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Abstract

Background: With a large number of potentially relevant clinical indicators penalization and ensemble learning
methods are thought to provide better predictive performance than usual linear predictors. However, little is known
about how they perform in clinical studies where few cases are available. We used Random Forests and Partial Least
Squares Discriminant Analysis to select the most salient impairments in Developmental Coordination Disorder (DCD)
and assess patients similarity.

Methods: We considered a wide-range testing battery for various neuropsychological and visuo-motor impairments
which aimed at characterizing subtypes of DCD in a sample of 63 children. Classifiers were optimized on a training
sample, and they were used subsequently to rank the 49 items according to a permuted measure of variable
importance. In addition, subtyping consistency was assessed with cluster analysis on the training sample. Clustering
fitness and predictive accuracy were evaluated on the validation sample.

Results: Both classifiers yielded a relevant subset of items impairments that altogether accounted for a sharp
discrimination between three DCD subtypes: ideomotor, visual-spatial and constructional, and mixt dyspraxia. The
main impairments that were found to characterize the three subtypes were: digital perception, imitations of gestures,
digital praxia, lego blocks, visual spatial structuration, visual motor integration, coordination between upper and lower
limbs. Classification accuracy was above 90% for all classifiers, and clustering fitness was found to be satisfactory.

Conclusions: Random Forests and Partial Least Squares Discriminant Analysis are useful tools to extract salient
features from a large pool of correlated binary predictors, but also provide a way to assess individuals proximities in a
reduced factor space. Less than 15 neuro-visual, neuro-psychomotor and neuro-psychological tests might be required
to provide a sensitive and specific diagnostic of DCD on this particular sample, and isolated markers might be used to
refine our understanding of DCD in future studies.

Background
Neuropsychological and psychiatric studies often involve
a large collection of testing instruments, each aiming
to assess more or less specific facets of one’s behavo-
rial and psychological profile. The number of available
cases appears rather small (n < 60) in some cases, due
to the low prevalence of the outcome of interest and/or
costs associated to data collection. In such a situation, it
becomes critical to select the most relevant items to the
study at hand which amounts to find a good compro-
mise between screening efficacy or diagnostic accuracy,
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consulting time, and availability of dedicated testing bat-
teries. Another concern is that researchers typically want
to assess what best characterize clinical subgroups and
how homogeneous they are. The present study aims at
performing feature extraction, that is selecting the most
informative items, when diagnosing dyspraxia in children
during planned clinical examination. A second objective
is to show that there exist specific impairments that are
relevant and consistent within clinical subgroups; in other
words, we seek to build a typology of the patients.

Clinical subtyping of developemental coordination
disorder
With a prevalence up to 10% worldwide (higher in boys),
developmental coordination disorder (DCD) constitutes
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a major challenge from a public health perspective as
it may lead to learning difficulties, behavioral disor-
der, or social and emotional maladaptation. Dyspraxic
patients are usually screened based on their impairments
in motor coordination or usual visuo-motor and neu-
ropsychological tests batteries [1,2], and are often cat-
egorized as patients suffering from DCD [3]. However,
the DSM-IV-R criteria remain vague with regard to the
exact nature of those impairments and the relevance and
consistency of dyspraxia subtyping within DCD cate-
gory. Previous approaches mainly relied on cluster anal-
ysis to refine the distinction, although the number of
reported subtypes generally varied between three and six
[2,4-8]. This heterogeneous clustering is attributable in
part to the difference in the testing material (e.g., Bru-
ininksOseretsky Test of Motor Proficiency, BOTMP, or
Movement Assessment Battery for Children, M-ABC)
used in these studies, but more importantly to the fact
that they largely focused on coordination and motor
performance in relation to learning. As pointed out by
Wilson [9], a normative functional skill approach suffers
from the selection of tasks that are not necessarily rep-
resentative of the various facets of motor control and
movement skills, such that “a multi-level approach to
assessment and treatment is recommended for children
with DCD. The use of multiple and converging measures
will circumvent existing issues with diagnosis and pro-
mote a fuller appreciation of motor development at dif-
ferent levels of function–behavioural, neurocognitive, and
emotional” (p. 819).
In a recent study, Vaivre-Douret and coll. [10] pro-

vided a more detailed account of children exhibit-
ing different types of sensory-motor deficit by using
a broader testing battery. These authors systematically
assessed academic, language, cognitive, visual-spatial, and
visual-motor perception skills, while using additional
standardized neuro-developmental psychomotor tests,
including motor coordination, neuro-visual, and neuro-
muscular tone examination. It was concluded that ‘pure’
forms of developmental dyspraxia—ideomotor and visual-
spatial/visual-constructional—may be distinct from spe-
cific motor coordination disorder, and more frequently
associated to various neuropsychological disorders and
soft neurological signs. A ‘mix’ group exhibiting spe-
cific motor coordination disorders with a large number
of learning disorders was isolated from these two ‘pure’
forms. Moreover, it was suggested that motor planning
and programming appear to be the core problem under-
lying children difficulties, and not performance per se.
The implications of these findings from an etiological
standpoint goes beyond the scope of the present article,
and the interested reader is referred to the above arti-
cle for a more in-depth discussion. The above results will
be used to refine neuro-visual, neuro-psychomotor and

neuro-psychological markers that are characteristic of this
three-subtype classification.

Statistical approaches for feature extraction
A crucial aspect of explanatory statistical inference in
this context is that we need methods that allow to deal
with categorical outcomes and to weigh a large num-
ber of potentially correlated predictors while preventing
from overfitting. We will here focus on two multivariate
statistical techniques that seem to meet these two criteria.
As an extension to classification and regression trees

(CART), Leo Breiman proposed the Random Forests
(RF) algorithm which retains many benefits of decision
trees while achieving better results and competing with
penalized SVM, Neural Networks or Gradient Boosting
Machines [11,12]. The RF algorithm is built upon the gen-
eral framework of Bagging [13]: It relies on resampling via
the boostrap procedure but add an extra randomization
step at the level of the variables. As such it overcomes the
limitations of linear classifiers and yield an ensemble of
unpruned trees that achieve a good balance between bias
and variance.
Another method which might also be applied with a

low ratio of samples (n) to potentially correlated variables
(p) is Partial Least Square Discriminant Analysis (PLS-
DA). This is a regression method that seeks to sharpen
the separation between groups of observations while con-
structing maximally covarying linear combinations of the
original predictors. It has been successfully used in pro-
teomic studies [14] or microarray expression data [15].
Although PLS regression might be directly applied when
the number of variables p is greater than the number
of observations n, several methods for variable ranking
[16,17] and selection [18,19] have been proposed (for a
review, [20]), it is also possible to consider a more parci-
monious model by adding constraints during parameter
estimation. Regularization or so-called “shrinkage” meth-
ods consider a weighted variance-covariance matrix, as
in ridge regression [21]. While reducing their variance,
it also increases the bias of the parameter estimates. An
alternative penalization scheme is the elastic net criterion
proposed by Zou and Hastie [22]. Following their nota-
tions, it is defined as the argument that minimizes, over
the vector of parameters β , the following loss function:

L(λ1, λ2,β) = ‖Y − Xβ‖2 + λ2‖β‖2 + λ1‖β‖1,

where ‖β‖2 = ∑p
j=1 β2

j and ‖β‖1 = ∑p
j=1 |βj|. The λ’s

are the penalty parameters. This combination of L1 and
L2-norm penalties achieves both shrinkage and automatic
variable selection, while allowing to keep m > n variables
in the case where n � p. Chun and Keleş [23] considered
this kind of penalization for sparse PLS regression, based
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on the SIMPLS algorithm [24], although by setting λ2 =
∞ there remains only two tuning parameters, the number
of hidden components K and the thresholding parameter
λ1. An alternative formulation of Lasso (L1) penalization
was proposed by Lê Cao and coll. in related work [25];
specifically, the penalization now takes the form of a soft-
thresholding rule applied on variable loadings during the
iterative steps of the NIPALS algorithm [26].
In addition to protect against increased false posi-

tive rate arising from multiple comparisons in univariate
screening of interesting predictors, such embedded meth-
ods have been proved to compete with wrapper methods
[27,28], and a recent study showed that sparse PLS and
RF provide sensible and interpretable results with gene
expression data [29].
The rest of this article is organised as follows: partici-

pants and clinical assessment are described first, together
with the estimation of model parameters and measures of
variable importance; then we present the results obtained
with RF and unpenalized or penalized PLS-DA; finally,
these results are discussed in the context of DCD subtypes
identified in [10].

Methods
Participants and testing material
The data are comprised of a set of N = 63 children (5
to 15 years old with a median age of 8.1 yrs., 83% of
males). Patients were enrolled based on DSM-IV-R cri-
teria: mild to moderate motor-coordination difficulties
interfering with the performance of daily activities (cri-
terion A), and with academic achievement (criterion B).
They were free of previous assessment, and no comorbidi-
ties (e.g., ADHD, neurological disorder, visual or auditory
deficit) were detected during first examination.
Following clinical examination detailed in [10], all

patients were classified as suffering from either ideo-
motor (IM), visual-constructional and spatial (VSC), or
mixt (MX) dyspraxia. For each subject, binary-scored
responses (0=success, 1=failure) based on percentile or SD
thresholds were available for a set of 49 items covering
visual, motor, perceptuo-motor, and general performance.
Neuro-psychological assessment consisted in adminis-

tering subtests of a standard Wechsler measure of intel-
ligence, and standardized tests of visual constructional
skills (block design), visual-spatial structuring (Rey’s geo-
metric figures and Beery’s Visual-Motor Integration test),
visual-spatial attention (bell-crossing test), mental execu-
tive functions (Porteus Labyrinth and Tower of London
test). A handwriting scale was also used to detect dysgra-
phy, visual perception was assessed with form recognition
tasks, and kinaesthetic perception (memory) was assessed
by positioning child’s arm and finger and asking him with
eyes closed to remember and repeat. A language screening
battery included tasks of reading, repetition of words

and logatoms, picture-naming speed, meta-phonological
tests, auditory memory and working memory tasks (digit
span). Neuro-psychomotor assessment was based on
the “neuro-psychomotor functions in children” battery
(NP-MOT), which allows to measure developmental mat-
uration of the following functions: neuromuscular exami-
nation, gross motor-control tasks, laterality, praxis, digital
gnosis, manual dexterity, body spatial integration, rhyth-
mic tasks, auditory-attentional task [30]. Finally, neuro-
visual examination included electro-retinogram, visually
evoked potentials and motor electro-oculogram.
For clarity purpose, the full set of items has been abbre-

viated using four-letter acronyms (see List of abbrevia-
tions used).
This study was conducted by Inserm Unit 669 in the

out-patient consultation of the Child Psychiatry Depart-
ment, Necker Hospital, Paris. Institutional review board
approval was obtained for the clinical investigations, and
this study is in compliance with the ethical principles for
medical research as presented in the Helsinki Declaration.
Written informed consent was obtained from the partici-
pant (parents and children) for publication of this report
and any accompanying images.

Statistical models
The RF algorithm can be summarized as follows. Given
ntree number of trees to grow and mtry variables used
to split each node:

1. Construct a bootstrap sample of size n < N , with
replacement, and start growing a tree for this sample.

2. When growing the tree, use mtry variables selected
at random to find the best split.

3. Repeat the preceding step until the tree reaches its
maximal extent (no pruning).

Each observation is classified using the principle of
majority voting after having collected votes from every
trees in the forest. A realistic measure of predictive
accuracy can be obtained by using so-called out-of-bag
(OOB) samples, which amounts to about one third of
the individuals not considered when growing each tree
since bootstrap with replacement is used. In addition, a
built-in permutation-based measure of variable contribu-
tion to prediction accuracy allows to rank variables by
their importance. The number of times individuals from
the training and OOB samples are found to belong to
the same terminal node can be used as a measure of
their ‘likeness’, hence the measure of pairwise proxim-
ity, appropriately normalized by the number of trees, that
can be used to cluster individuals using traditional met-
ric dimensional scaling (MDS). It is worth noting that
irrelevant descriptors will have little influence on this
proximity measure.



Lalanne et al. BMCMedical ResearchMethodology 2012, 12:107 Page 4 of 14
http://www.biomedcentral.com/1471-2288/12/107

The PLS-DA classifier consists in a classical PLS regres-
sion [26,31] where we seek to construct from the explana-
tory block X (of dimensions n × p) a set of K orthogonal
orthogonal factors scores or latent variables, ξ1, . . . , ξK ,
with associated loadings, u1, . . . ,uK , that maximize the
covariance between X and an univariate or multivariate
response block Y. Let Y be a single vector of outcomes,
this yields the following optimization problem:

max||uk ||=1
cov(Xk−1uk ,Y ),

where Xk−1 is the residual matrix in the regression of Y
on ξk = Xkuk , for each component k = 1, . . . ,K . The
sign and magnitude of the uk ’s give an indication about
the contribution of each variable in the construction of the
components scores, ξk . In PLS-DA, the categorical out-
come of interest Y is recoded in a set of dummy variables
expressing individual class membership. Considering C
classes, we define an indicator matrix Z based on Y

Zc =
{
1 if Y = yc,
0 otherwise,

and construct C classification functions of the form

Ẑc = b0,c + b1,cX1 + · · · + bp,cXp, c = 1, . . . ,C,

where the bi,c’s are the regression coefficients asssociated
to the cth class.

Model calibration
The sample was divided into a training sample and a vali-
dation sample, using a split ratio of 0.7/0.3.Model building
and feature extraction were performed on the training
sample only. The validation set was used to assess the
predictive power of the models and clustering fitness.
Tuning of hyperparameters for RF (number of variables

used to build a single tree, mtry) and PLS-DA (num-
ber of dimensions, K, and/or sparsness parameter, η) was
done using a nested cross-validation scheme, comprised
of stratified and repeated 10 × 5-fold resampling (inner
loop) combined to a search grid of length 10 for the hyper-
parameters (outer loop). The number of trees considered
in RF was kept constant (ntree=500). For sparse PLS-
DA, we used a custom grid of tuning parameters with 10
uniformly spaced 0.3 < η < 0.9, for K ranging from
1 to 10. The criterion to select model parameter(s) was
the average classification accuracy computed on hold-
out samples across resampling results. Accuracies were
compared between models using the method proposed
in [32].

Variables scoring
For RF, we considered the mean decrease in accuracy to
assess variable importance. For PLS-DA, items loadings

were used as overall (i.e., not class-specific) measures of
variable importance for each of the extracted compo-
nent. In both cases, the significance of all measures of
variable importance was tested using a permutation strat-
egy, whereby class labels were randomly exchanged and
variable importance was recomputed on a total of 999
samples. For sparse PLS-DA, only 95% bootstrap confi-
dence intervals associated to regression coefficients were
computed.

Predictive accuracy
For the training sample, prediction of class membership
was based on the internal voting scheme for RF, whereas
for PLS-DA a softmax method was used, whereby the pre-
dicted class, c∗, is the largest class probability after model
predictions have been transformed on a [0,1] interval
(with unit sum), that is

Y = yc where c∗ = argmax
0≤Zc≤1,

∑
Zc=1

(Ẑc).

For the validation sample, we computed classification
accuracy based on the optimized model parameters.

Clustering fitness
The PAM algorithm[33] was used to identify one rep-
resentative sample (“medoid”) for each cluster, based on
the PLS components scores in the training sample. The
number of clusters was determined by maximizing the
overall average silhouette width (ASW). The stability of
the resulting partition was assessed using the bootstrap
procedure described in [34]: For each bootstrap sam-
ple, Jaccard similarities between the original three-cluster
solution and the one found on resampled data were aver-
aged clusterwise. In addition, we verified whether cluster
might be considered as isolated clusters (L- or L∗-cluster)
or not. According to [33], a cluster is an L∗-cluster if and
only if its diameter is smaller than its separation. A clus-
ter is an L-cluster if and only if for each observation i the
maximal dissimilarity between i and any other observa-
tion of the cluster is smaller than theminimal dissimilarity
between i and any observation of another cluster.
Cluster affinity was defined as the euclidean distance

between each observation in the validation sample and its
expected cluster medoid. This mimic the isolation mea-
sure described above, though it is based on a distance and
not a similarity measure.

Statistical software
All analyses were performed with the open-source R soft-
ware, version 2.12 [35], the randomForest, pls and
spls packages, and the caret interface for machine
learning [36]. Group comparisons were performed at a
fixed 5% Type I risk level, with correction for multiple
comparisons (Bonferroni method) when justified.
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Table 1 Descriptive statistics for the training and validation samples

Training Validation Combined

N N = 46 N = 17 N = 63

Diagnosis: IM 63 9% ( 4) 6% ( 1) 8% ( 5)

VSC 52% (24) 53% ( 9) 52% (33)

MX 39% (18) 41% ( 7) 40% (25)

Gender: Male 63 78% (36) 94% (16) 83% (52)

Age (years) 63 6.8 8.0 9.7 6.6 8.7 12.3 6.8 8.1 10.4

Term: Yes 63 96% (44) 88% (15) 94% (59)

FIQ 62 85 98 114 92 108 121 86 100 115

PIQ 62 73 87 102 75 93 107 74 90 105

VIQ 62 92 107 122 100 119 130 92 110 124

Three-number summaries are lower quartile, median, and upper quartile.
N is the number of non–missing values.

Results
Patients characteristics
The main patients’ characteristics, including clinical diag-
nosis, for the training (n = 46) and test (n = 17) samples are
shown in Table 1. As described in the original article [10],
patients were mostly 8 years old males, with full IQ in the
expected range. Nine cases out of ten were diagnosed as
suffering from either VSC or MX dyspraxia, whereas only
five subjects were classified as IM-dyspraxic.
Interitem Pearson correlations were in the range

[−0.411; 0.831] (median, 0.087). The marginal propor-
tions of item failure were between 7.9% (Sitting alone) and
92.1% (Visual motor integration).
Item failures for the whole cohort are summarized in

Figure 1 as a heatmap where higher relative frequencies
of failure are indicated in red. As can be seen, there are
systematic patterns of failure that are clearly visible for
some groups, for example digital praxia (DIPR) in MX
and IM patients, arithmetic (ARTH) in MX patients only,
visual-motor integration (VIMI) in MX and VSC patients,
or digital perception (DIPE) in IM patients only. Also,
there are some evidence for covarying items scores: IM
patients were not impaired on lego (LEBL) and puzzles
(PUZL) tasks, nor any visuo-motor tasks (VIMI, VISS,
VISC), whereas VSC patients show systematic failures on
the latter.

The average level of success did not differ between the
training and test samples on any of the studied variables
(all p > 0.05, with p-values computed from Monte Carlo
χ2 significance tests).

Model calibration
Random forest
The number of variables retained for growing trees was
estimated at mtry = 12, yielding an optimal classification
accuracy of 0.924 (SD 0.055). Of note, this value is near the
recommended default value for this parameter (

√
49 = 7).

For the final model, the OOB estimate highlighted an
error rate of 8.7%, with 2 VSC (8.3%) and 2 MX (11.1%)
missclassified patients on the training sample. An infor-
mal look at the evolution of error rates as a function of
the number of trees indicated that the OOB error was
stabilized after 225 trees were grown.

PLS-DA
For standard PLS-DA, six components were selected for
an average classification accuracy of 0.917 (SD 0.088). For
penalized PLS-DA, the optimal parameters were found to
be K = 2 components and η = 0.7 for sparseness. This
resulted in a classification accuracy of 0.942 (SD 0.076),
with only one missclassified VSC patient (4.2%). It should
be noted that these two classification accuracies do not
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Figure 1 Conditional frequencies of impairment on all items.
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differ one from the other (p = 0.346, with Bonferroni cor-
rection), nor with classification accuracy estimated for RF
(p = 0.491, for sPLS-DA).

Variable importance
Random forest
The importance of variables in RF, as measured by the
mean decrease accuracy, are shown in Figure 2. The
original estimates from the retained model during param-
eters tuning are shown as black circles, and the impor-
tance computed through re-randomization are shown as
Tukey’s boxplots in grey color. Filled symbols indicate
a significant permutation test at the 5% level. In this
case, eight variables showed a consistent and significant
contribution to overall accuracy on the training sample.
These are, in decreasing order of magnitude: digital praxia
(DIPR), imitation of gestures (IMOG), digital perception
(DIPE), visual motor integration (VIMI), manual dexterity

(MAND), visual spatial structuration (VISS), coordination
between upper and lower limbs (CULL), and lego blocks
(LEBL). Class-specific measures of variable importance
are also provided in Table 2.

PLS-DA
For PLS-DA, the following important variables were
found, in decreasing order of magnitude (items found
on more than one component are emphasized in italic
letters): (Component 2) visual spatial memory (VISM),
puzzles (PUZL), visual spatial constructional (VISC),
visual spatial structuration (VISS), lego blocks (LEBL),
visual motor integration (VIMI); (Component 3) pos-
tural control (POSC), dynamic balance (DYNB), stand-
ing tone (STDT), kinaesthetic memory (KINM); (Com-
ponent 4) work memory (WRKM), auditivo mem-
ory (AUDM), first sentences (FISE), dysgraphia (DYGR);
(Component 5) postural control (POSC), hand writing

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Mean Decrease Accuracy

DIPR
IMOG
DIPE
VIMI

MAND
VISS
CULL
LEBL
SYNK
PUZL
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VISC

OROP
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BIDX
VISM
EXEF
DRES
AUDA
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VISA

HORP
DYNB
VEPN
OTRH
HYPT
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VISP

HULU
HMLS
DYGR
AUDM
WRKM

KINM
SITA

PRSL
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MOPA
WALK
RHYA
READ
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POSC

Figure 2 Scree plot of the measures of variable importance in RF.
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Table 2 Class-specific measures of variable importance for RF, PLS-DA and sPLS-DA

RF PLS sPLS

IM VSC MX IM VSC MX IM VSC MX

SITA 0.17 0.14 0.15 0.01 0.10 0.16 — — —

CRAW 0.17 0.12 0.18 0.04 0.06 0.19 — — —

WALK 0.11 0.18 0.10 0.03 0.06 0.18 — — —

FISE 0.12 0.20 0.12 0.04 0.18 0.174,6 — — —

OTRH 0.15 0.13 0.27 0.07 0.06 0.173,6 — — —

VISR 0.31 0.13 0.09 0.20 0.24 0.19 — — —

LEBL 0.72 0.23 0.26� 0.35 0.16 0.20 0.96 0.03 0.03 —

PUZL 0.64 0.16 0.10 0.36 0.21 0.182 0.96 0.09 0.09 —

ARTH 0.18 0.14 0.34 0.11 0.20 0.24 — — —

READ 0.16 0.16 0.09 0.13 0.22 0.216 — — —

HAWR 0.31 0.20 0.16 0.02 0.04 0.125 — — —

DYGR 0.17 0.20 0.12 0.02 0.02 0.044 — — —

HYPT 0.08 0.24 0.14 0.01 0.31 0.32 — — —

MOPA 0.17 0.12 0.14 0.32 0.32 0.40 — — —

SYNK 0.54 0.13 0.28 0.25 0.18 0.23 0.81 0.16 0.16 —

DYSD 0.30 0.22 0.22 0.30 0.37 0.39 — — —

STDT 0.06 0.15 0.15 0.16 0.04 0.153 — — —

DIPR 0.75 0.58 0.67� 0.45 0.98 0.96 0.91 0.00 0.91 —

BIDX 0.09 0.16 0.25 0.07 0.42 0.39 — — —

PRSL 0.11 0.18 0.16 0.18 0.18 0.28 — — —

IMOG 0.79 0.60 0.65� 0.55 0.99 1.00 1.00 0.88 0.88 —

OROP 0.36 0.22 0.28 0.03 0.27 0.33 — — —

DRES 0.28 0.23 0.19 0.21 0.09 0.06 — — —

DIPE 0.69 0.48 0.39 0.35 0.72 0.59 0.96 0.67 0.67 —

VISP 0.14 0.20 0.16 0.00 0.13 0.16 — — —

STAB 0.30 0.17 0.16 0.14 0.25 0.20 — — —

DYNB 0.18 0.20 0.20 0.11 0.25 0.473 — — —

CULL 0.50 0.29 0.27� 0.11 0.53 0.61 0.81 0.59 0.59 —

POSC 0.08 0.12 0.07 0.11 0.04 0.213,5 — — —

HLUL 0.00 0.17 0.16 0.14 0.06 0.09 — — —

HMLS 0.09 0.15 0.19 0.08 0.10 0.06 — — —

HULU 0.11 0.19 0.17 0.09 0.04 0.04 — — —

MAND 0.56 0.31 0.41� 0.10 0.57 0.66 0.81 0.64 0.64 —

BSPI 0.17 0.22 0.22 0.10 0.08 0.11 — — —

RHYA 0.13 0.10 0.17 0.13 0.26 0.30 — — —

VIMI 1.00 0.30 0.42� 0.39 0.15 0.272 0.00 0.00 0.00 —

VISS 0.94 0.34 0.17� 0.39 0.20 0.272 0.99 0.06 0.00 —

VISC 0.52 0.22 0.17� 0.31 0.14 0.142 0.87 0.09 0.09 —

EXEF 0.24 0.25 0.16 0.07 0.27 0.26 — — —

AUDM 0.10 0.15 0.18 0.19 0.05 0.184 — — —

WRKM 0.24 0.14 0.17 0.23 0.10 0.124 — — —

KINM 0.17 0.12 0.15 0.10 0.03 0.083,6 — — —
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Table 2 Class-specific measures of variable importance for RF, PLS-DA and sPLS-DA Continued

VISM 0.38 0.24 0.18 0.34 0.14 0.082 — — —

AUDA 0.17 0.24 0.15 0.17 0.27 0.34 — — —

VISA 0.24 0.16 0.19 0.16 0.21 0.23 — — —

HYPK 0.17 0.14 0.10 0.13 0.10 0.145 — — —

HORP 0.08 0.26 0.14 0.09 0.23 0.29 — — —

VERP 0.11 0.20 0.19 0.09 0.16 0.21 — — —

VEPN 0.17 0.23 0.17 0.00 0.14 0.21 — — —

�denote significant measure of variable importance in the PLS case, and upper script numbers indicate on which PLS component a variable was found significant at
the 5% level.

(HAWR), hyperkinesia (HYPK) (Component 6) read-
ing/spelling (READ), kinaesthetic memory (KINM), first
sentences (FISE), otorhinolaryngologia (OTRH). It should
be noted that none of the variables reach the 5% signifi-
cance level on the first component. Class-specific loadings
are summarized in Table 2.
On the contrary, eleven variables were selected by

sPLS-DA: lego blocks (LEBL), puzzles (PUZL), synki-
nesia (SYNK), digital praxia (DIPR), imitation of ges-
tures (IMOG), digital perception (DIPE), coordination
between upper and lower limbs (CULL), manual dexterity
(MAND), visual motor integration (VIMI), visual spa-
tial structuration (VISS), and visual spatial constructional
(VISC). This set of variables closely matched the one out-
lined with RF method, and is a subset of the variables with
highest loadings for the unpenalized PLS-DA approach.
Variables loadings are given in Table 2 and regression
coefficients with their associated 95% confidence intervals
are displayed in Figure 3.

Predictive classification accuracy
Classification accuracy on the validation sample was per-
fect in the case of RF, and identical for PLS and sPLS
(0.941, 95% CI [0.713;0.999]), with only one VSC patient
missclassified.

Projection of individuals in the feature space
Figure 4 shows individual locations in a reduced facto-
rial space defined by multidimensional scaling applied to
individual proximities computed from RF (Figure 4a), and
projection of factor scores in the first three dimensions of
PLS-DA (Figure 4b).
In the case of PLS-DA, the first component is deter-

mined by an opposition between hypotonia (high negative
loading) and manual tasks (imitation of gestures, digital
praxia, digital perception, manual dexterity). The second
axis is mainly driven by the same manual tasks, except
manual dexterity, vs. visuo-spatial tasks (puzzles, visual
spatial structuration, visual spatial memory). On the third
axis, the same visuo-spatial and manual tasks have high

negative loadings while dynamic balance, motor pathways
and auditivo memory have high positive values.

Patients typology
With component scores computed from the PLS-DA
model, the optimal number of clusters was estimated at
three, with an average silhouette width of 0.348. Although
this is indicative of a weak clustering structure, the cross-
classification of cluster and diagnosis classes was satis-
factory: Two VSC patients were considered as belonging
to the cluster composed of MX patients only (n = 18).
When using bootstrap (500 samples), the clusterwise Jac-
card similarity values were all above 0.5, except for the
smaller cluster (Table 3).
For the penalized PLS-DA model, three clusters were

identified by optimizing the average sihouette width
(0.625). The clusterwise Jaccard bootstrap measures were
all in the acceptable range (≥ 0.8), and 4 VSC patients
were found in the cluster composed of MX patients.
Except for the minority cluster (IM), the representative

individuals were different in the two PLS models.

Clustering fitness
As can be seen in Table 3, the average euclidean distance
of patients from the validation sample to their expected
medoids (C1 to C3) was always less than the average dis-
tance to other medoids, except for IM patients with PLS-
DA. When considering sPLS-DA, the MX group appears
to exhibit more compactness since it has the lowest aver-
age distancemeasure. This is further illustrated in Figure 5
which shows patients’ location in the factor space defined
by the two components of the sPLS-DA model. The mis-
classified individual has been highlighted using a double
circle.

Pattern of association between selected variables and
clinical diagnosis
The conditional and marginal distributions of item failure
by clinical subgroup is summarized using a circular tabu-
lar display (Circos, http://mkweb.bcgsc.ca/tableviewer) in

http://mkweb.bcgsc.ca/tableviewer
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Figure 3 Sparse PLS-DA regression coefficients with associated 95% confidence intervals computed using B = 1, 000 bootstrap samples.
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Table 3 Measures of predictive accuracy and clustering fitness

Classifier Class Sensitivity Specificity ASW Isolation Jaccard C1 C2 C3

PLS-DA IM 1.00 1.00 0.625 L∗ 0.462 1.587 2.784 1.206

VSC 0.89 1.00 0.369 No 0.665 3.106 0.838 2.315

MX 1.00 0.90 0.270 No 0.605 2.811 2.416 0.587

sPLS-DA IM 1.00 1.00 1.000 L∗ 0.792 0.129 0.437 0.386

VSC 0.89 1.00 0.712 No 0.928 0.468 0.103 0.282

MX 1.00 0.90 0.479 No 0.854 0.487 0.330 0.073

L or L∗ denotes isolated cluster (See text for details).

Figure 6, considering variables selected by RF and sPLS-
DA on the training sample. The size of each ribbon reflects
the strength of the association (i.e., cell counts in the cor-
responding 7 or 11 × 3 table), while the outer segments
indicate marginal frequencies. Such a picture offers an
intuitive visualization of the following three main charac-
teristics of task failure due to specific dyspraxia: (a) IM
patients are equally impaired on digital perception (DIPE),
imitations of gestures (IMOG), and digital praxia (DIPR),
(b) some items are commonly found in both VSC and
MX patients, that is lego blocks (LEBL), visual spatial
structuration (VSS), and visual motor integration (VIMI),
whereas (c) some items remain mostly specific of MX, and
to a lesser extent VSC dyspraxia, namely digital praxia,

imitation of gestures, and more importantly coordination
between upper and lower limbs (CULL) and digital per-
ception (DIPE).
Of the 11 items isolated with sPLS-DA, IMOG andDIPE

were found significantly associated with clinical diagnosis
in the validation sample at a 5% Bonferroni-corrected level
(0.05/11 = 0.0045). The p-values for digital praxia and
synkinesis were below 10%.

Discussion
The primary aims of this article were to determine the
most relevant items for distinguinshing between three
DCD subtypes, and to quantify the homogeneity of
patients within each subtype. Two multivariate methods,
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Figure 5 Individual coordinates from sPLS-DA for the training (open circles) and validation (filled circles) sample. The medoids for each
cluster are shown using a cross.
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(b)(a)
Figure 6 Association between clinical group and variables ranked or selected as most important in RF and sPLS-DA.

RF and PLS-DA, were shown to be useful to select the
most informative items from a large set of testing instru-
ments with high sensitivity and specificity, while allowing
to characterize a set of 63 patients from a multivariate
perspective. Imposing sparsity when building PLS compo-
nents led to more direct and interpretable results.

Interest of multivariate classification
Feature selection based on RF has been proposed in the
past, including the use of permutation techniques. For
example, Diaz-Uriarte and Alvarez de Andrés [37] pro-
posed a backward elimination algorithm to select relevant
subset of genes based on variable importance. Using this
method, as implemented in the varSelFR R package,
with a slight different configuration for RF (500 trees, but
with the mtry parameter set at its default value of √p),
five variables were selected: digital perception (DIPE), dig-
ital praxia (DIPR), imitation of gestures (IMOG), manual
dexterity (MAND), and visual motor integration (VIMI).
The .632+ Bootstrap estimate of prediction error was
found to be 0.0713 (using 500 replicates), which is in
close agreement with the prediction error observed on our
training sample. It should be noted, however, that permut-
ing clinical labels allows to verify the existence of a class
structure in the dataset, not whether the classifier truly
exploits items dependency [38].
Contrary to Robert-Granié et al.’s study [29], our results

didn’t show a clear improvement of sparse PLS over

unpenalized PLS when predicting diagnostic classes,
although they both yielded a consensual subset of impor-
tant variables. This might be explained by the high signal-
to-noise ratio for some of the neuro-psychological tests
used in this study.
Another point that deserves some discussion con-

cerns the choice of the metric used to quantify variable
importance in PLS-DA. In this study, variable loadings
were used as they reflect the “weight” of the variables
when building component scores that maximize the dis-
crimination among classes. Other measures of variable
importance have been proposed, for example Variable
Importance in Projection (VIP), but see [20] for a review.
We found, however, that using VIP-based measures of
variable importance yielded results in close agreement
with the one reported in this study.
Also, random forests is a nonparametric approach that

supports multivariate and nonlinear associations whereas
PLS regression models linear dependencies only, which
may yield different variable importance measures espe-
cially in the case where highly nonlinear associations
between predictors of interest are present. A combina-
tion of the two approaches, where either RFs [39] or
PLS [40] is used to perform dimensionality reduction, has
been successfully applied in some domains. Menze et al.
[41] demonstrated that on spectral data univariate fea-
ture screening will perform poorer than multivariate Gini
importance computed from RFs which in turn is able to
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highlight higher-order interaction effects. However, PLS-
DA was found to perform better overall for classification,
as compared to RFs. The superiority of PLS-based clas-
sifiers was also confirmed in presence of additive global
noise on synthetic datasets, but its performance decreased
when irrelevant features were added. Nevertheless, recur-
sive feature elimination based on Gini importance can be
used to remove features with non-discriminatory variance
before applying a PLS-DA classifier. This suggests that
depending on the structure of the data under considera-
tion, a combined approach where RFs are used to perform
dimensionality reduction and some form of regularization
on input data before they enter a linear classifier or pro-
jection to latent structures might a be viable alternative.
Other interesting approaches have been proposed as well,
for example Logic Regression [42] which also relies on the
idea of bagging boolean trees to identify significant inter-
actions among a set of descriptive binary variables, see
also [43,44].
Finally, RF and PLS-DA provide efficient ways for visu-

alizing how patients and variables cluster together when
considering all variables at the same time (unlike uni-
variate screening approaches), which has already been
discussed by [45]. They both appear to nicely comple-
ment each other. Looking at patients’ locations in the
PLS factorial space leads to a more direct interpreta-
tion of the relationships between subjects and variables,
or between variables themselves, since the latent dimen-
sions extracted from PLS-DA are just linear combinations
of the original variables. On the other hand, screening
variables of interest through RF is relatively straightfor-
ward, whereas relying on PLS-DA often means “reading”
beyond the first dimension. For example, RF considered
digital praxia and imitation of gesture as the two most
important variables, whereas they were found on separate
dimensions when using PLS-DA.

Clinical implications
The present findings are consistent with the previous
observation that difficulties in planning and programming
movement, rather than executive disorders, might partly
be responsible for the observed typology in this sample of
63 children.
Indeed, our results confirmed the importance of some

aspects of visual processing of spatial information and
motor control in developmental coordination disorder
and their subtle association in delineating DCD subtypes,
as discussed in [10]. Digital praxia and imitation of ges-
tures help distinguishing between visuo-constructional
and spatial dyspraxia (no impairment) and ideomotor
or mixt dypraxia, whereas visual motor integration and
visual spatial structuration are more characteristic of
the opposition between ideomotor dyspraxia (no impair-
ment) and the two other subtypes. Hence, mixt dyspraxia

is characterized by the presence of disorders specific
of VSC or IM dyspraxia, but further includes unique
comorbidities such as problem in coordinating upper and
lower limbs, poorer manual dexterity or synkinesia which
could be specific markers of developmental coordination
disorder.
When assessing only performance on motor coordina-

tion in relation to learning development, it is likely that
we would fail to identify associated non-verbal learn-
ing disorders, as well as language or mathematics-related
skills. Furthermore, as few or no gross motor skill dis-
orders were found to be characteristic of VSC dyspraxia,
this means that gross motor disorders are not necessar-
ily associated with dyspraxia. The dissociation of such
comorbid disorders was made possible because of the sys-
tematic investigation of different cerebral functions from
a neuro-psychological, neuro-psychomotor and neuro-
visual viewpoint on a sample of children enrolled with
strict inclusion criteria, hence the need for a multi-
dimensional or multi-level assessment of these children
[9,10].
Ideomotor patients appear more alike compared to VSC

or MX patients, and they are impaired on fewer tasks
overall. From a clinical perspective, it is interesting to
note that misclassification was only observed for a VSC
patient (considered as MX by the PLS classifier). A closer
inspection of his medical record further indicated that he
suffered from a discrete hemiplegia implying left dysadi-
adochokinesis, impaired digital praxia, but with normal
visual perception.
Hopefully, isolating relevant items among a large set

of critical indicators of impaired visuo-motor and cogni-
tive performance might further help to circumvent the
lack of consensus around the characterization of dyspraxia
subtypes, whether we rely on DSM-IV-R criteria or on
the existing literature, see [10] for a review. This will
also prove useful for the practician as short and targeted
assessment is needed, due to limited resources and time in
applied clinical settings. In this regard, the present study
suggests that less than 15 skills need to be assessed in
order to provide a specific and sensitive diagnostic of DCD
subtypes, although the data-driven approaches used here
might not fully account for the complexity of skill acquisi-
tion or learning process in the target population. Random
forests and PLS discriminant analysis were used to reduce
the number of relevant features while maximizing the
discrimination between given DCD subtypes. As such,
they were shown to perform correctly on this particular
dataset, and results were consistent with earlier inferen-
tial clinical analysis. Whenever more fine hypotheses are
to be tested, it makes more sense to turn to methods that
allow more flexible modeling of the covariance structure
and provide associated tests of hypothesis or pointwise
estimation. Of course, the extent to which those results
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might generalize beyond the sample enrolled in this study
is a critical issue. While our methodology was devised so
as to limit the risk of overfitting during model selection,
our low sample size offers only a limited way to investigate
model performance and cluster stability. An external val-
idation study with a larger sample of children, free of any
comorbidities, would be needed to confirm the relevance
of the highlighted markers.
However, such results could be used to drive more

focused investigations of motor control and sensorimotor
integration in DCD children; this potentially includes the
collection of physiological and cognitive measures when
children perform controlled motor tasks, analysis of eye
movements dynamics and eye-hand coordination, longi-
tudinal follow-up, etc. As pointed out in the introduction,
there is a need for a fairly extensive assessment of dif-
ferent cerebral functions, or a multi-level approach of
assessment as suggested by Wilson [9].

Conclusions
Multidimensional assessment of learning disabilities
appears of great interest for the medical community.
The statistical analysis of such multivariate and possibly
irregular (i.e., few observations, high number of vari-
ables) datasets is challenging, but ensemble methods and
dimension-reduction techniques can be successfully used
to screen variables of interest and assess groupwise clus-
tering profile.
In a sample of 63 children diagnosed as suffering

from developmental dyspraxia, these methods provide
a concise depiction of two types of pure dyspraxia
(ideomotor and visual-spatial/visual-constructional) that
are well characterized in the visual-spatial and visual-
motor domain, and a third type of dyspraxia (mixt dys-
praxia) which features specific comorbidities in addition
to impairments shared with the two other types.

Abbreviations
SITA, Sitting alone; CRAW, Crawling; WALK, Walking alone; FISE, First sentences
(language); OTRH, Otorhinolaryngologia; VISR, Visual refraction; LEBL, Lego
blocks; PUZL, Puzzles; ARTH, Arithmetic; READ, Reading/spelling; HAWR, Hand
writing; DYGR, Dysgraphia; HYPT, Hypotonia; MOPA, Motor pathway; SYNK,
Synkinesis; DYSD, Dysadiadochokinesis; STDT, Standing tone; DIPR, Digital
praxia; BIDX, Bimanual dexterity; PRSL, Praxia slowness; IMOG, Imitation of
gestures; OROP, Orofacial praxia; DRES, Dressing skill; DIPE, Digital perception;
VISP, Visual perception; STAB, Static balance; DYNB, Dynamic balance; CULL,
Coordination between upper and lower limbs; POSC, Postural control; HLUL,
Homogeneity tonic laterality upper/lower limbs; HMLS, Homogeneity manual
laterality spontaneous psychomotor; HULU, Homogeneity usual laterality
upper/lower limbs; MAND, Manual dexterity; BSPI, Body spatial integration;
RHYA, Rhythmic adaptation; VIMI, Visual motor integration; VISS, Visual spatial
structuration; VISC, Visual spatial constructional; EXEF, Executive function;
AUDM, Auditivo memory; WRKM, Work memory; KINM, Kinaesthetic memory
(perception); VISM, Visual spatial memory; AUDA, Auditivo attention; VISA,
Visual spatial attention; HYPK, Hyperkinesia; HORP, Horizontal pursuit; VERP,
Vertical pursuit; VEPN, Visual evocated potentials (neurovisual).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CL designed the statistical study, performed the analysis of data and
contributed to their interpretation. LVD was in charge of data collection and
clinical assessment. LVD, BG, and BF have made substantial contributions to
the interpretation of the data and writing of the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
This study has received support from University Paris Descartes, under the
head of “Collaborative projects 2011”. CL would like to thank Max Kuhn and
Kjell Johnson for helpful discussion about PLS-DA. The authors wish to thank
the reviewers for their constructive comments.

Author details
1AP-HP, Department of Clinical Research, Saint-Louis Hospital, Paris, France.
2Inserm Unit UMR-SO 669, University Paris Sud, Paris Descartes, Paris, France.
3AP-HP, Paul Brousse Hospital, Public Health Department, Villejuif, France.
4AP-HP, Necker-Enfants Malades Hospital, Paris, France. 5University Paris
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