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Abstract

Background: Graphical models were identified as a promising new approach to modeling high-dimensional
clinical data. They provided a probabilistic tool to display, analyze and visualize the net-like dependence structures
by drawing a graph describing the conditional dependencies between the variables. Until now, the main focus of
research was on building Gaussian graphical models for continuous multivariate data following a multivariate
normal distribution. Satisfactory solutions for binary data were missing. We adapted the method of Meinshausen
and Bühlmann to binary data and used the LASSO for logistic regression. Objective of this paper was to examine
the performance of the Bolasso to the development of graphical models for high dimensional binary data. We
hypothesized that the performance of Bolasso is superior to competing LASSO methods to identify graphical
models.

Methods: We analyzed the Bolasso to derive graphical models in comparison with other LASSO based method.
Model performance was assessed in a simulation study with random data generated via symmetric local logistic
regression models and Gibbs sampling. Main outcome variables were the Structural Hamming Distance and the
Youden Index.
We applied the results of the simulation study to a real-life data with functioning data of patients having head and
neck cancer.

Results: Bootstrap aggregating as incorporated in the Bolasso algorithm greatly improved the performance in
higher sample sizes. The number of bootstraps did have minimal impact on performance. Bolasso performed
reasonable well with a cutpoint of 0.90 and a small penalty term. Optimal prediction for Bolasso leads to very
conservative models in comparison with AIC, BIC or cross-validated optimal penalty terms.

Conclusions: Bootstrap aggregating may improve variable selection if the underlying selection process is not too
unstable due to small sample size and if one is mainly interested in reducing the false discovery rate. We propose
using the Bolasso for graphical modeling in large sample sizes.

Background
A common problem in contemporary biomedical
research is the occurrence of a large number of variables
that accompany relatively few observations. Thus, study-
ing associations in high-dimensional data is not straight-
forward. Including all variables would result in a highly
over parameterized model, computational complexity
and unstable estimation of the associations [1]. This
methodological problem has been solved for the domain
of genomic medicine by using graphical modeling.

Graphical models were identified as a promising new
approach to modeling clinical data [2], and thereby the
systems approach to health and disease.
A promising approach to describe such complex rela-

tionships is graphical modeling. Graphical models [3]
provide a probabilistic tool to display, analyze and visua-
lize the net-like dependence structures by drawing a
graph describing the conditional dependencies between
the variables. A graphical model consists of nodes repre-
senting the variables and edges representing conditional
dependencies between the variables. In order to under-
stand graphical models it is important to understand the
concept of conditional independence. Two variables X
and Y are considered conditional independent given Z,
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if f(x|y, z) = f(x|z). Thus, learning information about Y
does not give any additional information about X, once
we know Z.
Beyond association, this method has also been devel-

oped for estimating causal effects [4]. Recently, graphical
modeling has been outlined as a tool for investigating
complex phenotype data, specifically for the visualization
of complex associations [5], dimension reduction, com-
parison of substructures and the estimation of causal
effects from observational data [6]. Until now, the main
focus of research was on building Gaussian graphical
models for continuous multivariate data following a
multivariate normal distribution [7]. A popular way to
built Gaussian graphical models are covariance selection
methods [8]. These methods are used to sort out condi-
tionally independent variables. They aim to identify the
non-zero elements in the inverse of the covariance
matrix since the non-zero entries in the inverse covar-
iance matrix correspond to conditional dependent vari-
ables. However, this method is not reliable for high-
dimensional data, but can be improved by concentrating
on low-order graphs [9].
Another approach to identifying the non-zero ele-

ments in the inverse covariance matrix has been pro-
posed by Meinshausen and Buehlmann [10]. They
propose the Least Absolute Shrinkage and Selection
Operator (LASSO) [11] as a variable selection method
to identify the neighborhood of each variable, thus the
non-zero elements. A neighborhood is the set of predic-
tor variables corresponding to non-zero coefficients in a
prediction model by estimating the conditional indepen-
dence separately for each variable. Meinshausen and
Buehlmann showed that this method is superior to com-
mon covariance selection methods, in particular if the
number of variables exceeds the number of observa-
tions. They also proved that the method asymptotically
recovers the true graph.
The LASSO was originally proposed for linear regres-

sion models and has become a popular model selection
and shrinkage estimation method. LASSO is based on a
penalty on the sum of absolute values of the coefficients
(ℓ1 -type penalty) and can be easily adapted to other set-
tings, for example Cox regression [12], logistic regres-
sion [13-15] or multinomial logistic regression [16] by
replacing the residual sum of squares by the corre-
sponding negative log-likelihood function. Important
progress has been made in recent years in developing
computational efficient and consistent algorithms for
the LASSO with good properties even in high-dimen-
sional settings [17,18]. The so-called graphical lasso by
Friedman et al. [19] uses a coordinate descent algorithm
for the LASSO regression to estimate sparse graphs via
the inverse covariance matrix. They describe the

connection between the exact problem and the approxi-
mation suggested by Meinshausen and Bühlmann [10].
However, the determination of the right amount of

penalization for these methods has remained a main
problem for which no satisfactory solution exists [20].
The current methodology primarily provides solutions

for continuous data. The relationship of binary data is
difficult to identify using classical methods. Building
binary graphical models for dichotomous data is based
on the corresponding contingency tables and log-linear
models [21]. The interaction terms are used to control
for conditional dependencies. With a growing number
of variables model selection becomes computationally
demanding and quickly exceeds feasibility, thereby mak-
ing the method difficult to adapt to high-dimensional
data. For a fully saturated log-linear model one would
need 2 p parameters, with p being the number of vari-
ables. A common solution is to reduce the problem to
first-order interaction where conditional independence
is determined by first-order interaction terms.
The properties of the LASSO for logistic regression

have recently been investigated. Van de Geer [22]
focused on the prediction error of the estimator and not
on variable selection. She proposed a truncation of the
estimated coefficients to derive consistent variable selec-
tion. Bunea [23] showed the asymptotic consistency of
variable selection under certain conditions for ℓ1 -type
penalization schemes.
The adaptation of local penalized logistic regression to

graphical modeling has been proposed by Wainwright
[24]. Under certain conditions on the number of vari-
ables n, the number of nodes p and the maximum
neighborhood size, the ℓ1 -penalized logistic regression
for high-dimensional binary graphical model selection
gives consistent neighborhood selection [24,25]. Wain-
wright et al. showed that a logarithmic growth in n rela-
tive to p is sufficient to achieve neighborhood
consistency. Another new approach is based on an
approximate sparse maximum likelihood (ASML) pro-
blem for estimating the parameters in a multivariate
binary distribution. Based on this approximation a con-
sistent neighborhood could be selected and a sensible
penalty term can be identified [17].
However, when analyzing high-dimensional categorical

data the main problem that there is no rationale for the
choice of the amount of penalization controlled by the
value of the penalty term for consistent variable selec-
tion still remains [20].
A possible solution might be to adapt bootstrap aggre-

gating to these problems. Bootstrap aggregating (bag-
ging) generates multiple versions of a classifier and
aggregates the results to get a single enhanced classifier.
By making bootstrap replicates of the original data
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multiple versions are formed, each acting as single
learning data for a classification problem. Also, for lin-
ear regression it has been shown that bagging provides
substantial gains in accuracy for variable selection and
classification [26]. This idea has been carried further by
Bach [27], resulting in the Bolasso (bootstrap-enhanced
least absolute shrinkage operator) algorithm for variable
selection in linear regression. Here, the LASSO is
applied to several bootstrapped replications of a given
sample. The intersection of each of these models leads
to consistent model selection.
In this paper we adapted the method of Meinshausen

and Bühlmann to binary data and used the LASSO for
logistic regression to identify the conditional depen-
dence structure. We applied bagging to improve variable
selection, hence adapted the Bolasso. Performances are
tested on a data set with known structure. This data set
was simulated by Gibbs sampling [28]. We also applied
graphical modeling methods to real-life data.
Objective of this paper was to examine the perfor-

mance of the Bolasso to the development of graphical
models for high dimensional binary data with various
values for the penalty term and various numbers of
bootstraps. We hypothesized that the performance of
Bolasso is superior to competing LASSO based methods
to identify graphical models. Specifically, the hypothesis
was that the choice of the penalty is not critical as long
as it is chosen sensibly, i.e. corresponding to a reason-
able number of selected variables.

Methods
Data generation
This section presents an approach to simulate high-dimen-
sional binary data from a given distribution and dimension
by analyzing the results on a data set with known depen-
dence structure. This analysis is performed in order to
investigate the performance of the proposed methods.
All calculations are done using the statistical comput-

ing software R (V 2.9.0) [29].
We propose to generate the data via symmetric local

logistic regression models and Gibbs sampling [28] as
follows:
(1) Define the p × p matrix M of odds ratios as: diag

(M) = pii, i = 1,..., p with pii the baseline odds of variable

X(i)mj
i = pij with Pij as the corresponding odds ratio of X

(i) on X(j) and vice versa.
(2) Start with k = 0.
(3) Choose starting values x(k) = {x1,..., xp) according to

diag(M).

(4) For each i in 1, ...., p generate new x(k+1)i
from a

Bernoulli distribution B
(
p∗
i

)
according to

logit
(
p∗
i

)
=

∑
j�=i m

j
i · x(k)j

(5) Repeat for k = k + 1.After a burn-in phase the

x(k+1)i
will reflect the true underlying binary distribution

generating X = (X(1) , ..., X(p)) Î {0,1}p We chose a
burn-in phase of 5000 iterations.

Real-life data: Aspects of functioning in head and neck
cancer patient
We evaluated the method to data measuring aspects of
functioning of patients having head and neck cancer
(HNC). The data originated from a cross-sectional study
with a convenience sample of 145 patients with HNC.
The data has previously been used for graphical model-
ling and has been published [30].
The patients had at least one cancer at one of the fol-

lowing locations: oral region, salivary glands, orophar-
ynx, hypopharynx or larynx. Human functioning for
each of the patients were assessed using the Interna-
tional Classification of Functioning, Disability and
Health (ICF) as endorsed by the World Health Organi-
zation in 2001 [31]. The ICF provides a useful frame-
work for classifying the components of health and
consequences of a disease and can be used. According
to the ICF the consequences of a disease may concern
body functions (b) and structures (s), the performance
of activities and participation (d) in life situations
depending on environmental factors (e).
Thirty-four aspects of functioning were assessed for

each of the patients 12 from the component Body Func-
tions, three from the component Body Structure, 15
from the component Activity and Participation and
another 4 categories from the component Environmen-
tal factors. For better interpretation of the graphs we
show the 34 ICF categories together with a short expla-
nation in Table 1.

Principles of graphical models
Consider X = (X(1) , ..., X(p)) Î {0,1}p as a p-dimensional
vector of binary random variables. One way to represent
the association structure between the elements of X in a
random sample of i.i.d. replicates is an undirected binary
graph. A graph G(υ,ε) consists of a finite set of nodes υ,
representing the elements of X, and edges ε between
these nodes. Each edge stands for an existing condi-
tional dependence between two nodes. Hence, graphical
modeling is based on the concept of conditional depen-
dence and conditional independence. To understand
graphical models it is fundamental to understand both
of these concepts. Two events X and Y are independent,
if P(X ∩ Y) = P(X) ⋅ P(Y) . Two events X and Y are con-
ditional independent given Z if P(X ∩ Y | Z) = P(X | Z)
⋅ P(Y | Z) ⇔ X ⊥ Y|Z. The relationship X ⊥ Y | Z is
represented in Figure 1.
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A concept to describe a graphical model is via the
neighborhood of each node. The neighborhood of node
X(a) nea is defined as the smallest subset of υ, so that X
(a) is conditionally independent of all remaining vari-
ables, thus the neighborhood nea is defined as:

X(a)⊥
{
X(i);∀X(i) ∈ υ/nea

}∣∣∣ nea (1)

Two approaches define the edge set ε. First, an edge
between x and y exists if and only if both nodes are an
element in the opposite neighborhood, i.e. following the
AND-rule:

ε =
{
(x, y)|x ∈ ney ∧ y ∈ nex

}
(2)

A less conservative, asymmetrical estimate of the edge
set of a graph is given by the OR-rule:

ε =
{
(x, y)|x ∈ ney ∨ y ∈ nex

}
(3)

A different definition of a neighborhood allows for a
practical approach. For each node in υ consider optimal
prediction of X(a) given all remaining variables. Let ba Î
ℜ(p-1) be the vector of coefficients for optimal prediction
of X(a). The set of non-zero coefficient is identical to the
set of neighbors of X(a) , thus:

nea =
{
b ∈ υ : βa

b �= 0
}

(4)

We can regard this as a subset selection problem in a
regression setting and to the detection of zero coeffi-
cients. The use of shrinkage as the subset selection tool
used to identify the neighborhood and to estimate βa

b
has become popular in recent years.

Principles of LASSO for logistic regression
Given a set of p explanatory X(1),..., X(p) and a binary
outcome Y the goal of logistic regression is to model
the probability πi = p(yi = 1| xi) by

log
(

πi

1 − πi

)
= x′

iβ ⇔ πi =
exp(x′

iβ)

1 + exp(x′
iβ)

(5)

The maximum likelihood estimates of b can be found
by setting the first derivative of log-likelihood function
equal to zero, thus

∂l(β)
∂β

= s(β) =
N∑
i=1

xi

(
yi −

exp(x′
iβ)

1 + exp(x′
iβ)

)
= 0 (6)

The LASSO is a penalized regression technique
defined as a shrinkage estimator [11]. It adds a penalty
term to equation (6), thus (6) is to be minimized subject
to the sum of the absolute coefficients being less than a
certain threshold value. Using the absolute values as
condition yields shrinkage in some coefficients and
simultaneously may set other coefficients to zero as has
been shown by Tibshirani [11]. For each choice of the
penalty parameter a stationary solution exists often
visualized as a regularization path, i.e. the penalized
coefficients over all penalty terms. LASSO reduces the
variation in estimating b. Formally, the penalized logistic
regression problem is to minimize:

N∑
i=1

xi

(
yi −

exp(x′
iβ

LASSO)

1 + exp(x′
iβ

LASSO)

)
+ λ

∑
j

∣∣∣βLASSO
(j)

∣∣∣ (7)

Table 1 Short description of the ICF categories used for
the graphical models on the HNC data

ICF
Code

ICF Code description

b130 Energy and drive functions

b280 Sensation of pain

b310 Voice functions

b320 Articulation functions

b340 Alternative vocalization functions

b440 Respiration functions

b450 Additional respiratory functions

b460 Sensations associated with cardiovascular and respiratory
functions

b510 Ingestion functions

b515 Digestive functions

b530 Weight maintenance function

b710 Mobility of joint functions

d175 Solving problems

d310 Communicating with - receiving - spoken messages

d315 Communicating with - receiving - nonverbal messages

d330 Speaking

d335 Producing nonverbal messages

d350 Conversation

d360 Using communication devices and techniques

d550 Eating

d560 Drinking

d570 Looking after one’s health

d720 Complex interpersonal interaction

d760 Family relationship

d770 Intimate relationship

d850 Remunerative employment

d920 Recreation and leisure

s320 Structure of mouth

s430 Structure of respiratory system

s710 Structure of head and neck region

e125 Products and technology for communication

e225 Climate

e310 Immediate family

e580 Health services, systems and policies
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A mathematically equivalent expression of this pro-
blem is the formulation as a constrained regression pro-
blem, that is minimizing

N∑
i=1

xi

(
yi −

exp(x′
iβ

LASSO)

1 + exp(x′
iβ

LASSO)

)
(8)

subject to
∑
j

∣∣∣βLASSO
(j)

∣∣∣ < t. In this paper, the variables

are first standardized to zero mean and variance one.
The penalty term t can be used to control the number
of predictors, i.e. the size of the neighborhood.

Binary graphical model using single LASSO regressions
The first method considered here to construct graphical
models is based on an optimal penalty term to identify
an optimal neighborhood. We consider three procedures
for selecting optimal penalty, namely cross-validation
(CV), Akaike Information Criteria (AIC) and Bayesian
Information Criteria (BIC). These approaches have
although been suggested in recent publications by Vial-
lon [32] and Wang [33]. The first one is proposed by

Goeman in the context of Cox regression [34], while the
latter two are computational more efficient and well-
known classical tools. BIC has shown to be superior as
suggested by Yuan and Lin and demonstrated superior
performance through simulation studies in Gaussian
graphical modes [35,36]. Other possible approaches
include the methods by Wainwright [24] and Banerjee
[17] which control the rate of falsely detected edges in
the graph. However, these penalties are too conservative
as outlined in Ambroise et al. [37]. The LASSO and
cross-validation are calculated using the efficient gradi-
ent-ascent algorithm as proposed by Goeman and are
implemented in the ‘penalized’ package [38].
For all possible penalty terms, the performance of the

resulting models is assessed either by cross-validation,
AIC or BIC. The algorithm to identify a binary graphical
model then proceeds as follows:

1. Estimate the coefficients β̂LASSO in local penalized
logistic regression models using each variable as out-
come and the remainder as predictors for each X(i)

corresponding to an optimal penalty term t.

Figure 1 An example for a simple graphical model.
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2. For each variable a define the neighborhood ne∗a as
the set of variables b corresponding to non-zero
penalized coefficients β̂a

b : ne∗a = {b ∈ υ : β̂a
b �= 0}.

3. Define the set of conditional relationships (the
edge set) E as: E = {(a, b)|a ∈ ne∗b ∨ b ∈ ne∗a}.

Binary graphical model using bolasso
Another method to construct binary graphical models is
based on the Bolasso algorithm which takes advantage
of bootstrap aggregating. Bootstrap aggregating, also
called ‘bagging’, generates multiple versions of a predic-
tor, e.g. a coefficient in a generalized linear model, or
classifier. It constitutes a simple and general approach
to improve an unstable estimator θ(X) with X being a
given data set. Bagging is based on the concept of
resampling the data {(yn , xn), n = 1,..., p} by drawing
new pairs

{(
y∗n, x

∗
n

)}
with replacement from the p original

data pairs. For simple classification the bootstrap aggre-
gating algorithm proceeds as follows:
(1) Generate a bootstrap sample b* with replacement

from the original data. Repeat this process B times.
(2) For each data sample b* calculate the classifier θ*

(b*).
(3) Count the times an object is classified

μx =
∑

i=1..B
θ∗
i

(
b∗
i

)
.

(4) Define the set of classified objects as S = {y: μy ≥
πcut} with 0 ≤ πcut ≤ 1.
Using Bolasso as a basis, we can now construct gra-

phical models. The algorithm proceeds as follows:
(1) Generate a bootstrap sample b* with replacement

from the original data. Repeat this process B times.
(2) For each b*, estimate the coefficients β̂LASSO in

local penalized logistic regressions using each variable as
outcome variable and the remainder as predictors for a
penalty term t.
(3) For each variable a define the neighborhood ne∗a as

the set of variables b corresponding to non-zero pena-
lized coefficients β̂a

b : ne∗a = {b ∈ υ : β̂a
b �= 0}.

(4) Calculate the percentage variable b is in the neigh-
borhood of a in each bootstrap sample b* as μa

b.
(5) Define the neighborhood of variable a as:

ne∗a = {b|μa
b ≥ πcut}

(6) Define the set of conditional relationships (the
edge set) E as: E = {(a, b)|a ∈ ne∗b ∨ b ∈ ne∗a}.
Three parameters have to be chosen here:
• B: number of bootstraps
• t: penalty parameter
• πcut: cut-off value for the definition of neighborhood
In our study, we investigated the influence of these

parameters for different sample sizes in a study based
on simulated data as described earlier. We also

considered using a cross-validated penalty as a basis for
the Bolasso and refer to this approach by Bolasso-CV.

Assessment of performance
We analyzed the performance of the methods by com-
paring the identified structure with a predefined known
structure. Thus, each edge yielded by one method can
be either correct or incorrect. A falsely identified (false
positive) edge is an edge which is identified by one or
both of the two methods but does not exist in the pre-
defined structure. A falsely not identified (false negative)
edge is an edge which is not identified by one or both
of the two methods but does exist in the predefined
structure. A correctly identified (true positive) edge is
an edge which is identified by one or both of the two
methods and which exists in the predefined structure.
Likewise, a true negative edge is an edge correctly iden-
tified as missing.
We report the Structural Hamming Distance (SHD)

and the Youden index (J). The SHD between two graphs
is the number of edge insertions or deletions needed to
transform one graph into the other. Thus, the number
of changes needed to transform the graphical model
identified by one or both of the two methods to the
known structure defined by the matrix M. The SHD
measures the performance of LASSO and Bolasso by
counting the number of false positive and false negative
edges.
It may occur that bagging causes the exclusion of all

edges yielding a SHD equal to the number of true
edges. This might reduce the error rate, but an empty
model without edges is not always desirable, even if it
has a low error rate. In order to assess both, the ability
to find true positive and true negative edges, the Youden
Index is more appropriate.
The Youden index is a function of the sensitivity (q)

and the specificity (p) of a classifier and is defined as:

J = q + p − 1 (9)

Sensitivity is the proportion of true positive edges
among all identified edges and specificity the proportion
of true negative edges among all not identified edges.
Smaller values of the SHD indicate better choice, as

do larger values of the J. Thus, a choice is to be pre-
ferred that yields small SHD at large J values.
We investigated the performances in a simulation set-

ting which was motivated by a graphical model for real-
life data [5] (see Figure 2). In this study functioning data
for patients in the post-acute setting were analyzed
using graphical modeling. The setting mimics a found
subgraph in this graphical model. We additionally added
two random variables having no interaction with the
remainders to imitate a realistic scenario. The model in
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Figure 2 corresponds to a particular matrix of odds
ratios, e.g. a smaller model with only 6 variables can be
expressed by the matrix M:

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 2 1 1 1
2 1 1 2 1 1
2 1 1 2 1 1
1 2 2 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

We chose the penalty term to be either cross-vali-
dated, AIC or BIC optimal or to correspond to a certain
neighborhood size ranging from one to the maximum
neighborhood size, i.e. l Î (1,2,...,18) in the original data.
In addition, we varied the number of bootstrap repli-
cates B Î (40,80,120,160,200), the threshold for a vari-
able to be included in a neighborhood πcut Î
(0.90,0.95,0.99,1.00) and the sample size n Î
(50,100,200,500,1000). Usually, B lies in the range of 50.
However, the best choice is not clear, e.g. Bach

x1

x2

x3
x4

x5

x6 x7 x8

x9

x10

x11
x12

x13
x14 x15

x16

x17
Figure 2 The simulation setting for assessing the performance of the methods.
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investigated also B = 256, and may be important as the
method itself is unstable. The choice of thresholds was
also motivated by the work of Bach who proposed the
soft Bolasso with a threshold of 0.90 as opposed to the
Bolasso with a threshold of 1.00. We chose a wide range
of values for B, thresholds and sample size to simulta-
neously study the performance of B and thresholds in
small samples and in big samples. Ideally, for a sample
size of 1000 the methods should perform with negligible
error. In order to estimate model performances depen-
dent on the parameters πcut, B and l and the interaction
between πcut and l we calculated generalized linear
models with either SHD or J as outcome variable.

Result
Simulations results
We calculated the Structural Hamming Distance and
Youden Index for the simulation setting for each combi-
nation of B, πcut and l. We give the detailed results in
table form in the electronic supplement (see additional
file 1 and additional file 2: Summary statistics for the
simulation study). Using generalized linear model
yielded the following optimal regularization for minimal
SHD: πcut = 0.90, B = 200 and l = 5 . For a maximal J a
larger neighborhood size is preferred: πcut = 0.90, B =
200 and l = 10. It turned out, that the number of boot-
strap replicates B has the least influence on model per-
formance with higher B performing slightly better.
We give a summary of the results for SHD in Figure 3

and for J in Figure 4 for varying sample size. The figures
show box plots for all methods, namely the Lasso-CV,
the Lasso-AIC, the Lasso-BIC, the Bolasso-CV and the
Bolasso with optimal neighborhood size and πcut = 0.90,
the Bolasso-90. For each method we applied two differ-
ent neighborhood definitions corresponding to the
AND-rule and to the OR-rule. In the box plots * marks
the mean performance.
Considering SHD as the main outcome renders Lasso-

CV and Lasso-AIC as clearly inferior. For smaller sam-
ple sizes Lasso-BIC, Bolasso-CV and Bolasso-90 reject
almost or all edges eading to a null model with SHD
equal to 19. For sample sizes greater than 500 Bolasso-
CV and Bolasso-90 are clearly superior to Lasso-BIC.
Additionally, for each approach the AND-rule was
superior to the OR-rule for most sample sizes.
A similar result can be seen when considering the

Youden Index with the exception that Lasso-CV and
Lasso-AIC are real contenders here, as they are not as
conservative as the others, such gaining performance
regarding sensitivity.

HNC data
Using these results we applied the method to the HNC
data set using both the AND- and OR-rule. We give the

results for the CV, the AIC and the BIC optimal penalty
and for the Bolasso with a cut of 90%, 200 bootstraps
and a neighborhood size of 5 (for optimal SHD), resp.
10 (for optimal J) in Figure 5 and 6. The color of the
nodes correspond to the different ICF components: ICF
categories from the component Body function are
orange, Body structure white, Activities and participa-
tion blue and Environmental factors green. The full
descriptions of the ICF categories are in Table 1.
In all models similar aspects can be seen. The CV and

AIC optimal penalty term leads to a very complicated
model, while the BIC criteria yielded reasonable results
in terms of interpretability. The Bolasso-90 is the most
conservative approach while using Bolasso-CV yielded
similar results than the Lasso-BIC.
As a case in point, we describe the model for the

Bolasso-90 with a neighborhood size of 10, i.e. the
model with the highest performance regarding the You-
den Index.
Similar to Becker et al. [30] we identified a circle-like

association around the speaking capability, i.e. between
d330 Speaking, b310 Voice functions, b320 Articulation
functions, s320 Structure of mouth, b510 Ingestion func-
tions, d350 Conversation, d360 Using communication
devices and techniques. The latter had further associa-
tions to e125 Products and technologies for communica-
tion and d920 Recreation and leisure. The category s320
Structure of mouth had a meaningful connection to
d560 Drinking which was further connected to d550
Eating. Furthermore, b510 Ingestion functions had an
association to b280 Sensation of pain. On the left side of
the graph we have a group around respiration functions,
namely b440 Respiration functions, b450 Additional
respiratory functions, b460 Sensations associated with
cardiovascular and respiratory functions and s430 Struc-
ture of respiratory system. A further like path could be
visualized between the categories d335 Producing non-
verbal messages, d315 Communicating with - receiving -
nonverbal messages, d310 Communicating with - receiv-
ing - spoken messages, d720 Complex interpersonal inter-
action, d570 Looking after one’s health and b130 Energy
and drive functions. The big circle is closed by the con-
nection of b130 and d920 Recreation and leisure.
Many of these association structures were also present

in the original work and are discussed in detail there
[30].

Discussion
We compared the performance of the Bolasso to the
development of graphical models for high-dimensional
data with known dependency structure. One of the
main points of critique for graphical models is that the
retrieved structures might not be statistically stable,
since the results might depend on the choice of model
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Figure 4 Boxplot of Youden Index (J) for all investigated approaches, different definitions of neighborhood (OR-rule and AND-rule)
and sample sizes 50, 100, 200, 500 and 1000. Yellow marks the OR-rule and orange the AND-rule. Lasso - CV represents cross-validated
optimal penalty, Lasso - AIC represents AIC optimal penalty, Lasso - BIC represents BIC optimal penalty, Bolasso - CV represents Bolasso with
cross-validated optimal penalty and Bolasso - 90 represents a Bolasso with a cut of 90% and neighborhood size 10.

Strobl et al. BMC Medical Research Methodology 2012, 12:16
http://www.biomedcentral.com/1471-2288/12/16

Page 10 of 13



parameters, and are susceptible to small changes in the
data set [6]. Interestingly, we found that using a BIC
penalty and Bolasso were both able to correctly identify
predefined existing dependency structures.
We have analyzed several LASSO based methods to

derive graphical models in the presence of binary data
and compared their performance in detecting known
dependency structures. All methods are taking advan-
tage of penalized logistic regression models as a tool to
identify the explicit neighborhoods. We could show that
bootstrap aggregating can substantially improve the per-
formance of model selection, especially in the case of
large samples. Arguably, LASSO is inferior in certain
situations because in a given LASSO coefficient path the
optimal solution might not exist. A LASSO coefficient
path is given by the coefficient value of each variable
over all penalty terms. In contrast, bagging opens the
window for a whole class of new models, because it
selects all variables intersecting over the bootstrap sam-
ples. The intersection itself must not be a solution in
any of the bootstrap samples.

In LASSO, the choice of the penalty often determines
the performance of the model. Thus, the correct choice
of the penalty term is important. However, in our study,
the initial choice of penalization had surprisingly little
impact on the performance of the model if bagging was
applied and the penalty was chosen in sensibly. Similar
results have been obtained with stability selection [20].
Stability selection is also based on bootstrap in combi-
nation with (high-dimensional) selection algorithms. It
applies resampling to the whole LASSO coefficient path
and calculates the probability for each variable to be
selected when randomly resampling from the data.
In our study, bagging largely improved the perfor-

mance of LASSO, but only by reducing the number of
false positive and false negative edges. This, however,
might lead to a conservative and underspecified model
with a low number of edges, if any, especially in small
samples.
Although the choice of the penalty term is not crucial

when bagging is applied, a cut-off value for the defini-
tion of neighborhood has to be defined, and this

Figure 5 Graphical models for the real-life data using the AND-rule. ICF categories from the component Body function (orange), Body
structure (white), Activities and participation (blue) and Environmental factors (green). Please, find the full descriptions of the ICF categories in
Table 1.
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arbitrary choice will determine the size of the graphical
model. Reducing the cut-off value would include more
variables at the expense of a higher false positive rate.
This study illustrates that in graphical modeling, it is

essential not only to control the number of false positive
and false negative edges but also the ability of a method
to identify true positive edges.

Conclusion
Bootstrap aggregating improves variable selection if the
underlying selection process is not too unstable, e.g. due
to small sample sizes. These properties have been
shown on simulated data using various parameters. As a
consequence, we propose using Bolasso for graphical
modeling in large sample size cases as a real contender
to the classical neighborhood estimation methods.

Additional material

Additional file 1: The table in the electronic supplement gives the
exact numbers of the performances of each model. The table gives

summary statistics (mean, median, standard deviation, minimum and
maximum) for the Structural Hamming Distance.

Additional file 2: The table in the electronic supplement gives the
exact numbers of the performances of each model. The table gives
summary statistics (mean, median, standard deviation, minimum, and
maximum) for the Youden Index.
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