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Abstract

Background: The construction of prediction intervals (PIs) for future body mass index (BMI) values of individual
children based on a recent German birth cohort study with n = 2007 children is problematic for standard
parametric approaches, as the BMI distribution in childhood is typically skewed depending on age.

Methods: We avoid distributional assumptions by directly modelling the borders of PIs by additive quantile
regression, estimated by boosting. We point out the concept of conditional coverage to prove the accuracy of PIs.
As conditional coverage can hardly be evaluated in practical applications, we conduct a simulation study before
fitting child- and covariate-specific PIs for future BMI values and BMI patterns for the present data.

Results: The results of our simulation study suggest that PIs fitted by quantile boosting cover future observations
with the predefined coverage probability and outperform the benchmark approach. For the prediction of future
BMI values, quantile boosting automatically selects informative covariates and adapts to the age-specific skewness
of the BMI distribution. The lengths of the estimated PIs are child-specific and increase, as expected, with the age
of the child.

Conclusions: Quantile boosting is a promising approach to construct PIs with correct conditional coverage in a
non-parametric way. It is in particular suitable for the prediction of BMI patterns depending on covariates, since it
provides an interpretable predictor structure, inherent variable selection properties and can even account for
longitudinal data structures.

Background
Childhood obesity is more and more becoming a pro-
blem of epidemic dimensions in modern societies [1,2].
The body mass index (BMI) has proved to be a reliable
measure to assess childhood obesity and can also be
seen as an indicator for obesity in adulthood [3,4].
Therefore, the prediction of future BMI values for indi-
vidual children may be used as a warning bell for clini-
cians, parents and children. Predicting future BMI
values raises awareness for problems to come - as long
as they are still avoidable - and can thus lower the risk
of later obesity.
In this setting, we focus on obtaining reliable predic-

tions for future BMI values of children. Prediction

intervals (PIs) offer information on the expected varia-
bility by providing not only a point prediction but a cov-
ariate-specific interval which covers the future BMI for
this individual child with high probability. We construct
child-specific prediction intervals for the LISA study, a
recent German birth cohort study with 2007 children
[5]. Data include up to ten BMI values per child from
birth until the age of 10, as well as variables that are dis-
cussed to be potential early childhood risk factors for
later obesity, such as breastfeeding, maternal BMI gain
and smoking during pregnancy, parental overweight,
socioeconomic factors, and weight gain during the first
two years [6,7]. In our analysis, we first construct PIs
for the children’s BMI at approximately the age of four,
relying on data available for the children at the age of
two. In a second step, we explore the longitudinal struc-
ture of the present data and construct PIs for child-spe-
cific BMI patterns from two up to ten years.
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Predicting child-specific BMI values is a great chal-
lenge from two different perspectives: From the epide-
miological perspective, it is difficult to predict BMI
values as they depend on factors which are hard to mea-
sure; such as physical activity, healthy nutrition, and life-
style habits. From the statistical point of view, the
distribution of BMI values is typically skewed and the
degree of skewness depends on children’s age, see e.g.
Beyerlein et al. [8], which makes standard strategies to
construct PIs relying on distributional and homoscedas-
ticity assumptions problematic.
In these standard parametric approaches, first, a point

prediction for the future BMI value is estimated based
on mean regression models with Gaussian distributed
errors, then a symmetric PI is constructed around that
point based on distributional assumptions. To predict
BMI values, however, these standard parametric
approaches are problematic due to two reasons: not
only the model assumptions for the point prediction
might not be fulfilled but also the length of the PI
depends on an assumed fixed variance which does not
reflect the reality of an age-specific BMI skewness [9].
One possibility to overcome these problems would be
the usage of more sophisticated parametric approaches,
as for example generalized additive models for location
scale and shape ("GAMLSS” [10]). GAMLSS are model-
ling up to four parameters of the conditional response’s
distribution and could therefore take age-specific skew-
ness into account. This model class has already been
used for constructing PIs in combination with boosting
[11]. However, the construction of PIs based on
GAMLSS depends totally on the assumed distribution
and the interpretation of covariate effects with respect
to the interval borders is not straightforward.
We avoid making distributional assumptions here by

developing a new approach to constructing non-para-
metric prediction intervals based on quantile boosting.
Instead of constructing intervals around a point predic-
tion, the new approach directly models the interval bor-
ders by additive quantile regression [12]. The borders
are fitted as BMI quantiles conditional on the child-spe-
cific covariate combination. We use quantile boosting
for the estimation [13], which offers the advantage of
flexible and inter-pretable covariate effects and an
intrinsic variable selection property (which is in particu-
lar useful in high-dimensional data settings). The size of
the resulting PIs is not fixed but depends on covariates
- in longitudinal settings it might also depend on child-
specific effects (corresponding to “random effects” in
linear and additive mixed models).
During the work on this paper, we found a severe pit-

fall in the correct validation of prediction intervals. The
appropriate measure for validating PIs is conditional
coverage, not sample coverage (although being more

intuitive) which makes it unfeasible in almost any data
setting to evaluate the intervals in practice. The only
way to demonstrate the correctness of PIs is therefore
based on an empirical evaluation with simulated data.
Thus, in a first step we evaluate the correctness of our
approach in a set of simulation studies before applying
quantile boosting to predict future BMI values.

Methods
Prediction intervals by conditional quantiles
The idea of using quantile regression to construct pre-
diction intervals for new observations was presented in
[12]. In contrast to standard regression analysis, quantile
regression - thoroughly described in [14] - does not esti-
mate the conditional expectation E(Y|X = x) = μ(x) of a
random variable Y but the conditional quantile function
Qτ(Y|X = x) = qτ(x) for a given τ Î (0, 1) and a possible
set of covariates X = x. Following the definition of quan-
tiles as inverse of the cumulative distribution function,

qτ (x) = F−1
Y|X=x(τ ) , the probability of the response Y

being smaller than qτ(x) is τ:

P
(
Y < qτ (x)|X = x

)
= FY|X(qτ (x)) = τ . (1)

The goal is therefore to estimate the conditional quan-
tile function q̂τ (x) by quantile regression based on a
training sample (y1, x1), ..., (yn, xn). For a new observa-
tion, the specific covariate combination xnew is plugged
into q̂τ (xnew) . A prediction interval for ynew is then esti-

mated by evaluating q̂τ (xnew) at τ1 = α
2 and τ2 = 1 − α

2 ,
leading to

P̂I(1−α)(xnew) =
[
q̂ α
2 (xnew) , q̂1 − α

2 (xnew)
]
. (2)

The resulting PI should cover a new observation ynew
with probability (1 - a) while its length depends on
xnew. There might be combinations of co-variates that
allow for a very precise prediction for ynew resulting in a
narrow interval, whereas wide intervals imply that for a
given xnew the prediction is more inaccurate. As the esti-
mates q̂τ (x) depend on a training sample (y1, x1), ..., (yn,
xn), which are realizations of random variables Y and X,
the boundaries of the intervals itself can be seen as ran-
dom variables. This is an analogy to confidence inter-
vals, which usually should cover unknown but fixed
parameters. The boundaries of confidence intervals
depend on the underlying sample and thus differ from
sample to sample. Yet, for every sample, they cover the
true parameter with a probability of 1 - a. Prediction
intervals are constructed in the same way, but they
cover a future realization of a random variable, which
itself is random. The result is that the length of a pre-
diction interval for ynew is always larger than the length
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of a confidence interval for the expected mean of Y. Pre-
diction intervals do not only take into account the sam-
pling error made by the estimation based on a sample,
but also the unexplained variability of Y given X = x. In
conclusion, as long as Y|X = x is not deterministic, the
length of the corresponding PI - in contrast to a confi-
dence interval - does not reduce to 0, not even for infi-
nitely large sample sizes.

Conditional coverage vs. sample coverage
We stated that a correctly specified prediction interval
PI(1 - a)(xnew) covers a new observation ynew with prob-
ability π : = (1 - a). To validate a method for fitting PIs,
we obviously need a certain amount of new observa-
tions: From a single observation (ynew, xnew) it is impos-
sible to verify if PI(1 - a)(xnew) is correct. It either covers
ynew or not - both events do not prove anything, at least
if a is not 0. Yet, if we have a certain amount of new
observations, there still exist two different interpreta-
tions for the coverage probability π:
Sample coverage
For any new sample y = (y1,...,yn)

⊤ and corresponding
covariates x = (x1, ...,xn)

⊤ about (1 - a) - 100% of the
new sample y will be covered by the n prediction inter-
vals PI(x1),...,PI(xn). The coverage refers to the whole
sample. To evaluate sample coverage in practice, one
estimates the coverage probability by averaging over dif-
ferent PIs:

π̂ = Ê(Y ∈ PI(x)) =

∑n
i=1 I{yi ∈ PI(xi)}

n
(3)

where I{·} is an indicator function.
Conditional coverage
For any xnew and a corresponding sample (y1, xnew),...,
(yn, xnew), about (1 - a) · 100% of the observations with
the particular covariate combination xnew will be cov-
ered by the prediction interval PI(xnew). The coverage
therefore refers to observations belonging to this xnew.
To evaluate conditional coverage in practice, one esti-
mates the conditional coverage probability by averaging
over different new observations for one PI:

π̂ |xnew = Ê(Y ∈ PI(xnew)|X = xnew)

=

∑n
i=1 I{yi ∈ PI(xnew)}

n

(4)

Although sample coverage is the more intuitive inter-
pretation of PIs, it is obvious that conditional coverage
reflects in a better way what we really expect from a PI.
For example, after constructing a 95% PI for the BMI of
a child at the age of four, given all information available
from the child as a two-year-old, we particularly expect
the future BMI of this child with its exact measures to

be covered with a probability of 95%. In frequentistic
language, the BMI of 95% of children with exactly the
same measures should be covered by the interval. The
coverage should hold for every child and every possible
combination of covariates not only on average for all
children.
Hence, to show the correctness of PIs it is particularly

not enough to show that PIs cover the right amount of
observations on average from a new sample. This is
further illustrated by a small example in Figure 1. For a
simple univariate regression setting, two different pre-
diction intervals were fitted: Both hold the sample cov-
erage, but only one holds the conditional coverage. The
first one, represented by the blue lines in Figure 1, relies
on conditional quantiles fitted by linear quantile regres-
sion. It is an adequate interval for every possible x, it
holds the conditional coverage and it adapts to the het-
eroscedasticity found in the data. The second one,
drawn by red lines, is a “naive” interval, depending on
the empirical quantiles of the response variable in the
training sample. It does not take into account the infor-
mation provided by x and is not adequate regarding the
conditional coverage for any x. However, it holds the
sample coverage. This further emphasizes the need to
be aware of the different concepts of coverage probabil-
ity and to clarify the precise aims of a PI analysis
beforehand.
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PI: based on cond. quantiles Q(Y|X=x)
PI : based on emp. quantiles Q(y)

Figure 1 Example to compare sample coverage and
conditional coverage. The blue lines represent a prediction
interval for the response constructed by conditional quantiles. The
red lines display a “naive” prediction interval constructed by the
unconditioned empirical quantiles of the response in the training
sample.
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This finding leads to a severe problem, at least for
multivariate prediction settings with several continuous
covariates: For every combination of covariates only one
response observation will be available under almost any
practical circumstances. We will only find one child for
each combination of covariates - not even twins will
have the exact same measures - this is obviously not
enough to verify the correct conditional coverage of a
fitted PI.
Therefore, to demonstrate the correctness of a method

fitting accurate prediction intervals, it is necessary to use
artificial simulated data sets to evaluate the conditional
coverage in (4) for a selected set of covariate combina-
tions. Here, we will conduct a simulation study to evalu-
ate if quantile boosting is a correct method to fit
accurate conditional prediction intervals in potentially
high-dimensional data settings before we apply this
approach to predict future BMI values of children.

Quantile boosting
Recall that our aim is to construct PIs based on condi-
tional quantiles as given in (2). In our approach, we
determine conditional quantiles by additive quantile
regression. For a fixed quantile τ Î (0,1), the conditional
quantile function is expressed by an additive predictor
as follows:

qτ (xi) = ητ i = βτ0 +
p∑
j=1

fτ j
(
xij

)
. (5)

The index i = 1, ...,n, denotes the individual, and qτ(xi)
stands for the τ-quantile of the response yi conditional
on its specific covariate vector xi = (xi1, ..., xip)

⊤. The
quantile-specific additive predictor hτi is composed of
an intercept bτ0 and a sum of different effects of p cov-
ariates xi = (xi1, ..., xip)

⊤ on the quantile function. The
functions fτ1, ..., fτp comprise linear effects, i.e. fτj(xij) =
bτjxij, as well as non-linear effects whose functional form
is not specified in advance. In fact, the additive predictor
could also contain a wide variety of additional covariate
effects, e.g. varying coefficient terms or spatial effects, as
described in [13]. Note that contrary to classical regres-
sion, there is no specific distributional assumption for
the response in (5). The only restriction is that the
response must be continuous.
In general, the estimation of unknown parameters in

quantile regression can be achieved by minimizing the
empirical risk

η̂τ = argmin
ητ

1
n

n∑
i=1

ρτ (yi, ητ i), (6)

where the check function rτ is the appropriate loss
function for fitting quantiles and can be written as:

ρτ (y, ητ ) =
{

τ · ∣∣y − ητ

∣∣ y > ητ

(1 − τ ) · ∣∣y − ητ

∣∣ y ≤ ητ .
(7)

Standard approaches for solving the optimization pro-
blem in (6) rely on linear programming [14,15]. Quantile
regression forest [12] is a recent approach to conducting
quantile regression and adapts random forest [16] to
estimate the whole conditional distribution function.
Since this approach is based on regression trees, the
resulting estimates q̂τ (x) - in contrast to the additive
modelling approach presented here - can only be
described as black-box predictions. Nevertheless, we will
use quantile regression forest as benchmark in our
simulation study.
We will use gradient boosting for the estimation of

the additive quantile regression model in (5), and call
our approach quantile boosting in the following. Quan-
tile boosting [13] was introduced as a method to flexibly
estimate additive quantile regression models. It is an
adaptation of component-wise functional gradient des-
cent boosting [17] and aims at minimizing an empirical
risk criterion, as given in (6). In case of quantile regres-
sion, the appropriate loss is the check function (7).
The minimization of (6) is achieved by stepwise

updating the predictor function hτ. Therefore, base-lear-
ners are used, i.e. simple univariate regression models
fitting the negative gradient of the empirical loss (7).
The base-learners play a key role in the algorithm, since
they define the kind of effects between each covariate
and response. In our approach, we use simple linear
models to represent linear covariate effects and pena-
lized regression splines to represent non-linear effects.
The advantage of quantile boosting is that the resulting
predictor hτ is strictly additive and interpretable, follow-
ing the additive quantile regression model in (5).
In detail, the boosting procedure works as follows: For

each covariate, one specific base-learner is defined and
in every boosting step the algorithm updates only the
covariate with the best performing base-learner. This
way, the algorithm is descending the loss by searching
in the function space represented by the base-learners.
If the algorithm is stopped before every base learner was
at least once updated ("early stopping”), less important
covariates will never have been updated during the
boosting process and are effectively excluded from the
final model. Thus, boosting comes along with an inher-
ent variable selection property and produces sparse
models in potentially high-dimensional settings. It even
allows for candidate models that contain more covari-
ates than observations.
Regarding prediction, early stopping is a desirable

property, since it yields shrunk effect estimates. Shrink-
age of effect estimates is a widely established method in
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statistical modelling [18,19] and tends to produce a
more stable solution leading to an improved prediction
accuracy of the model [20-22], even though an increase
of the model bias (towards underlying data) has to be
accepted. The primary aim is not to minimize the loss
in the underlying training sample best - resulting in a
small model bias - but to get accurate predictions with
a small variance for new data. Since our work focuses
on predictions for future BMI values, the shrinkage
effect is of high relevance in our approach and is pro-
mising in order to provide accurate PIs.
A crucial parameter that has to be tuned with care

during the boosting process is the number of stopping
iterations. It should be tuned regarding the empirical
loss in (6) on a test data sample, or - in case that no
additional data is available - by applying cross-validation
techniques or bootstrapping on the training data [19,23].
Quantile boosting is implemented within the R[24] add-
on package mboost [25,26].

Simulation study
We have already mentioned that the correct empirical
validation of PIs should be based on conditional cover-
age. Since it is almost impossible to evaluate the condi-
tional coverage in practical data analyses, we carried out
a simulation study to provide some kind of proof that
PIs fitted by quantile boosting are provided with correct
conditional coverage. As benchmark, we used quantile
regression forest [12] for which an implementation is
available in the R add-on package quantregForest
[12,27].
Our simulation study aims at answering the following

questions:

1. Are the proposed PIs able to cover future observa-
tions with a predefined conditional coverage
probability?
2. Is quantile boosting able to identify relevant infor-
mative covariates, also in high-dimensional settings,
e.g. data sets with a potentially large number of
covariates?

To investigate these questions, we generated artificial
data from two different settings - a linear setup contain-
ing only covariates with linear effects on the response:

Yi = 1.5 − 3xi1 − 2xi2 + 3xi3 + 5xi4 +
p∑
j=5

0xij

+(1 + .5xi1 + .5xi2 + .5xi3 + .5xi4) · εi
and a non-linear setup including also non-linear

effects:

Yi = 2 + 3 sin
(
2xi1
3

)
+ 1.5 log(xi2)

+ 2xi3 − 2xi4 +
p∑
j=5

0xij

+
(
0.7 + 1.5(xi1 − 1.5)2 + .5(xi2 + xi3)

)
εi.

The first lines of the model formulas represent the
contribution of the covariates x1, ..., xp on the expected
mean of the response y, whereas the bottom line speci-
fies their contribution to heteroscedasticity. Both set-
tings include only four informative covariates x1,...,x4.
The error terms εi were drawn independent and identi-
cally from a standard normal distribution, i.e. εi ~ N
(0,1), whereas the covariates were sampled independent
and identically from a continuous uniform distribution,
i.e. xi1,..., xip ~ U(0,1) for the linear setup and xi1, ...,xip
~ U(0, 3) for the non-linear setup. To evaluate the abil-
ity of quantile boosting to select relevant covariates, we
generated data for both settings once in a low-dimen-
sional scenario with p = 10 and once in a high-dimen-
sional scenario with p = 500 which, in conclusion,
included 496 non-informative covariates.
For each setting, we constructed two-sided 95% PIs

P̂I0.95(xnew) =
[
q̂0.025(xnew), q̂0.975(xnew)

]
in the following way: We generated in each simulation

run a training sample (y1, x1), ..., (yn, xn), with n = 2000
observations and an additional data set with 5000 obser-
vations to select the optimal number of stopping itera-
tions for quantile boosting. Then, we fitted additive
quantile regression models and quantile regression for-
est for τ1 = 0.025 and τ2 = 0.975, including all p
covariates.
In order to evaluate the conditional coverage of the

resulting PIs, we pre-selected five fixed covari-ate com-
binations xt with t = 1,..., 5, as test points and thereby
tried to cover the x-space. For each of the five test
points xt, we sampled 10000 test observations ytest|xt
which served as “future” observations. In analogy to (4),
we then estimated the conditional coverage of the
resulting PIs separately for each model and test point by

π̂ |xt = 1
10000

10000∑
i=1

I
{
ytesti ∈ P̂I95%(xt)

}
.

By designing our simulation in this way, we were able
to evaluate the conditional coverage of the constructed
PIs and avoided the pitfall of averaging over a new sam-
ple, corresponding to the sample coverage.
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Predicting childhood BMI
Data
Data contains observations from a prospective longitudi-
nal birth cohort study (called “LISA study”, [5]), includ-
ing newborns between 11/1997 and 01/1999 from four
German cities. Our aim is to predict future BMI values
for children relying on the data available when they
were two years old. Originally, the study included 3097
healthy children - of whom 2007 are complete cases in
the sense that the necessary covariates at the age of two
are all available for our analysis and at least one future
BMI value until the age of ten is recorded. Continuous
covariates from early childhood are the BMI of the child
at birth (cBMI0) and as a two-year-old (cBMI2), the
exact age of the child at the future measurement
(cAge), the BMI of the mother at the beginning of
pregnancy (mBMI) and the following BMI gain during
pregnancy (mDiffBMI). The considered binary categori-
cal covariates are the sex of the child (cSex), the area
the child is living in (cArea - rural or urban), exclusive
breastfeeding until the age of four months (cBreast),
maternal smoking during pregnancy (mSmoke) and -
with four covariate levels - the maternal level of educa-
tion (mEdu - increasing by level). As potential response
variables, the data comprises BMI values at approxi-
mately the age of four (cBMI4), six (cBMI6) and ten
(cBMI10). See [9] for further description of the LISA
study.
Cross-sectional analysis
The aim of our first analysis was to construct prediction
intervals for future BMI values of individual children at
approximately the age of four, relying on all information
available from the child as a two-year-old. Therefore, we
constructed two-sided 95% PIs with the following addi-
tive quantile regression model:

qτ (xi) = βτ0 + fτ (cBMI2i) + βτ1cBMI0i
+ βτ2cAgei + βτ3mBMIi + βτ4mDiffBMIi
+ βτ5cSexi + βτ6cAreai + βτ7cBreasti
+ βτ8mSmokei + βτ9mEdu2i + βτ10mEdu3i
+ βτ11mEdu4i

Here, qτ(xi) denotes the τ-quantile of the response
cBMI4 for child i with covariate combination xi. It will
represent the borders of child-specific PIs for τ1 = 0.025
and τ2 = 0.975. We included a nonlinear effect for
cBMI2 and linear effects for all other covariates in our
candidate model.
As a benchmark, we compared PIs resulting from our

approach to black box estimates for P̂I0.95(xnew) from
quantile regression forest. Yet, it was impossible to eval-
uate the conditional coverage of the PIs in our analysis
as already discussed above. As a consequence, we

focused on the empirical loss (6) for model comparison,
which can be seen as a reliable measure not to validate
but to compare algorithms fitting PIs by quantile regres-
sion. Thus, we determined the empirical loss for the
two quantiles and both models in a 10-fold cross-valida-
tion analysis. The optimal stopping iteration for quantile
boosting was selected by 25-fold bootstrapping on each
of the 10 training data sets separately. Goodness-of-fit
of the chosen models was assessed by a recent approach
presented in Wei and He [28], originally developed for
conditional growth charts. We generated test samples
from the conditional model distribution and compared
them to the observed empirical distribution of the
response, see [28] for details.
Longitudinal analysis
In a second step, we tried to explore the longitudinal
structure of the data at hand and constructed prediction
intervals for BMI patterns of children until the age
often, relying again on all information of the child as a
two-year-old. As response, we now considered individual
BMI values cBMIit for child i at three different time
points t Î {1,2,3} corresponding to the age of approxi-
mately four, six and ten. Note that related applications
with similar longitudinal settings are the estimation of
reference growth charts [29] and conditional growth
charts [28]. We fitted the following additive quantile
regression model for τ1 = 0.025 and τ2 = 0.975:

qτ (xit) = βτ0 + bτ1i + bτ2icAgeit + f1τ (cAgeit)

+ f2τ (cBMI2i) + β1τ cBMI0i + β2τmBMIi
+ β3τmDiffBMIi + β4τ cSexi + β5τ cAreai
+ β6τ cBreasti + β7τmSmokei + β8τmEdu2i
+ β9τmEdu3i + β10τmEdu4i

This model contains child and quantile specific inter-
cept bτ1i and slope bτ2i to account for the correlation
between repeated measurements of the same child,
which typically occurs in longitudinal data. These indivi-
dual-specific “random” effects are estimated by a spe-
cially designed base-learner employing L1 regularization
methods [30]. In connection with L1 regularization,
quantile regression for longitudinal data was first pro-
posed by Koenker [31]. Here, we also include indivi-
dual-specific slopes and smooth non-linear effects in the
flexible predictor.
Contrary to the cross-sectional analysis, cAge is

included and differs for different time points. The non-
linear fixed effect f1τ describes an overall BMI pattern
depending on age which is valid for all children, whereas
the random effects bτ2i express child-specific linear
deviations from this overall BMI pattern. All other cov-
ariates are time-constant. Again, we used the method
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presented in [28] to assess goodness-of-fit, in this case
separately for the three different time points.
The optimal stopping iteration for the boosting algo-

rithm was selected by applying subject-wise bootstrap.
For this setting, it was impossible to compare quantile
boosting to the benchmark algorithm, since quantile
regression forest cannot account for a longitudinal data
structure. Thus, we only calculated the PIs for BMI pat-
terns of “new” children by ten-fold cross validation. To
determine child-specfic PIs, for those children the child-
specific intercepts and slopes were set to zero, which
corresponds to their expected mean.

Results
Simulation study
Table 1 shows the resulting mean conditional coverage
from 100 simulation runs for 95% PIs. Quantile boosting
clearly outperforms quantile regression forest for both
setups. Only for the borders of the x-space (x4, x5) in
the high-dimensional scenario, the PIs fail to cover 95%
of “future” observations.
Figure 2 further illustrates the concept of conditional

coverage. The boxplots display the empirical distribution
of the “future” observations for each of the test points
x1, ..., x5. The solid black lines are the true conditional
quantiles and represent the true borders of a 95% PI for
each test point. The colored lines show the resulting
estimated PI borders from 100 simulation runs of the
two algorithms (quantile boosting on the left in blue,
quantile regression forest on the right in red). As dis-
played by Figure 2 (non-linear setup, low-dimensional
scenario), quantile boosting seems to work best in the
center of the x-space, which is represented by test point

x3. For the other test points, the standard errors for the
estimated quantiles get larger, yielding less accurate PIs.
Quantile regression forest have more problems in fitting
the correct conditional quantiles, which further explains
why the resulting PIs fail to achieve the conditional cov-
erage in Table 1.
Figure 3 displays the resulting effect estimates from

100 simulation runs of quantile boosting in the linear
high-dimensional setup. The blue lines represent the
quantile-specific true coefficients, which combine the
effect of the covariate on the expected mean as well as
on heteroscedasticity. The effect estimates correspond-
ing to the non-informative covariates are combined in
the rightmost boxplot. Therefore, Figure 3 illustrates the
ability of the algorithm to select relevant covariates
while intrinsically incorporating shrinkage of effect
estimates.
In conclusion, PIs fitted by quantile boosting seem to

cover future observations with the predefined coverage
probability, conditional on the test points. The best
results can be observed in the center of the x-grid.
Quantile boosting outperforms the benchmark in both
setups - linear and nonlinear setup - and for both sce-
narios - for the low-dimensional as well as for the high-
dimensional scenario. However, the evaluated simulation
setups did not include interaction terms - which could
have favored quantile regression forest. For our data
analysis, we can rely on the result that PIs constructed
by quantile regression lead to correct conditional cover-
age probabilities. Furthermore, we can benefit from
quantile boosting since the algorithm is able to select
relevant covariates and yields sparse models in high-
dimensional scenarios.

Predicting childhood BMI
Data
To get a first impression of the data at hand, Figure 4
shows the empirical BMI distribution depending on age.
It illustrates the age-specific skewness of the BMI distri-
bution, beginning somewhere after the age of six, as
well as the longitudinal data structure with repeated
BMI observations per child at birth and around the age
of 2, 4, 6, and 10.
Cross-sectional analysis
In our first cross-sectional analysis, we ignore the longi-
tudinal character of the data and fit 95% PIs for the
BMI around the age of four with data available from the
children as two-year-olds, by both quantile boosting and
quantile regression forest. Figure 5 shows the resulting
PIs for six randomly chosen children (that were left out
in the fitting process) emphasizing that length and level
of the resulting PIs are in fact child-specific. The mean
length of the PIs for all children is 3.55 kg/m2, while the
lengths of the PIs range from 2.81 kg/m2 to 5.62 kg/m2.

Table 1 Results simulation study

95% PIs p = 10 p = 500

mboost quantregForest mboost quantregForest

Linear setup

π̂ |x1 0.9454 0.9948 0.9361 0.9997

π̂ |x2 0.9489 0.9689 0.9425 0.9889

π̂ |x3 0.9466 0.9561 0.9418 0.9609

π̂ |x4 0.9437 0.9307 0.9400 0.9471

π̂ |x5 0.9405 0.9310 0.9373 0.9534

Non-linear
setup

π̂ |x1 0.9486 0.9721 0.9662 0.9832

π̂ |x2 0.9494 0.9925 0.9623 0.9961

π̂ |x3 0.9490 0.9940 0.9521 0.9954

π̂ |x4 0.9460 0.9785 0.9407 0.9792

π̂ |x5 0.9314 0.8743 0.9171 0.8942

Mean conditional coverage resulting from 95% PIs for both setups and both
scenarios. In every row, the value of the better performing algorithm (with the
mean conditional coverage closer to the expected coverage of 95%) for each
setup is printed in bold.

Mayr et al. BMC Medical Research Methodology 2012, 12:6
http://www.biomedcentral.com/1471-2288/12/6
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Thus, the BMI prediction for some children is more
precise than for others.
Table 2 contains the estimated covariate effects for

quantile boosting. It can be observed that not all covari-
ates are selected during the boosting process, which
again reflects the variable selection property of quantile
boosting. For the 2.5% BMI quan-tile, cSex, cBreast
and mEdu are excluded from the model, whereas for the
97.5% BMI quantile cBMI0, mDiffBMI and cBreast
are excluded. For both quantiles, mBMI and cArea are
chosen with similar effects. This can be interpreted as
follows with respect to the PIs: Both PI borders for a
child from a urban area, for example, are shifted by
-0.029 kg/m2 and -0.075 kg/m2 compared to the PI bor-
ders for a child from an rural area. Interestingly, the
effect of mSmoke has different signs for different quan-
tiles, meaning that the effect of maternal smoking dur-
ing pregnancy seems to be negative for lower BMI
quantiles and positive for upper BMI quantiles. This
results in a wider PI for a child whose mother smoked
during pregnancy. The estimated non-linear effects of
cBMI2 are presented in the Additional file 1, Figure S1.
At first glance, the PIs resulting from quantile regres-

sion forest - the red-colored PIs in Figure 5 - seem to
be very similar to those from quantile boosting: the
mean length is 3.48 kg/m2, ranging from 2.46 kg/m2 to
6.62 kg/m2. We also conducted a quantitative compari-
son between the algorithms by 10-fold cross-validation.
Figure 6 displays the empirical loss distributions of the

estimated quantiles on children iteratively left out in the
fitting process. These results suggest that quantile boost-
ing outperforms quantile regression forest with respect
to accuracy in the estimation of the PI borders
q̂0.025(xnew) and q̂0.975(xnew) . This result is further sup-
ported by the goodness-of-fit diagnostic plots in the
additional files (Additional File 1, Figure S2). The plots
refer to the underlying models which were used to esti-
mate the borders of the PIs and show a slightly
improved goodness-of-fit for quantile boosting. Even
though we cannot check the conditional coverage of our
PIs here, we rely on the findings from the simulation
study and conclude that quantile boosting does not only
provide PIs with interpretable additive effects, but also
yields more accurate predictions than quantile regres-
sion forest.
Longitudinal analysis
In a second step, we used all information of the children
at the age of two to predict their BMI patterns until the
age of ten. Therefore, we included child-specific inter-
cepts and slopes in the quantile boosting approach. Fig-
ure 7 shows the resulting PIs for six randomly chosen
children.
Again, level and length of the PIs are child-specific,

but the lengths of PIs at the age of ten are larger than
the lengths at earlier time points. This seems to be rea-
listic as we try to predict BMI values of children at the
age of ten, only relying on information available as two-
year-olds. The mean length of the PIs of all children is

Figure 2 Results from the non-linear setup in the low-dimensional scenario: Boxplots represent the distribution of ytest. Black solid lines
show the true conditional quantiles, while the colored lines represent the fitted conditional quantiles from 100 simulation runs for quantile
boosting (left) and quantile regression forest (right).

Mayr et al. BMC Medical Research Methodology 2012, 12:6
http://www.biomedcentral.com/1471-2288/12/6
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4.78 kg/m2, ranging from 2.52 kg/m2 to 11.28 kg/m2. The
increased length of the intervals again results from the
children getting older. This result is further emphasized
by the estimated non-linear effects of cAge (presented as
Figure S3 in the Additional file 1). The estimated effect
for the 97.5% BMI quantile, i.e. the upper border of the
PIs, is strongly increasing after the age of six, whereas the

effect for the lower border remains constant. This result
also corresponds to the empirical age-specific BMI distri-
bution observed in Figure 4. Apparently the resulting PIs
reflect the risk of childhood obesity kicking-in some-
where after the age of six.
Effect estimates for other covariates are included in

Table 2. The pattern of selected covariates roughly
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Figure 4 Empirical BMI distribution in the LISA study depending on age. The blue dashed lines represent the empirical quantile curves, i.e.
q0:025 and q0:975 respectively, whereas the black solid line corresponds to the median.
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Figure 3 Results from the linear setup, high-dimensional scenario, quantile boosting: Boxplots display the empirical distribution of
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corresponds to the cross-sectional analysis. Even though
the effect signs and sizes show minor differences for
some covariates, such as mEdu, the other effects on the
PI borders remain stable across analyses, including the
non-linear effect of cBMI2 (Additional file 1, Figure S3),
confirming the presence of these effects. Diagnostic
plots (Additional file 1, Figure S4) show a satisfying
goodness-of-fit of the underlying models for the ages of
four and six. Poorer results are obtained for the age of
ten, which reflects the limited information available for
this long-term prediction.

Discussion
The aim of the present work was to construct prediction
intervals for future BMI values of individual children.
We pursued this aim by applying quantile boosting - a
boosting approach estimating additive quantile regres-
sion models - to directly model the borders of the PIs.
As a result, we do not rely on any distributional
assumptions.
A main advantage of PIs fitted by quantile boosting is

that we can directly interpret the estimated effects with

Table 2 Linear effect estimates for the LISA study:
quantile boosting

Cross-sectional analysis Longitudinal analysis

Variable τ = 0.025 τ = 0.975 τ = 0.025 τ = 0.975

Intercept 14.208 14.867 14.627 12.723

cAge – – f(·) f(·)

cBMI2 f(·) f(·) f(·) f(·)

cBMI0 0.008

mBMI 0.028 0.034 0.029 0.132

mDiffBMI 0.026

cSex = male 0.068

cArea = urban -0.029 -0.075 -0.043

cBreast = yes

mSmoke = yes -0.228 0.296 0.158

mEdu = 1 (low) 0.162 0.162

mEdu = 2 0.406 0.176

mEdu = 3 0.130 -0.107

mEdu = 4 (high) 0.070 -0.092

Resulting effect estimates for the borders of 95% PIs with the quantile
boosting approach. Only effects of selected variables are displayed. Non-linear
effect estimates are presented as Figure S1 and Figure S3 in Additional file 1.
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Figure 5 Observed BMI patterns and resulting PIs from the cross-sectional analysis. Blue intervals were fitted by quantile boosting, red
ones by quantile regression forest. The six randomly selected children were part of the cases left out from the fitting process in the cross-
validation analysis.
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regard to the interval borders. From the results of the
cross-sectional analysis, for example, it follows that chil-
dren whose mothers smoked during pregnancy have lar-
ger estimated PIs than other children. These
conclusions could not have been drawn from quantile
regression forest, an alternative approach to fitting non-
parametric PIs, which leads to black box estimates.
The results of our simulation study suggest that quan-

tile boosting outperforms quantile regression forest with
respect to conditional coverage - which in our view is
the key performance measure to evaluate PIs correctly.
However, it is generally not possible to check condi-
tional coverage in practical applications. In our data
analyses, we thus had to rely on the findings from the
simulation study. These findings were supported by the
results of a formal comparison of empirical risks in the
cross-sectional analysis, suggesting that quantile boost-
ing provided more accurate predictions than quantile
regression forest.
We could also benefit from the inherent shrinkage

and variable selection properties of boosting in our ana-
lysis. Only a limited number of covariates was selected
by the boosting algorithm, leading to sparse models.
Note that it would even be possible to apply quantile
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Figure 7 BMI patterns and resulting PIs from the longitudinal analysis. The six randomly selected children were part of the cases left out
from the fitting process in the cross-validation analysis
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boosting to data sets with more co-variates than obser-
vations, i.e., in high-dimensional data settings. A limita-
tion coming along with the shrinkage property is the
absence of standard errors estimations for the effect
estimates. As a result, we cannot compute statistical
tests regarding the effects of covariates, e.g. report infor-
mation about their significance. Although researchers in
practice often feel uncomfortable in the absence of p-
values, we think that this limitation is acceptable here,
as the focus is directed towards getting reliable
predictions.
The resulting PIs of the longitudinal analysis empha-

size further strengths of quantile boosting for fitting PIs.
Relying on data available of the children as two-year-
olds, we can fit accurate and child-specific PIs not only
for BMI values around the age of four, but also for BMI
patterns until the age of ten. Quantile boosting allows
to explore longitudinal data structures by including indi-
vidual-specific “random” effects, emphasizing the child-
specific character for the resulting PIs. Here, we could
observe that the lengths of the intervals strongly
increase with the age of the children. From a methodo-
logical view, this absolutely reflects what we should
expect from a valid method to fit PIs: The intervals do
what they should, in reporting the increasing uncertainty
in the prediction of BMI values until the age of ten
based only on very limited information from the chil-
dren in early childhood.
The lack of covariates explaining physical activity,

nutrition and lifestyle habits of the children is of course
a further limitation of the presented work. It would be
interesting to see if this information could help for get-
ting more precise predictions as presented in this paper.

Conclusion
In conclusion, we think that quantile boosting is a pro-
mising approach to construct prediction intervals with
correct conditional coverage in a non-parametric way. It
can be applied to longitudinal settings and is therefore
in particular suitable for the prediction of BMI patterns
or similar data, where assumptions of standard para-
metric approaches are not fulfilled.

Additional material

Additional file 1: Additional figures. Document containing following
additional figures not included in the main manuscript: Figure S1
Resulting estimates for the the non-linear partial effect of the BMI at the
age of two on the PI for childhood BMI around the age of four. The lines
represent the partial effect on q0:025 and q0:975 respectively as the borders
of a 95% PI in the cross-sectional analysis. Figure S2 Goodness-of-fit
diagnostic plots according to [28] for the underlying models from the
cross-sectional analysis (BMI of children at the age of four). Test
observations were simulated from the conditional model distribution and
compared to the empirical distribution of the response observations (left
plot). The right plot shows the standardized deviation of quantiles from

the simulated conditional distribution to the real ones. Blue points and
bars refer to the results of quantile boosting whereas red points and bars
refer to those from quantile regression forest. Figure S3 Resulting
estimates for the the non-linear partial effect of the BMI at the age of
two (left) and the age of the child (right) on the PIs for childhood BMI
patterns. The lines represent the partial effect on q0:025 and q0:975
respectively as the borders of a 95% PI in the longitudinal analysis. Figure
S4 Goodness-of-fit diagnostic plots according to [28] for the underlying
models from the longitudinal analysis (BMI of children at the ages of
four, six and ten). Separately for the three different time points, test
observations were simulated from the conditional model distribution and
compared to the empirical distribution of the response observations in
QQ-plots (first row). Barplots (second row) show the standardized
deviation of quantiles from the simulated conditional distribution to the
real ones.
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