs of pneumonia (π = 20.5%). After imput-
ation of the variable AFR, 490 patients had complete (or
imputed) observations in all of the 14 predictor variables
of the expert model. Details about the Swiss cohort data
can be found elsewhere [6].
In Approach 1, the published coefficients of the genu-

ine expert model were applied to the Swiss cohort data.
The resulting AUC was 0.633 (95% CI: 0.567 − 0.695),
showing that the discriminative ability of this approach
is rather low. To answer the question whether the pre-
dicted probabilities correspond to the observed probabil-
ities, Figure 1 shows the calibration of the results. There
turns out to be mis-calibration between the predicted
and the observed risks, with underprediction in the
range < 0.2, and overprediction > 0.2 as one typically
sees for overfitted original models . The Brier score of
Approach 1 is 0.246 (0.219-0.272). It is larger than the
prevalence based reference value of 0.163, but smaller
than 0.250 from coin-flip. The cross-validated results are
identical here since the expert model was simply applied
to the Swiss cohort.
The mis-calibration of Approach 1 indicated the need

for re-calibration and we obtained a uniform shrinkage
factor when we fitted logit(P(Y = 1)) = a + b*logit(p) in
Approach 2. We obtained the estimates a = −1.20 and b
= 0.11, indicating heavy shrinkage. The corresponding



Figure 1 Calibration plot with 95% confidence interval for Approach 1.
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AUC is not affected by re-calibration, but Figure 2 shows
the improved agreement between predicted and
observed risks of the re-calibrated expert model. The
naïve Brier score for Approach 2 is 0.163. When we
cross-validated the shrinkage factor of the regression
coefficients, the resulting AUC was 0.616 (0.550-0.679)
and the corresponding Brier score was 0.164 (0.143-
0.185). Figure 3 shows the calibration plot for the cross-
validated and re-calibrated regression coefficients.
For Approach 3, the results of the expert model were

used as prior distribution for the coefficients in a Bayes-
ian framework. Using the estimated covariance matrix
from the Miettinen et al. paper, the naïve AUC was
0.759, considerably larger than that of the previous two
Figure 2 Shrinked regression coefficients with 95% confidence interv
approaches. The Brier score of Approach 3 was 0.135,
and thus smaller than both reference values. The cross
validated AUC was 0.707 (0.644-0.763) and correspond-
ing Brier score was 0.146 (0.126-0.167).
In Approach 4, where g scales the covariance matrix

to allow for more flexibility, the AUC was 0.757, and the
Brier score was 0.136, these values are comparable to
those of Approach 3. The posterior mean of g was 0.79
(0.45-1.73), indicating no substantial prior-data conflict
for this application. When we cross-validated the results,
the AUC dropped to 0.707 (0.644-0.763) and the Brier
score to 0.146 (0.126-0.166).
Finally, we applied Approach 5, ignoring the expert

prediction model. Unsurprisingly, this lead to the largest
al for Approach 2.



Figure 3 Cross-validated shrinked coefficients with 95% confidence interval for Approach 2.
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naïve AUC of 0.765 and smallest Brier score of 0.134.
However, the cross-validated results were worse, with
AUC of only 0.695 (0.632-0.752) and BS of 0.149 (0.128-
0.171).
Naïve comparison of Approaches 1 through 5, ignor-

ing the problem of over-fitting, shows that Approach 5
is the one with the largest AUC and smallest Brier score.
With respect to the cross-validated results, we can see
from a decrease in AUC and corresponding increase in
Brier score that there is optimism for all approaches.
However, Approaches 3 and 4 are the most preferable
ones. Although Approaches 3 and 4 give very similar
results for the combination of expert knowledge and
new data, we prefer Approach 4 as it gives more flexibil-
ity in the case that there is more prior-data conflict. The
predictive performance (AUC and Brier score, with 95%
confidence intervals) of all five approaches, naïve and
cross validated, is given in Table 1.
Table 2 shows the regression coefficients of the most

preferable Approach 4 compared to the original coeffi-
cients from the expert model (Approach 1) and the max-
imum likelihood results (Approach 5). The regression
coefficients of Approaches 4 and 5 are relatively similar
in contrast to those of Approach 1.
Table 1 Naïve and cross-validated comparison of the predicti
confidence intervals

Comparison Statistic Approach 1 Approach 2

Naïve AUC* 0.633 (0.567-0.695) 0.633 (0.567-0.695

BS** 0.246 (0.219-0.272) 0.163 (0.142-0.183

Cross validated AUC 0.633 (0.567-0.695) 0.616 (0.550-0.679

BS 0.246 (0.219-0.272) 0.164 (0.143-0.185

* AUC = Area under the receiver operating characteristic curve, ** BS = Brier score.
Discussion
In this study, we validated a published risk prediction
model for the presence of pneumonia. The genuine pre-
diction model was based on expert opinion rather than
on an epidemiologic study with real patient data. For
this reason, we consider the expert model to be of very
high quality. In this validation study, we used data of
490 complete (and imputed) cases of patients presenting
with cough and elevated body temperature at their GP
in Switzerland, with information on all variables of the
expert model. We introduced five approaches, ranging
over the whole spectrum whether or not to include the
expert knowledge. We started with an approach based
on prior knowledge from the expert model, concluding
with an approach ignoring prior knowledge. Two of the
approaches were Bayesian, one of them giving us the
possibility to quantify the presence of a prior-data con-
flict. In a naïve comparison, ignoring the problem of
over-fitting, we found that the approach ignoring the ex-
pert knowledge performed best on the Swiss cohort (Ap-
proach 5), i.e. it was the one with largest AUC and
smallest Brier score. When the performance of the
approaches was investigated in an out-of-sample predic-
tion using leave-one-out cross-validation, however, the
ve performance of the five approaches, with 95%

Approach 3 Approach 4 Approach 5

) 0.759 (0.701-0.809) 0.757 (0.699-0.807) 0.765 (0.707-0.815)

) 0.135 (0.116-0.154) 0.136 (0.116-0.155) 0.134 (0.114-0.154)

) 0.707 (0.644-0.763) 0.707 (0.644-0.763) 0.695 (0.632-0.752)

) 0.146 (0.126-0.167) 0.146 (0.126-0.166) 0.149 (0.128-0.171)



Table 2 Estimated regression coefficients: original expert model (Approach 1) compared to Approaches 4 and 5

Variable Approach 1 Approach 4 Approach 5

Expert model Random g Maximum likelihood

Intercept −79.19 −37.50 −36.31

Age −0.0054 −0.0017 −0.0079

Duration of new/worsened cough 0.15 0.027 0.033

Maximum temperature 1.89 0.39 0.37

Dyspnea −1.34 0.51 0.59

Dyspnea at effort only 2.63 −0.078 −0.11

Rigors 0.52 −0.14 −0.017

Number of cigarettes / day 0.023 0.017 0.0054

Current temperature 0.14 0.54 0.53

Signs of upper respiratory infection 1.23 −0.43 −0.61

Prolonged expiration −1.40 0.12 0.16

Percussion dullness 0.84 1.44 1.60

Auscultation friction rub 0.97 1.39 1.41

Auscultation diminished insp. sound 0.41 0.69 0.44

Auscultation abnormality breath sound 0.52 0.66 0.73

(Age – 45)2 0.00017 0.00050 0.00058

(Duration of cough – 10)2 −0.00912 −0.0010 −0.00083

(Maximum temperature – 38.5)2 −0.83 0.057 0.046

(Current temperature – 38.5)2 −0.33 0.033 0.072
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most favourable approaches were the two Bayesian
approaches. The Bayesian model formulation with in-
formative prior based on the expert knowledge and with
a flexible prior weight of the expert knowledge lead to
the most favourable results. In this analysis we found no
prior-data conflict because the posterior mean of the g-
factor was 0.79 and the 95% confidence interval includes
1. This means the prior weight is more or less un-
changed, compared to the data having weight 1.
As the advantage of the flexibility in Approach 4 com-

pared to Approach 3 is not clearly visible in this applica-
tion, we conducted some additional simulation study by
increasing the discrepancy between prior and data. In
one scenario we divided the covariance matrix by five
and in a second scenario we multiplied the prior vector
with factors uniformly distributed on the interval [0.5;2].
We found that the effect of these changes on g was
large: in the first scenario the posterior mean of g was
3.5, and in the second scenario it was even 14.5. So for
applications in which the quality of the prior is question-
able, the introduction of additional flexibility appears to
be necessary.

Our findings in the context of existing evidence
The development of multi-variable clinical prediction
rules has become rather popular in recent years [1], but
unless there is evidence that they work well on other
patients than in those of the initial development set they
should not be used in clinical practice [14]. Our study
confirms that the amount of optimism is large when re-
gression models are fit to a data set without validation.
Especially when the sample size is small or the number
of covariates is large, as is the case in the derivation set
of our presented expert model, shrinkage is a serious
problem [15,16]. Due to such a large variety of potential
reasons for poor performance of prediction models, the
reservations of clinicians to use them in routine clinical
practice [17-19] is understandable. With the two Bayes-
ian models, we proposed two alternative methods for
the validation of over-fitted models that add transpar-
ency to the whole process. New or old data as prior can
be used to improve the performance of the prediction
model, but - when using Approach 4 - with the add-
itional flexibility to down-weight this information if the
observed data and the prior differ too much. Moreover
by studying the g-factor we can learn about the influence
of the prior, and whether it is useful in the specific
application.
Strengths and limitations
The strength of our study is the availability and integra-
tion of data on all variables of the published prediction
model in the majority of the patients. Moreover, the
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collection of data in the Swiss cohort was guided by the
intent to validate the risk model derived from the
experts.
A limitation of this study is the discrepancy between

pneumonia prevalence in the derivation and the valid-
ation data. The vignettes of the expert model were con-
structed with emphasis on low-probability cases, but the
prevalence of pneumonia in the Swiss cohort was rela-
tively high (20.5%), especially higher than one would ex-
pect in a GP setting where the prevalence ranges
between 3% and 20% [20]. This discrepancy makes it
more difficult for the risk prediction rule to perform
well, but we note that this inhomogeneity between deriv-
ation and validation population is a common problem in
validation studies [10] [page 345].
We have not pursued further developments of Ap-

proach 5, as could be bootstrapping or related methods,
in order to improve the performance of the model
developed in the Swiss cohort in the cross-validation
setting.
Implications for practice
We showed that the expert prediction model for pneu-
monia was mis-calibrated when applied to the Swiss co-
hort. The under-estimation of the true probability of
pneumonia could – in the worst case – lead to a missed
pneumonia case, with considerable potential for harm of
the patient. In the other direction when a patient is
falsely diagnosed with pneumonia he will be prescribed
antibiotics, which has a negative implication not only for
him but also for the health care system due to potential
bacterial resistance and higher cost. We propose to use
the adjusted regression coefficients for the prediction of
pneumonia resulting from Approach 4, especially in set-
tings with similar prevalence of pneumonia as in this
one. The reduction of necessary chest x-rays could be a
useful implication for practice.
Implications for research
Further studies should be undertaken in the evaluation
of the prior-data conflict. It would be helpful for future
research, to analyse factors influencing the magnitude of
the prior-data conflict g. In the Bayesian framework,
there is ongoing discussion about the choice of the prior
distribution. Some statisticians believe that the use of
non-informative priors is preferable, and to let the data
speak for themselves. On the other hand, if prior infor-
mation is available, it should clearly be used. By introdu-
cing the g-factor, the Bayesian model has the flexibility
to down-weight the prior knowledge, indicating that
there is a discrepancy between the derivation and the
validation model.
Conclusions
Published risk prediction rules in clinical research need
to be validated before they can be used in new settings.
We propose to use a Bayesian model formulation with
the original risk prediction rule as prior. The posterior
means of the coefficients, given the validation data, and
allowing for flexible weight of the original prediction
rule, turn out to have largest discriminative ability, and
lowest mis-calibration, measured by the AUC and the
Brier score. When compared to the un-validated coeffi-
cients from the expert model, we found considerable
differences.

Appendix
Description of the probability function of pneumonia
Miettinen et al. [5] developed a probability function to
address the concern of a clinical diagnosis of pneumonia
when a patient presents with recent cough and fever at a
general practitioner’s practice. This probability function
is based on expert knowledge rather than on an epide-
miologic study. For this, a set of 36 hypothetical case
presentations was specified and each member of a med-
ical expert panel set the corresponding probability for
pneumonia in each of these cases. The case presenta-
tions were based on a set of 25 diagnostic indicator vari-
ates. For each of the individual vignettes Miettinen et al.
calculated a median probability over all 22 experts, and
fitted a linear model of the diagnostic indicators to the
logit of the median probabilities. Variates were excluded
from the final probability function one at a time if they
did not change the score value by more than ± 0.2 at
most. The resulting final probability function is based on
a set of 14 different variables, with four of them entering
in a quadratic form. The estimated coefficients of this
final probability function are given in Table 2.
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