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Abstract

Background: Propensity score (PS) methods are increasingly used, even when sample sizes are small or treatments are
seldom used. However, the relative performance of the two mainly recommended PS methods, namely PS-matching
or inverse probability of treatment weighting (IPTW), have not been studied in the context of small sample sizes.

Methods: We conducted a series of Monte Carlo simulations to evaluate the influence of sample size, prevalence of
treatment exposure, and strength of the association between the variables and the outcome and/or the treatment
exposure, on the performance of these two methods.

Results: Decreasing the sample size from 1,000 to 40 subjects did not substantially alter the Type I error rate, and led to
relative biases below 10%. The IPTW method performed better than the PS-matching down to 60 subjects. When N
was set at 40, the PS matching estimators were either similarly or even less biased than the IPTW estimators. Including
variables unrelated to the exposure but related to the outcome in the PS model decreased the bias and the variance as
compared to models omitting such variables. Excluding the true confounder from the PS model resulted, whatever the
method used, in a significantly biased estimation of treatment effect. These results were illustrated in a real dataset.

Conclusion: Even in case of small study samples or low prevalence of treatment, PS-matching and IPTW can yield
correct estimations of treatment effect unless the true confounders and the variables related only to the outcome are
not included in the PS model.
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Background
In non-randomized studies, any estimated association
between treatment and outcome can be biased because
of the imbalance in baseline covariates that may affect
the outcome. In this context, propensity score methods
(PS) [1] are increasingly used to estimate marginal causal
treatment effect. The propensity score, as defined by
Rosenbaum and Rubin [1] is the individual probability of
receiving the treatment of interest conditional on the
observed baseline covariates. It has been demonstrated
that, within the strata of subjects matched on the propen-
sity score, distributions of these covariates tend to be simi-
lar between treated and untreated [1]. Therefore,
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reproduction in any medium, provided the or
conditioning on the propensity score allows to draw
unbiased marginal estimates of treatment effects [1].
Four methods of using the propensity score have been

so far described: stratification [1,2], adjustment [1,2],
matching [1-4] and more recently inverse probability of
treatment weighting (IPTW) [3,5-9]. Using an empirical
case study and Monte Carlo simulations, several authors
[8,10] recently showed that the PS-matching and the
IPTW more efficiently reduced the imbalance in baseline
covariates than the two other methods did. However,
these methods were evaluated using large simulated data-
sets of about 10,000 observations, and roughly balanced
treatment groups [10]. From a practical point of view, if
propensity scores have usually been applied to large obser-
vational cohorts [11-13], they have been also used in the
setting of small samples [14,15] or with important imbal-
ances in the treatment allocation, as observed, for
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instance, when estimating the benefit of intensive care unit
(ICU) admission [16].
Although PS-matching and IPTW have not been evalu-

ated in the context of small sample sizes, such a situation
raises specific questions. First, because the propensity
score is used to balance baseline covariates more than to
predict treatment assignment, it has been recommended
[17-19] to include in the PS model all the potential con-
founders and to avoid any selection procedure based on
the goodness-of-fit [19,20]. However, the limited sample
size restricts the number of variables to be included in the
PS regression model to limit model over parameterization.
Moreover, in case of small sample sizes, it is not clear
whether one PS method, i.e. PS matching or IPTW, out-
performs the other or not, considering, on one hand, that
matching without replacement might lead to a further de-
crease in the sample size (and thus, in the statistical power
of outcome comparisons), and, on the other hand, that
IPTW might give an excessive weight to some observa-
tions that could dramatically influence the results. All
these points could be similarly addressed in case of im-
portant imbalances in the size of the treatment arms.
Therefore, our goal was to explore such specific situations
in order to provide some warnings concerning the use of
PS methods, for analysts, but also for readers.
Actually, we assessed the performance of PS-matching

and IPTW in the particular context of small samples,
when the odds ratio (OR) is used as the measure of
treatment effect. We present the results of Monte Carlo
simulations in which we studied the influence of the
sample size, the prevalence of treated patients, and the
strength of the association between the variables and the
outcome and/or the treatment exposure, in order the as-
sess the accuracy of PS methods in terms of bias, vari-
ance estimation and Type I error rates in the estimation
of treatment effect. Finally, some illustration is provided
from a real observational dataset, assessing the benefit of
allogeneic stem cell transplantation in a small sample of
patients with multiple myeloma.

Methods
Monte carlo simulation study
Monte Carlo simulations were used to evaluate the per-
formance of PS-matching and IPTW to estimate the mar-
ginal OR of treatment effect in the context of small sample
sizes and/ or low prevalence of the treated population. They
consisted in (1) randomly generated N independent data-
sets in several settings defined by sample size, treatment ef-
fect and covariates effect on both treatment and outcome;
(2) applying the PS-matching and IPTW approaches to
analyze the data, separately. In each setting, the perform-
ance of each approach was assessed by computing the bias,
the mean squared error (MSE) and the variance of the
estimated OR from the N replications of the dataset. Type I
and Type II error rates, as defined by the frequency of
rejecting the null or alternative hypothesis under the null
or the alternative, respectively, were also estimated.

Data-generating process
Let Z be the variable defining treatment allocation (Z= 1
for the treated, 0 otherwise), Y be the outcome of interest
(Y= 1 for those subject who experienced the outcome, 0
otherwise) and X a set of 4 independent and identically
distributed baseline covariates Xj; j ¼ 1; . . . ; 4

� �
.

The probability of allocated treatment and that of
experiencing the outcome were described by the two fol-
lowing logistic models, respectively:

logit P Zi ¼ 1jXið Þð Þ ¼ α0 þ α1Xi1 þ . . .þ α4Xi4 ð1Þ

logit P Yi ¼ 1ð jZi;Xið ÞÞ ¼ β0 þ βTZi þ β1Xi1 þ . . .

þ β4Xi4 ð2Þ
where Zi was the treatment assignment for subject i,
α0; . . . ; α4ð Þ and β0; βT ; . . . ; β4

� �
the sets of correspond-

ing slope and regression coefficients. Regression coeffi-
cients allowed considering different situations of
covariate association with the treatment and the out-
come: X1 did not affect any of them (α1 = β1 = 0), X2was
associated only with the outcome (α2 = 0, β2 = b), X3 only
with the treatment (α3 = a, β3 = 0), and X4 with both as a
true confounder (α4 = a, β4 = b).
The value of the intercept α0 was successively set at 0

and −1.38 to guarantee a marginal probability of treat-
ment allocation of 0.50 and 0.2, respectively. For each
set of values of (βT , a, b), the value of β0 was determined
by a minimization algorithm from a sample of 1,000,000
in order to guarantee the outcome to occur in 50 per
cent of subjects, approximately.
For each subject, treatment allocation and outcome

were randomly generated from Bernoulli distributions
with subject-specific probability of treatment assignment
derived from equation (1) or equation (2), as the success
probability, respectively. Each covariate was randomly
generated from a Normal distribution N(μ= 0, σ= 0.5).
Several situations were examined, that differed in terms of:

– Sample size, ranging from 1,000 down to 40 (1000,
900, 800, 700, 600, 500, 400, 300, 200, 180, 160, 140,
120, 100, 80, 60, 40)

– Treatment effect βT , successively fixed at 0 (null
hypothesis), 0.41 and 0.92 (alternative hypotheses of
moderate or strong treatment effect) corresponding to
conditional ORs fixed at 1, 1.5 and 2.5, respectively

– Strength of the association between the covariates
and both the treatment and the outcome, with a and



Pirracchio et al. BMC Medical Research Methodology 2012, 12:70 Page 3 of 10
http://www.biomedcentral.com/1471-2288/12/70
b fixed at 0.41 and 0.92, corresponding to moderate
and strong association, respectively.

Analysis of simulated data sets
Propensity score models
The propensity score models the probability that a given
patient would be exposed to the experimental treatment,
conditionally to his(her) baseline covariates [1]:

logit P Z ¼ 1ð jVð ÞÞ ¼ β̂V ð3Þ
where β̂ is the maximum likelihood estimator of the base-
line covariate effects, and V is the vector of covariates
included in the model. Eight models were examined
according to the vector V: 3 univariable models with
either one of the covariates X2, X3, X4 (models 1, 2, 3,
respectively), 3 bivariate models (X2, X3), (X2, X4) and (X3,

X4) (models 4, 5, 6, respectively), one 3-covariate model
with X2, X3, X4 (model 7) and finally the full model with
X1, X2, X3, X4 (model 8).
The propensity score (PSi) of the patient i was then

estimated from the predicted probability of treatment
given his(her) covariates as obtained by logistic regres-
sion. The PS-matching method was used because it has
been proposed as a reference method when using pro-
pensity score [10]. However, because it has been demon-
strated that this approach may not be strictly unbiased
to estimate a marginal OR [21], we also applied the
IPTW approach which has been shown to be unbiased
for estimating marginal ORs [22].

Propensity score based matching
Different types of matching algorithms have been pro-
posed [23,24]. We used 1–1 matching without replace-
ment. Each treated subject was randomly selected and
then matched to the nearest untreated subject based on
calipers of width of 0.2 of the standard deviation of the
logit of the PS, as previously recommended [23,24].

Inverse-probability-of-treatment weighting
Each subject was weighted in the likelihood using the
inverse estimated probability of treatment actually admi-
nistered, zi, as follows [6]:

IPTWi ¼ zi
PSi

þ 1� zi
1� PSi

ð4Þ

Note that, for treated subjects (zi= 1), IPTWi ¼ 1
PSi

,

while for untreated (zi= 0), IPTWi ¼ 1
1�PSi.

Treatment effect estimates
In each simulated dataset, the benefit of treatment on
the outcome was first estimated by fitting a logistic
model applied to the PS-matched dataset using general-
ized estimating equations with robust variance estimator
(package gee for R, Vincent J Carey, Thomas Lumley
and Brian Ripley). Then, a weighted logistic model using
a generalized linear model adapted to data from a com-
plex survey design, with inverse-probability weighting
and design-based standard errors applied (package
svyGLM for R, Thomas Lumley).

Model performance criteria
A total of 7,300 independent datasets – generated as
described above – was required to detect a difference in
type I error of at least 0.005 as compared to 0.05 with a
power of 95%. The performance of each of the 8 PS models
was evaluated from those 7,300 simulated sets using the
following criteria: type I error, statistical power, absolute
and relative biases from the marginal OR (%) and mean
square error (MSE). Type I error and statistical power were
estimated by the proportions of true and false null hypoth-
eses that were rejected, respectively. MSE was computed
by the average of the squares of the differences between
the estimate and the true value fixed by simulation.
All simulations and statistical analyses were performed

using R software version 1.10.1 (http://www.R-project.
org) running on a Linux platform.
Results
Simulation results
Full fitted models
To evaluate the impact of small sample sizes on estima-
tion, we first fitted a non-parsimonious PS model,
including all the four baseline covariates (model 8).
When using the PS-matching approach, the mean

number of pairs ranged from 21.2 to 22.6 (i.e., from 53.0
to 56.5% of the sample) for 40 patients and increased up
to 370.0 - 421.2 (74.0-84.2%) for 500 patients.
Under the null hypothesis, no substantial increase in the

Type I error rate was observed as the sample size
decreased from 1,000 down to 40 subjects. As shown in
Figure 1 (Panel A), for a treatment effect and a strength of
the association between the covariates and the outcome
both set at a strong level, and a marginal prevalence of the
treatment at 0.5, the Type I error rate ranged from 0.039
to 0.052 for PS matching, and from 0.036 to 0.047 for
IPTW. The Type I error rate was not markedly affected by
the strength of the association between the covariates and
the treatment/outcome (Table 1), nor by treatment preva-
lence, decreasing from 0.5 down to 0.2 (data not shown).
Given a strong treatment effect and balanced treat-

ment groups (treatment prevalence set at 0.5), the bias
and the mean square error expectedly increased, as long as
the sample size decreased, for both PS-matching and
IPTW (Table 1 & Figure 1, Panel B). However, even for
sample sizes of less than 100 subjects, bias remained below
10% (Table 1). For sample sizes of more than 60 subjects,

http://www.R-project.org
http://www.R-project.org


Figure 1 Evolutions of the type I error (Panel A) and the bias and the mean square error (MSE) in the estimated coefficients (Panel B)
when decreasing the sample size according to the method used, analysis of PS matched or inversely probability weighted (IPW) data
sets. These results were obtained using a non parsimonious PS model that included the four baseline covariates. The strength of the association
between the baseline covariates, the treatment and the outcome was uniformly set as strong (odds ratio of 2.5) with a marginal prevalence of
the treatment of 0.5. In the upper panel (Panel A), the type I error rate was obtained under the null hypothesis. In the lower panel (Panel B), the
bias and the mean square error were computed using a treatment effect set at 2.5.
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IPTW estimations were systematically less biased and MSE
smaller than those reached by PS-matching. Similar results
were found in case of low prevalence of the treatment.
When the strength of the association between the cov-

ariates and the treatment/outcome decreased, IPTW
estimators remained similarly or even less biased than
PS-matching estimators, down to 60 subjects (Table 1).
However, when the sample size was set at 40, the PS-
matching estimators outperformed better than the IPTW
estimators.
Whatever the method, the reduction of treatment ef-

fect (with OR decreasing from 2.5 to 1.5) was associated
with a global decrease in the bias and the MSE, but with
similar relative bias (data not shown). In this situation,
the largest bias was observed for both methods when
the number of subjects decreased to less than 60 (IPTW:
relative bias: 8.1%, MSE: 0.675; PS-matching: relative
bias: 7.6%, MSE: 0.933).
As expected, the variance in the estimation of treatment

effect increased monotonically while the sample size
decreased. The variances of the IPTW estimators were
systematically smaller than the variances of the PS estima-
tors. For both methods and whatever the treatment effect,
the smallest variance was observed when baseline covari-
ates were strongly associated to the outcome, but moder-
ately to treatment.

Selected fitted models
When the simulations were fitted using PS-models that
included at least X4, no substantial increase in the Type
I error rate was observed as the sample size decreased
from 1,000 to 40 subjects whatever the strength of the
association between the covariates, the treatment and
the outcome. However, when removing the true con-
founder from the PS model, the Type I error rate sub-
stantially increased to a maximum obtained for the
IPTW method, in case of strong association between the
two remaining covariates, the treatment and the out-
come (Table 2). Moreover, the IPTW method seems
always more conservative than the PS-matching.
In case of strong treatment effect, variables included in

the PS model affected the bias and the MSE: non-



Table 1 Type I errors, Bias and Mean Square Error (MSE) for non parsimonious PS model according to the method
used (PS matching (PSm) or IPTW) and to the strength of the association between baseline covariates, treatment/
outcome

N OR(a) = 1.5,
OR(b) = 1.5

OR(a) = 2.5,
OR(b) =1.5

OR(a) = 1.5,
OR(b) = 2.5

OR(a) = 2.5,
OR(b) = 2.5

PSm IPTW PSm IPTW PSm IPTW PSm IPTW

40 Type I error 0.055 0.048 0.053 0.056 0.052 0.039 0.052 0.047

Bias 0.05 0.057 0.049 0.07 0.059 0.055 0.048 0.079

% 5.6 6.5 5.4 7.8 7.1 6.6 5.7 9.4

Variance 0.875 0.593 0.918 0.694 0.873 0.576 0.903 0.683

MSE 0.878 0.597 0.92 0.699 0.876 0.579 0.905 0.690

60 Type I error 0.045 0.046 0.047 0.046 0.044 0.039 0.044 0.039

Bias 0.058 0.036 0.058 0.049 0.048 0.022 0.05 0.033

% 6.4 4 6.4 5.4 5.7 2.6 6 3.9

Variance 0.511 0.36 0.553 0.414 0.484 0.329 0.516 0.388

MSE 0.514 0.362 0.556 0.416 0.486 0.33 0.519 0.389

100 Type I error 0.049 0.046 0.047 0.046 0.047 0.034 0.04 0.036

Bias 0.023 0.018 0.02 0.022 0.021 0.015 0.025 0.016

% 2.6 2 2.2 2.5 2.5 1.8 2.9 1.9

Variance 0.254 0.194 0.282 0.223 0.242 0.177 0.261 0.204

MSE 0.255 0.194 0.283 0.223 0.243 0.177 0.262 0.204

500 Type I error 0.049 0.046 0.05 0.048 0.041 0.038 0.042 0.037

Bias 0.01 0.007 0.012 0.008 0.01 0.005 0.013 0.005

% 1.1 0.8 1.3 0.9 1.2 0.6 1.5 0.6

Variance 0.04 0.034 0.045 0.038 0.037 0.032 0.042 0.035

MSE 0.04 0.034 0.045 0.038 0.037 0.032 0.042 0.035

This table specially details the sample sizes ranging from 40 to 500. Prevalence of the treatment was set at 0.5. Conditional treatment effect was set at log(2.5)
except for Type I errors estimations (log(1)). (N: number of subjects; PS: propensity score; IPTW: inverse probability of treatment weighting, OR(a) and OR(b):
strengths of the association between baseline covariates and treatment or outcome respectively, as defined on an odds ratio scale).
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inclusion of the true confounder systematically implied a
bias larger than 10%; moreover the inclusion of variables
unrelated to the treatment allocation but related to the
outcome allowed to achieve less biased results than that of
variables related to treatment but unrelated to the out-
come (Table 2 & Figure 2). Such impact on bias was more
important with IPTW than with PS-matching (Table 2),
and when the covariates and the treatment/outcome were
strongly rather than moderately associated. The bias, var-
iances and MSE of the IPTW estimators were systematic-
ally smaller than those of the PS estimators. Similar trends
were found when the treatment effect was moderate, but
the absolute values of both biases and MSE were smaller
than those observed with a strong treatment effect.
The variance of the estimated treatment effect decreased

when the true confounder or covariate unrelated to the
treatment but related to the outcome were included in the
PS, especially with the IPTW method (Table 2). Adding to
model 5 (including true confounder+ variable related to
the outcome) a variable related to treatment allocation
(model 7) did not reduce the bias, but increased the
variance of the estimation. Moreover, adding to the PS
model a variable related neither to the treatment nor
to the outcome (model 8), did not further improve the
precision of the estimation, but increased the variance,
especially when the sample size decreased below 100.
Similar results than those observed using a non-

parsimonious PS model, were found when the marginal
prevalence of the treatment decreased from 0.5 to 0.2.
For both IPTW and PS-matching methods, the min-

imally biased estimation was obtained by incorporating
in the PS model, as well as true confounders, variables
strongly associated to the outcome but moderately asso-
ciated to the treatment.

Illustration to a real observational dataset
To illustrate these results, we then applied the PS methods
described above in a real situation, where we aimed at
evaluating the benefit of sequential autologous-allogeneic
tandem approach in Multiple Myeloma (MM), using a



Table 2 Bias and variance of the estimated treatment effect for the different selected PS models and according to the
method used (PS matching or IPTW)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

N X2 X3 X4 X2,X3 X2,X4 X3,X4 X2,X3,X4 X1,X2,X3,X4

PSm IPTW PSm IPTW PSm IPTW PSm IPTW PSm IPTW PSm IPTW PSm IPTW PSm IPTW

40 Type I error 0.062 0.041 0.059 0.051 0.058 0.040 0.060 0.047 0.053 0.036 0.048 0.045 0.053 0.044 0.052 0.047

Bias 0.273 0.235 0.265 0.251 0.086 0.06 0.259 0.25 0.075 0.061 0.064 0.071 0.075 0.074 0.048 0.079

Relative bias 32.6 28.1 31.7 30 10.3 7.2 31 29.9 9 7.3 7.6 8.5 9 8.8 5.7 9.4

Variance 0.809 0.508 0.872 0.566 0.862 0.551 0.874 0.573 0.843 0.56 0.907 0.634 0.904 0.644 0.903 0.683

MSE 0.884 0.563 0.942 0.629 0.869 0.555 0.941 0.635 0.848 0.563 0.911 0.639 0.909 0.649 0.905 0.69

60 Type I error 0.055 0.050 0.058 0.057 0.045 0.038 0.052 0.053 0.043 0.037 0.049 0.042 0.044 0.041 0.044 0.039

Bias 0.239 0.203 0.235 0.217 0.041 0.02 0.245 0.219 0.047 0.022 0.051 0.028 0.059 0.03 0.05 0.033

Relative bias 28.6 24.3 28.1 25.9 4.9 2.4 29.3 26.2 5.6 2.6 6.1 3.3 7.1 3.6 6 3.9

Variance 0.466 0.317 0.52 0.354 0.494 0.339 0.532 0.348 0.477 0.333 0.524 0.379 0.514 0.375 0.516 0.388

MSE 0.523 0.359 0.575 0.401 0.495 0.339 0.592 0.396 0.479 0.334 0.527 0.38 0.517 0.376 0.519 0.389

100 Type I error 0.062 0.057 0.065 0.066 0.052 0.039 0.057 0.062 0.042 0.034 0.046 0.041 0.044 0.037 0.04 0.036

Bias 0.209 0.193 0.212 0.203 0.029 0.013 0.215 0.203 0.029 0.013 0.028 0.016 0.028 0.016 0.025 0.016

Relative bias 25 23.1 25.3 24.3 3.5 1.6 25.7 24.3 3.5 1.6 3.3 1.9 3.3 1.9 2.9 1.9

Variance 0.239 0.175 0.254 0.194 0.242 0.186 0.256 0.188 0.239 0.18 0.259 0.205 0.253 0.199 0.261 0.204

MSE 0.282 0.212 0.299 0.235 0.243 0.186 0.302 0.23 0.24 0.18 0.259 0.205 0.254 0.2 0.262 0.204

500 Type I error 0.148 0.155 0.150 0.162 0.051 0.045 0.146 0.157 0.046 0.040 0.046 0.042 0.045 0.037 0.042 0.037

Bias 0.187 0.182 0.192 0.191 0.014 0.005 0.193 0.191 0.015 0.005 0.014 0.005 0.014 0.005 0.013 0.005

Relative bias 22.3 21.8 22.9 22.8 1.7 0.6 23.1 22.8 1.8 0.6 1.7 0.6 1.7 0.6 1.5 0.6

Variance 0.037 0.032 0.042 0.036 0.04 0.034 0.041 0.034 0.039 0.033 0.044 0.037 0.042 0.035 0.042 0.035

MSE 0.072 0.066 0.079 0.072 0.04 0.034 0.078 0.071 0.039 0.033 0.044 0.037 0.042 0.035 0.042 0.035

This table specially details the sample sizes ranging from 40 to 500. Prevalence of the treatment set at 0.5, treatment effect.
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small observational dataset [15]. Twenty-three patients
(median age 48 years, range 26–59 years) with relapsed
multiple myeloma (MM) who received the treatment under
study were compared to a control group of 142 MM relaps-
ing patients free of such a treatment (median age 51.5 years,
range 25–65 years). Hence, this dataset combined the two
situations of relatively small sample size (n=165) and very
low prevalence of treatment (23/165, 14%). We used the
survival status at 24 months as the outcome measure, with
benefit of treatment measured on ORs.
Three baseline variables, related to treatment allocation,

to the outcome or to both of them, were available at base-
line: 1) age at diagnosis, only associated with treatment
allocation (with untreated patients more likely to be older
than treated; p = 0.05), 2) beta2 microglobulin level≥ 3.5,
only moderately associated with the outcome OR=1.8
(95%CI 0.9;3.5 , p = 0.10), and 3) time elapsed since the
first line treatment at relapse, strongly associated with
both the treatment allocation OR=0.4 (95%CI 0.2;0.8 ,
p = 0.01) and to the outcome OR=0.4 (95%CI 0.2;0.7 ,
p = 0.002). Of note, log time was considered instead of the
time to insure the validity of logistic models.
In this situation, we applied the PS-matched and PS-
weighted (IPTW) approaches, when PS incorporated the
baseline information separately. Results are summarized
in Table 3. As expected by the simulation results, the
choice of the variable included in the PS model heavily
impacted the estimation of treatment effect, and this
was even more pronounced when using the IPTW-
weighted estimator than the PS-matched estimator. In-
deed, consistently with the simulation findings, including
only the variable related to the treatment, e.g. age at
diagnosis, yielded estimates different than that obtained
by including only the true confounder, namely time
elapsed since the first line treatment at relapse.
If we assumed from the former simulation results that

the model including the variable related to the outcome
and the true confounder (namely, the beta2 microglobu-
lin level and the time elapsed since the first line treat-
ment at relapse) was the optimal model, results were
concordant with those obtained by simulation. Hence,
the results obtained by including only the true confoun-
der were very close to the former in terms of estimates
and variance. Omitting from the PS model either the



Table 3 Estimated odds ratios (OR) of death and 95% confide
IPTW approaches

Model Adjustment in the original set PS-matched s

Covariates OR (95%CI) p-value No pairs O

X1= age 0.44 (0.14;1.42) p = 0.17 22 0

X2=beta2micro 0.47 (0.15;1.47) p = 0.19 23 0

X3= time to relapse 0.24 (0.07;0.84) p = 0.026 23 0

X1+X2 0.49 (0.15;1.57) p = 0.23 22 0

X1+X3 0.22 (0.06;0.85) p = 0.028 18 0

X2+X3 0.26 (0.07;0.93) p = 0.039 23 0

X1+X2+X3 0.24 (0.06;0.93) p = 0.040 20 0

Figure 2 OR biases and MSE according to the sample size and
variables included in the propensity score when using an IPTW
approach. Upper panel: OR biases; Lower panel: OR Mean Square
Error (MSE).
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true confounder or the variable related to the outcome
substantially modified the estimation of treatment effect.
Moreover, as demonstrated in the simulation study,

adding to the PS model variables only related to the
treatment allocation (that is, models with age, beta2
microglobulin level and time to relapse) led to a larger
variance in the estimation of the treatment effect, espe-
cially when using a PS-matching approach.
Finally, if considering the recommended strategy

defined above, that is, only using covariates strongly
associated with the outcome in the PS, the conclusion
was somewhat concordant whatever the approach.

Discussion
Propensity score methods have been widely studied to
analyze very large datasets [11-13]. However, although
originally developed in epidemiological settings with
large sample sizes, they are increasingly being used to
estimate causal treatment effects in clinical settings,
where sample sizes are rather limited as compared to
the former settings. Actually, while the former epidemio-
logical settings deal with thousands of patients, the clin-
ical setting usually have to deal with at most several
hundred patients, or even less than 50 [14,15]. However,
only a few publications have addressed the issue of PS
properties in such a situation [25]. Thus, the aim of this
study was to get further insights into their performances
when either the sample sizes or the prevalence of expos-
ure are rather low, and to address the question of the
variables to include in the PS model in such situations.
To answer those questions, we used the 2 main recom-

mended PS approaches [11-13], namely the PS-matching
and IPTW. The large use of PS matching was confirmed
by a PubMed search (performed on October, 2010) that
selected 521 references dealing with PS matching from a
whole set of 2,045 PS references. By contrast, only 64
references dealt with IPTW or PS-weighted approaches,
and this could be explained because they have been more
recently promoted, and appear more complex to use than
PS-matching. Other PS approaches have been developed
nce interval using naive, propensity score matching, or

ample IPT-Weighted sample

R (95%CI) p-value Sum of weights OR (95%CI) p-value

.27 (0.06;1.23) p = 0.091 327.5 0.39 (0.11;1.32) p = 0.13

.27 (0.05;1.41) p = 0.12 330.0 0.48 (0.14;1.65) p = 0.25

.19 (0.05;0.65) p = 0.0088 349.1 0.27 (0.08;0.92) p = 0.039

.48 (0.09;2.58) p = 0.39 317.9 0.41 (0.12;1.36) p = 0.15

.20 (0.03;1.17) p = 0.073 456.0 0.23 (0.05;1.00) p = 0.052

.19 (0.05;0.68) p = 0.011 340.8 0.26 (0.08;0.86) p = 0.028

.41 (0.08;2.1) p = 0.28 432.1 0.21 (0.05;0.86) p = 0.031
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such as PS adjustment [1,2] or PS-quintile stratification
[1,2] but they have been shown of less performance in
large samples. Thus, it appeared unlikely that they would
perform better in the context of small sample size or low
prevalence of exposure.
Based on a simulation study, we showed that no sub-

stantial increase in the Type I error rate was observed as
the sample size decreased from 1,000 to 40 subjects, but
that small sample sizes lead to biased estimations of the
marginal treatment effect. However, relative bias
remained inferior to 10%, even with small sample down
to 40 patients. Of note, in case of small sample sizes
down to 60 subjects, IPTW method seems to perform
always better than the PS-matching. Such results could
have been expected as IPTW method preserves the sam-
ple size all along the analysis process and maximizes the
available amount of information as compared to PS-
matching. On the contrary, 1:1, without replacement
matching procedures are associated with a reduction in
the sample size, as all treated usually cannot find a non-
treated to be matched with. Hence, because the weighted
dataset is generally larger than the matched dataset, the
variance and the confidence intervals associated with the
IPTW estimations are expected to be smaller. However,
when N was set at 40, the PS-matching estimators were
either similarly or even less biased than the IPTW esti-
mators. One possible explanation is that, in case of very
small samples, the weighting resulted in a significant dis-
tortion of the population, with excessive weights given
to marginal subjects. This was illustrated in the real
dataset where the sum of weights was sometimes far
above the actual sample size. However, this could be
addressed by using stabilized weights, as previously
reported [26]. We thus reran the analyses using such sta-
bilized weights, but in our case, stabilization did not
affect the results (data not shown).
The second question addressed in this study was the

selection of the covariates to be included in the PS model,
in case of small sample sizes. Previous simulation studies
have addressed different questions concerning the choice
of the variables to be included in the PS model, such as
the effect of omitting confounding variables when using
quintile-stratified propensity adjustment in longitudinal
studies [27], or the relative performances of PS models
when including variables related to treatment allocation,
variables related to outcome or all variables related to
either outcome or treatment or neither [28]. However,
data concerning appropriate PS models when dealing with
limited sample sizes are still lacking. Indeed, while it is
usually recommended [17-19] to include in the PS model
all the potential confounders, this could lead to over para-
meterized PS models when the number of treated is lim-
ited. On the other hand, it has been previously reported
that PS model misspecification could highly influence the
estimation [25,27]. Therefore, in the context of small sam-
ple sizes, one might consider preferable to apply some
variable selection procedure, but it seems crucial to
adequately choose those variables to be included in the PS
model. To do so, it has previously been shown that,
because the goal of a PS model is to efficiently control
confounding, but not to predict treatment or exposure,
the use of selection procedure based on the goodness-of-
fit cannot be recommended [19,20,25]. As previously
reported [17,25], we found that the inclusion in the PS
model of variables unrelated to the exposure but related
to the outcome is mandatory. Indeed, consistently with
the results published by Brookhart et al. [25], we found
that the inclusion of such variables decreased both the bias
and the variance of the estimated treatment effect. We
also found that excluding the true confounder from the
PS model resulted, whatever the method used, in a signifi-
cantly biased estimation of treatment effect. These results
are not in line with the advices provided by Brookhart
et al. [25]. Indeed, the latter authors suggested that includ-
ing in the PS model a true confounder that is only weakly
related to the outcome, but very strongly related to the
exposure might result in a loss in efficiency that is not off-
set by a large enough decrease in bias. Our different
results might be otherwise explained by the fact that our
simulation study did not explore a situation where the true
confounder is very strongly related to the exposure but
only very weakly to the outcome.
We measured the performance of each approach using

type I error, power, bias and MSE estimated from inde-
pendent replicates of simulated datasets. However, in
practice, the accurate way to evaluate the performance
of a PS procedure relies on the assessment of its ability
to reach conditional exchangeability between groups, as
recommended by Austin [4,29]. Balance is commonly
measured on standardized differences, though permuta-
tion tests have been also reported as an interesting alter-
nate way of evaluation. Indeed, such tests tend reject
when bias due to inexact propensity matching is enough
to undermine causal inferences, and tend not to reject
when that bias is small enough to be ignored, could be
used instead [30].
The importance of variables to be included in the model

was exemplified in our real dataset, where achieved bal-
ances and treatment effect estimates (Table 3) heavily
depended on the approach (PS-match versus IPTW) and
the included covariates, with estimated ORs of death ran-
ging from 0.19 (when PS included the true confounder)
up to 0.4, which was reached by both IPTW and PS-
matching approach in situations where the true confoun-
der was omitted from the model. While we chose to focus
on the 2 currently recommended PS methods, PS match-
ing and IPTW, it should be emphasized that PS adjust-
ment and stratification on the quintiles of the PS have not
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been and compared to the former methods in the context
of small sample sizes. Further simulation studies should
be performed to compare the performances of the 4 meth-
ods in the context of small sample size.
For the PS matching, we used a classical pair matching

procedure, based on a caliper defined as 0.2SD of the logit
of the PS. This was chosen as the mostly used matching
method in clinical settings [31], while that caliper width
was recommended on the basis of simulation results
[23,32]. However, several other matching procedures could
have been proposed that may offer interesting advantages
over the former, notably in the context of small sample
sizes [33]. Otherwise,data-adaptive algorithms such as ridge
matching have been also reported to perform better than
“classical” pair matching [34]. Nevertheless, evaluating the
matching algorithm was not the goal of this paper, though
its importance deserves to be the focus of a specific simula-
tion study. This should be the framework of further studies.
We did not consider other model misspecifications

but those regarding the PS model. Indeed, in the class of
IPW estimators, it is well known that the weighted esti-
mators are consistent provided that the model for esti-
mating the PS is correctly specified. Otherwise, to relax
this restriction, so-called doubly-robust estimators have
been proposed [8], that also require the specification of
the outcome regression model. Misspecifications may
consist in choosing the wrong link function, or selecting
a linear instead of a non-linear predictor. In case of
model misspecification, the mean square error of esti-
mate has been shown to be reduced by using the match-
ing estimator, both for small-to-moderate sample sizes
[35]. Further work in this topic may be of interest.
The choice of the odds ratio as a measure of treatment

effect has been debated. Indeed, the choice of the appro-
priate PS based estimators for conditional and marginal
non-linear treatment effects has been thoroughly dis-
cussed in the recent literature [21,36-38]. Actually, the
problem with OR, usually described as non-collapsibility,
refers to the fact that conditional and marginal effects
might differ unless the true effect is null [21,39,40]. More-
over, Austin et al. [23] have previously shown that PS-
matching, as compared to PS-stratification or -adjustment,
offers substantially less biased estimates of both condi-
tional and marginal OR. The choice to control the condi-
tional treatment effect rather than the marginal as
proposed by Austin [23] was driven by our wish to achieve
a probability of 0.50 of experiencing the outcome and to
maximize the statistical power considering the small sam-
ple size. The resulting marginal treatment effect was
thereafter estimated using a second simulation study of
sample size 1,000,000 that confirmed that conditional and
marginal treatment effects were in the same range. Other-
wise, previous simulations studies support the use of
IPTW estimators as approximately unbiased estimators of
marginal odds ratios [22,38]. The choice of a binary out-
come and the use of an adapted and largely applied regres-
sion model were motivated by our will to overcome a
biostatistical issue that has been raised by one of our clin-
ical question.
Finally, the choice of an event rate of 0.5 could be

debated. Indeed, the prevalence of event may be far from
0.5 in clinical situations. However, we chose a prevalence
of 0.5 because our goal was to assess the effects of
decreasing the sample size. Then, when dealing with sam-
ple size of 40–60 patients, an even rate of 0.1-0.2 would
have been associated with a very small number of events,
and a high risk of model misspecification. To confirm this
assumption, we reran the simulation using an event rate
fixed at 0.2. As expected, decreasing the event rate down
to 0.2 was associated for both methods with unacceptable
increases in variance and MSE, when the sample size
was ≤100 (variance ranging from 1.294 to 177.4; MSE
ranging from 1.309 to 177.4).

Conclusions
In conclusion, this simulation study revealed that, even in
case of small study samples or low prevalence of treat-
ment, both propensity score matching and inverse prob-
ability of treatment weighting can yield unbiased
estimations of treatment effect. However, in such situa-
tions, a particular attention should be paid to the choice
of the variables to be included in the PS model. The opti-
mal model seems to be that including the true confounder
and the variable related only to the outcome, although
reporting several models as a sensitivity analysis may ap-
pear a good way of arguing for or against the robustness
of the estimated effects. Future work in this area should
aim at providing for the clinicians: (1) formal rules to
choose the best approach between matching and weight-
ing according to the population characteristics, (2) prac-
tical strategies to select the variables for inclusion in a
propensity score model in case of small study samples or
low treatment prevalence.
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