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meta-analysis for linear dose–response models on
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Abstract

Background: To derive micronutrient recommendations in a scientifically sound way, it is important to obtain and
analyse all published information on the association between micronutrient intake and biochemical proxies for
micronutrient status using a systematic approach. Therefore, it is important to incorporate information from
randomized controlled trials as well as observational studies as both of these provide information on the
association. However, original research papers present their data in various ways.

Methods: This paper presents a methodology to obtain an estimate of the dose–response curve, assuming a bivariate
normal linear model on the logarithmic scale, incorporating a range of transformations of the original reported data.

Results: The simulation study, conducted to validate the methodology, shows that there is no bias in the
transformations. Furthermore, it is shown that when the original studies report the mean and standard deviation or the
geometric mean and confidence interval the results are less variable compared to when the median with IQR or range
is reported in the original study.

Conclusions: The presented methodology with transformations for various reported data provides a valid way to estimate
the dose–response curve for micronutrient intake and status using both randomized controlled trials and observational studies.
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Background
Meta-analysis of the association between micronutrient
intake and biochemical proxies for micronutrient status
or function is needed when setting micronutrient recom-
mendations. Information on this association may come
from randomized controlled trials as well as from obser-
vational studies. In a randomized trial subjects are ran-
domized to receive either the intervention treatment or
the control treatment, and a meta-analysis of such stud-
ies will usually provide a mean difference in micronu-
trient status between placebo and intervention groups,
answering the question whether the biochemical status
marker responds to the dietary intake of a micronutrient
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[1-3]. However, this analysis does not provide an esti-
mate of the slope of the dose–response relationship. On
the other hand, a meta-analysis of observational studies
provides an estimate of the slope of the dose–response
relation, but observational studies are hampered by for
instance measurement error in the intake estimates,
which causes bias in the reported association [4-6].
Ideally, information from observational studies and rando-

mized controlled trials should be compared or even com-
bined in a single meta-analysis to ensure that all reported
information is taken into account over a broad range of in-
take. This requires that the summary statistics reported in
individual studies are transformed into estimates of the
dose–response relation. Since both intake and status are
continuous variables, this estimate is actually an estimate of
the regression coefficient of the linear regression of micronu-
trient status on micronutrient intake. The individual
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estimates of the dose–response regression coefficient may
then be combined in a meta-analysis.
The statistical combination of study results may be com-

plicated by the variety of ways that individual studies re-
port the summary statistics. The results from randomized
controlled trials as well as the baseline summary statistics
of micronutrient intake and status may be reported as
means, medians or geometric means. Variability is often
reported as standard deviations, standard errors, inter-
quartile ranges (IQR), ranges or confidence intervals (CI).
In observational studies the relation between intake and
status can be reported as a Pearson correlation coefficient,
a Spearman rank correlation coefficient or a regression co-
efficient. In addition, either the intake variable or the sta-
tus variable or both could have been logarithmically
transformed before the correlation or association was cal-
culated. All these different ways of reporting need to be
standardized before meta-analysis is even possible.
This paper gives an overview of transformation meth-

ods to algebraically derive an estimate from each study
of the regression coefficient (slope, b) and its standard
error (se(b)), for studies that do not directly report
these. The methods are validated by comparing the cal-
culated values with theoretical values in a small-scale
simulation study.

Methods
In order to derive transformations we assume a bivariate
normal distribution on the log-scale for intake and
Step 1
Calculate mX, sX and mY, sY from 
reported univariate statistic using 
equations (1)-(7) 

Step 2
Calculate mX0, sX0 and mY0, sY0 from 
mX, sX and mY, sY: equations (8), (9) 

Step 3
Calculate rXY from reported bivariate 
statistic using equations (10)-(17) 

Step 4
Calculate bYX from rXY: equation 
(18) 
Calculate se(bYX): equation (19) 

OBSERVATIONAL STUDIES 

Figure 1 Flowchart indicating the process of data transformations. m,
coefficient. X indicates intake of micronutrient and Y indicates a proxy for m
without subscript are used for values expressed on the ln-scale and small le
status of an individual person. The log-scale was chosen
because both intake and status values are always above
zero, and the observed distributions of the micronu-
trient variables are often right-skewed. Moreover, as the
true shape of the dose–response curve is usually un-
known the linear relation between logarithmically trans-
formed quantities provides the simplest approximation.
More in detail, for the dose–response meta-analysis of
observational studies we assume that ξ0 (intake of
micronutrient) and η0 (status or continuous health out-
come) are log-normally distributed. The assumption of
bivariate normality entails a linear association between
ξ ¼ ln ξ0ð Þand η ¼ ln η0

� �
, where ln denotes the natural

logarithm. Note that we use the Greek letters ξ and η for
the theoretical values of intake and status/response, and
the Latin letters X and Y for the observed values of these
variables. Furthermore, we reserve letters without sub-
script (e.g. X and Y) for values expressed on the ln-scale,
and use letters with subscript 0 (e.g., X0 and Y0) for
values expressed on the absolute (i.e., original) scale.
The process of data transformations to obtain the

required statistics from what is reported in observational
studies, consists of four steps (Figure 1). The first step is to
obtain the mean of X (mX) and Y (mY) and the standard
deviation of X (sX) and Y (sY). Secondly, the mean of X0

(mX0) and Y0 (mY0) and the standard deviation of X0

(sX0) and Y0 (sY0) are calculated when needed for the cal-
culations in step 3. In this third step the correlation coeffi-
cient of the association between X and Y (rXY) is
RANDOMIZED CONTROLLED 
TRIALS 

Step 1
Calculate mY and sY from reported 
values after intervention for placebo 
and intervention group using 
equations (1)-(7) 

Step 2
Calculate mX as ln(mX0) for both 
placebo and intervention group 

Step 3
Calculate bYX: equation (20) 
Calculate se(bYX): equation (21) 

mean, s, standard deviation, b, regression coefficient, r, correlation
icronutrient status or continuous health outcome. Capital letters
tters with subscript 0 for values expressed on the absolute scale.
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calculated from the reported data. In the last step, the re-
gression coefficient of the linear regression from Y on X
(bYX) is calculated from rXY, and the se(bYX) is calculated
from rXY, sY, sX and the sample size (n). For reports on
randomized controlled trials, the process consists of three
steps. In the first step, mY and sY are obtained for both
intervention and placebo group. In the second step, mX is
obtained, and in the last step, bYX and se(bYX) are calcu-
lated. The equations for all these transformations are given
below.

Univariate transformations
First, we describe how the univariate statistics of the nor-
mal distributions at the ln-scale can be obtained from
various reported statistics. We present formulas for mX
and sX, which of course can also be used similarly for
mY and sY in observational studies. For randomized con-
trolled trials the situation is different, because the vari-
ation in X is artificial and is not described by a normal
distribution. Therefore, the transformations should be
used only to obtain mY and sY in the intervention and
placebo groups separately. In most trials the within-
group variation in X will be ignorable compared with the
difference between the groups, consequently mX is cal-
culated simply as mXcon = ln(mX0_con) for the placebo
group and as mXint = ln(mX0_int) the intervention group.
For these transformations, we assume that ξ is normally

distributed with parameters μξ and σξ . For a lognormal dis-
tribution the mean on the absolute scale, μξ0 , is given by

μξ0 ¼ exp μξ þ 0:5σ2
ξ

� �
and the standard deviation on the

absolute scale, σξ0 , is given by σξ0 ¼ exp μξ þ 0:5σ2
ξ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp σ2

ξ

� �
� 1

r
. It follows that when the mean (mX0) and

the standard deviation (sX0) are reported, mX can be calcu-
lated as:

mX ¼ lnðmX0Þ � 0:5sX2 ð1Þ
where

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ sX0

mX0

� �2
 !vuut ð2Þ

The exponential function of the mean of the lognormal
distribution is equal to the median on the absolute scale.
Therefore, when the median (medX0) has been reported
on the absolute scale, mX is calculated as:

mX ¼ lnðmedX0Þ ð3Þ
As a measure of variability an IQRx or range (rangex)

is often reported together with the median or mean. The
IQR is the difference between the third quartile Q3 and
first quartile Q1 (the 75
th percentile and the 25th percent-

ile). Basically, there are two cases. If the lower and upper
limits are reported as such, the difference between the
ln-transformed limits may be equated to an appropriate
multiple of the standard deviation sX. On the other
hand, if only the IQR or range is reported as such,
the derivation is more complex. When IQRX0 is
reported together with the median, the relation between
these and sX is given by IQRX0 ¼ medX0 �
exp z � sXð Þ � exp �z � sXð Þ½ � , where z represents the ap-
propriate percentage point in the standard normal distri-
bution (i.e., z0.75 = 0.6745).
In this case sX may be calculated as

sX ¼
ln 1

2 � IQRX0
medX0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IQRX0
medX0

� �2
þ 4

r !" #

z
ð4Þ

When the IQR is reported together with the mean no
explicit formula exists to derive sX. Therefore, to obtain
an estimate of sX from these quantities a nonlinear func-
tion optimization is employed to find the value of sX for
which the following equation holds

IQRX0 ¼ mX0 � exp �0:5sX2
� �

� exp z � sXð Þ � exp �z � sXð Þ½ �:
ð5Þ

When the lower and upper bounds of the IQR (i.e., Q1

(X0) and Q3(X0) respectively) are reported, rather
than the difference, sX may be calculated as
sX ¼ Q3 Xð Þ � Q1 Xð Þ½ �=2z:

The range is the difference between the maximum and
the minimum value of the data. Equations (4) and (5)
may be similarly used when the range is reported, but
here we consider that the minimum and the maximum
represent the lower and upper (1/n) fraction of the data-
set of n observations. Therefore we expect a fraction
p = 1-1/(2n) below the minimum and the same fraction
above the maximum, and in the equations above we
need to use zp. For example, in a dataset with n= 100 we
use z0.995 = 2.576.
The geometric mean (gm) of the lognormal distribu-

tion is equal to exp(mX), and is most often reported in
papers together with the 95% confidence limits. mX and
sX are obtained for these quantities using:

mX ¼ lnðgmX0 Þ; ð6Þ

sX ¼ ffiffiffi
n

p � ln X0;upp
� �� ln X0;low

� �	 

2 � z0:975 ð7Þ

where X0,upp is the upper limit, X0,low is the lower limit
of the 95% confidence interval and z0.975 = 1.96 repre-
sents the 97.5th percentage point in the standard normal
distribution.
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Then in step 2 for observational studies, mx and sx are
calculated in case these estimates were not already avail-
able. These statistics at the original scale may be needed
in the bivariate transformations described below. The
equations are:

mX0 ¼ expðmXþ 0:5sX2Þ ð8Þ

sX0 ¼ mX0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp sX2
� �� 1

q
ð9Þ

Bivariate transformations (to obtain regression or
correlation coefficients)
For observational studies, the next step is to obtain an
estimate of the correlation between X and Y (rXY). The
equations below can be used to obtain rXY from
reported correlation and regression coefficients taking
into account the possibility that either X0, log10(X0), X,
Y0, log10(Y0) or Y was used for the originally reported
statistic.
When a study reports the association as a Spearman

rank correlation coefficient (rS), rXY is calculated as

rXY ¼ rs ð10Þ

Another option is that the association between X0 and
Y0 is reported as a regression coefficient (bY0X0). In that
case the correlation coefficient, rX0Y0, is calculated first
using

rX0Y0 ¼ bY0X0 � sX0

sY0
ð11Þ

and then rXY is calculated using the following equation
which was derived from Johnson & Kotz [7]:

rXY ¼
ln 1þ rX0Y0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp sX2
� �� 1

	 
� exp sY2
� �� 1

	 
qn o
sX� sY

ð12Þ

This formula (12) is also used when the Pearson prod-
uct–moment correlation coefficient rX0Y0 is directly
reported in a paper.
For observational studies that report the regression co-

efficient between Y0 and X, the correlation coefficient,
rXY0, is calculated using

rXY0 ¼ bY0X� sX
sY0

ð13Þ

When log10(X0) is used instead of X, sX is replaced by
sX/ln(10) in formula (13).
Then rXY is calculated using the following equation

[8,9]:
rXY ¼ rXY0 �
exp sY2
� �� 1

	 

sY

ð14Þ

This formula (14) is also used when rXY0 is reported
directly or when the Pearson product–moment correl-
ation coefficient is reported between log10(X0) and Y0.
When the regression coefficient between Y and X0 is

reported in an observational study, the regression coeffi-
cient, rX0Y, is calculated using

rX0Y ¼ bYX0 � sX0

sY
ð15Þ

When log10(Y0) is used instead of Y, sY is replaced by
sY/ln(10) in formula (15).
Using rX0Y or the directly reported Pearson product–

moment correlation coefficient between X0 and log10(Y0)
or Y in an observational study, rXY is calculated using
[8,9]:

rXY ¼ rX0Y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp sX2
� �� 1

	 
q
sX

ð16Þ

When the regression coefficient between X and Y is
reported, rXY is calculated as

rXY ¼ bYX� sX
sY

ð17Þ

Calculation of dose–response regression coefficient
In the last step, for both observational studies and rando-
mized controlled trials, we need to obtain bYX and se(bYX).
For observational studies, the required regression coefficient
bYX is calculated from the correlation coefficient:

bYX ¼ rXY� sY
sX

ð18Þ

and the corresponding standard error (se(bYX)) is calcu-
lated as

seðbYXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sY2 � 1� rXY2

� �
N� 2ð Þ � sX2

s
ð19Þ

For randomized controlled trials, the required regres-
sion coefficient bYX is calculated as:

bYX ¼ mYint �mYcon

mXint �mXcon
ð20Þ

where ‘int’ indicates the intervention group and ‘con’
indicates the control or placebo group. The correspond-
ing standard error is calculated as:
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se bYXð Þ ¼ Ncon � 1ð Þ � sYcon
2 þ Nint � 1ð Þ � sYint

2

Ncon þNint � 2ð Þ
� �

� 1
Ncon

þ 1
Nint

� �
� 1

mXint �mXconð Þ2
 !uut ð21Þ

Simulation study

A simulation study was conducted to validate the per-
formance of the transformations given in this paper. Bi-
variate lognormal data (X,Y) were simulated where
X~Normal(1.60,0.852) and Y~Normal(5.70,0.452). Par-
ameter values were based on values of vitamin B12 in-
take (X) and serum/plasma vitamin B12 (Y) [10-13].
Different strengths of the correlation between X and Y
were simulated, namely 0.1, 0.5 and 0.9.
A sample of individuals (with sample size 100, 200 or

500) was randomly drawn, and values that represent differ-
ent often used reporting options were calculated from this
sample, namely the mean and SD, the median and IQR, the
median and range and the geometric mean and 95% CI (all
summary statistics on the absolute scale). Also, the correl-
ation and regression coefficients of X and Y expressed in
different scales were calculated. These ‘reported’ values
were rounded to two decimal places. From these ‘reported’
values, the parameter estimates mX, mY, sX, sY and rXY
were calculated using the transformations described in this
paper. This process was repeated 1000 times.

Results
Table 1 shows the simulation results for the univariate
statistics. On average the calculated values of mX and
mY are almost the same as the true values, indicating
that no important bias is present in these calculations.
As expected, the 95% CI of the simulations is smaller for
the simulations with a sample size of 500 than for the
Table 1 Simulation results for mX, sX, mY and sY

n mX

True 1.6

Mean, SD 100 1.6 (1.4-1.8)

200 1.6 (1.4-1.7)

500 1.6 (1.5-1.7)

Median, IQR 100 1.6 (1.4-1.8)

200 1.6 (1.5-1.8)

500 1.6 (1.5-1.7)

Median, range 100 1.6 (1.4-1.8)

200 1.6 (1.5-1.8)

500 1.6 (1.5-1.7)

Gm, 95% CI 100 1.6 (1.4-1.8)

200 1.6 (1.5-1.7)

500 1.6 (1.5-1.7)
simulations with a sample size of 200 or 100. For sX and
sY, the estimates are most precise when a geometric
mean with a 95% CI is reported, and least precise when
a median with a range is reported.
Figure 2 shows the simulation results when a correlation

coefficient is reported, and Figure 3 shows the simulation
results when a linear regression coefficient is reported.
Both these figures show the simulation results with true
rXY=0.5. Results are similar for true rXY=0.9 and true
rXY=0.1 (data not shown). For the situation in which a
correlation coefficient is the reported bivariate statistic,
there is no difference for the four univariate reporting
options. Therefore, these results are pooled in Figure 2.
None of the combinations of univariate and bivariate

reporting options shows evidence of bias with the average
of the simulations almost equal to the true value. The width
of the confidence interval indicates the variability of the
simulations. Because there is no appreciable bias, a smaller
CI width indicates that the individual simulations are closer
to the true correlation. The accuracy is best when rX0Y is
reported and worst when rX0Y0 is reported. As expected,
the accuracy is also better when the sample size is larger.
Figure 3 shows that the CI is wider when the reported uni-
variate statistics are the median and IQR or median and
range. The larger variation in the results for the transform-
ation from bYX0 (Figure 3B) compared with the variation in
the results from bY0X (Figure 3C) is caused by the fact the
X was simulated with larger standard deviation than Y.
sX mY sY

0.85 5.7 0.45

0.82 (0.65-1.06) 5.7 (5.6-5.8) 0.45 (0.37-0.53)

0.83 (0.70-1.03) 5.7 (5.6-5.8) 0.45 (0.40-0.51)

0.84 (0.75-0.98) 5.7 (5.7-5.7) 0.45 (0.42-0.49)

0.84 (0.63-1.10) 5.7 (5.6-5.8) 0.44 (0.35-0.56)

0.85 (0.70-1.02) 5.7 (5.6-5.8) 0.45 (0.38-0.53)

0.85 (0.76-0.95) 5.7 (5.7-5.7) 0.45 (0.40-0.50)

0.83 (0.58-1.14) 5.7 (5.6-5.8) 0.44 (0.32-0.60)

0.83 (0.63-1.12) 5.7 (5.6-5.8) 0.44 (0.35-0.58)

0.83 (0.68-1.06) 5.7 (5.7-5.7) 0.44 (0.36-0.56)

0.85 (0.73-0.97) 5.7 (5.6-5.8) 0.45 (0.38-0.51)

0.85 (0.77-0.94) 5.7 (5.6-5.8) 0.45 (0.41-0.49)

0.85 (0.80-0.90) 5.7 (5.7-5.7) 0.45 (0.42-0.48)



Figure 2 Simulation results for rXY where the true rXY was 0.5.
Circles indicate that the reported bivariate statistic was rX0Y0, squares
indicate rXY0 and diamonds indicate rX0Y. Bars represent 95%
confidence intervals. In each group the three bars from left to right
are for sample sizes of 100, 200 and 500 individuals, respectively.
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Example
To illustrate the methodology some examples of its use
on real data for vitamin B12 are reported in Table 2
A.

C.

Figure 3 Simulation results for rXY from different reporting options w
b from linear regression of Y on X0; C) b from linear regression of Y0 on X;
log10(Y0) on log10(X0). Circles indicate that the reported univariate statistic w
median and range, and triangles indicate geometric mean. Bars represent 9
are for sample sizes of 100, 200 and 500 individuals, respectively.
(observational studies [14,15]) and Table 3 (randomized
controlled trials [16,17]). The tables show the statistics
as reported in the studies and the statistics that are cal-
culated using the different equations presented in this
paper (which are entitled ‘required statistics’ in the
tables).
Discussion
The investigated means, standard deviations, correlation
coefficients and sample sizes were based on real-life
values. The univariate statistics that are investigated in
this paper were limited to mean and SD, median and
IQR or range and geometric mean and 95% CI. These
do not represent all reporting options that can be
encountered in the literature, but cover most published
papers. Other combinations of univariate statistics that
were seen are for example mean with IQR, mean with
range, and geometric mean with standard deviation.
Also, the investigated regression and correlation coeffi-
cients are limited in this paper to those on the absolute
or logarithmic scale, whereas sometimes other transfor-
mations to normality have been used in reports, such as
a square root transformation. However, as the logarith-
mic transformation is by far the most often used trans-
formation in papers in the medical research area, the
B.

D.

here the true rXY was 0.5. A) b from linear regression of Y0 on X0; B)
D) b from linear regression of Y on X and from the linear regression of
as mean+ SD, squares indicate median and IQR, diamonds indicate
5% confidence intervals. In each group the three bars from left to right



Table 2 Example statistics for observational studies on vitamin B12 intake (X) and vitamin B12 status (Y)

Reference Observed univariate statistics Observed bivariate
statistic

Required statistics

Type X0 and Y0 X0 Y0 n Association mX sX mY sY rXY bYX se(bYX)

[14] Mean, SD 9.3, 9.3 330, 140 177 rX0Y0 0.16 1.88 0.83 5.72 0.41 0.19 0.09 0.04

[15] gm, 95% CI 7.3, 7.1-7.5 354, 348-360 1329 rs 0.19 1.99 0.51 5.87 0.32 0.19 0.12 0.02

Table 3 Example statistics for randomized controlled trials on vitamin B12 intake and vitamin B12 status

Reference Observed univariate statistics Required statistics

X0* Type Y0 Y0 n mX mY sY bYX se(bYX)

[16] intervention 405 mean, SD 379, 189 17 6.00 5.83 0.47 0.12 0.03

control 5 mean, SD 211, 77 17 1.61 5.29 0.35

[17] intervention 505 med, IQR 198, 158-271 20 6.22 5.29 0.40 0.13 0.04

control 5 med, IQR 110, 73-165 20 1.61 4.70 0.60

*) X0 represents the dose provided plus the dietary intake. When dietary intake of vitamin B12 was not reported 5 μg/day was added to the provided dose. The
5 μg/day was calculated as the average dietary intake from several studies.
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equations in this paper will cover most published
papers in this field.
The bivariate normal linear model on the logarithmic

scale is an approximation that is used here because the
data are positive data. Note that it allows the relation-
ship between X0 and Y0 to be a linear, monotonic con-
vex or monotonic concave function (i.e., for a slope
equal, higher or lower than one, respectively). Even
though some randomized controlled trials may investi-
gate the dose–response relationship by providing mul-
tiple dosages in their study, most of these studies
include only one intervention and one control group
and consequently it is often unknown what the true rela-
tionship is. Therefore, this approximation provides a
practical methodology to estimate the dose–response re-
lationship and to combine the results from randomized
controlled trials and observational studies. It was out-
side the scope of the simulation study to investigate
other shapes of the dose–response relation.
The transformations in this paper consider reported

regression and correlation coefficients that are un-
adjusted for other variables. It is possible to adjust the
equations for adjusted regression or correlation coeffi-
cients, if these adjustments were done on the log-scale.
However, most often adjustment has been done on an-
other scale, and moreover studies do not report all
required statistics. Therefore, we did not consider
adjusted coefficients.
In this paper we presented a methodology that allows

for information from RCTs and observational studies to
be summarised in comparable statistics. One possible
application is to combine results of both types of study
in a single meta-analysis. In general, a meta-analysis
should include as much information as possible. How-
ever, there may be systematic differences between
observational studies and randomized controlled trials.
Therefore, it is advisable to check whether the size of the
estimated regression coefficient differs between these dif-
ferent study designs. This may be done by stratified ana-
lysis or by using meta-regression techniques.

Conclusions
The presented methodology provides calculations to use
results from published literature to estimate the slope of
the dose–response relation incorporating information
from both randomized controlled trials and observa-
tional studies. The simulations clearly show that there is
no observable bias associated with the transformations.
Also, it can be seen that when a regression coefficient is
reported, it is preferable to report the univariate statis-
tics as mean and SD or geometric mean and 95% CI ra-
ther than as median with IQR or range.
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