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Abstract

Background: We investigate methods used to analyse the results of clinical trials with survival outcomes in which
some patients switch from their allocated treatment to another trial treatment. These included simple methods
which are commonly used in medical literature and may be subject to selection bias if patients switching are not
typical of the population as a whole. Methods which attempt to adjust the estimated treatment effect, either
through adjustment to the hazard ratio or via accelerated failure time models, were also considered. A simulation
study was conducted to assess the performance of each method in a number of different scenarios.

Results: 16 different scenarios were identified which differed by the proportion of patients switching, underlying
prognosis of switchers and the size of true treatment effect. 1000 datasets were simulated for each of these and all
methods applied. Selection bias was observed in simple methods when the difference in survival between
switchers and non-switchers were large. A number of methods, particularly the AFT method of Branson and
Whitehead were found to give less biased estimates of the true treatment effect in these situations.

Conclusions: Simple methods are often not appropriate to deal with treatment switching. Alternative approaches
such as the Branson & Whitehead method to adjust for switching should be considered.

Background
Randomized controlled trials (RCTs) are widely used to
assess the effects of a new treatment or procedure com-
pared to a control treatment. Survival outcomes are
commonly used, particularly in the cancer setting, with
the time to an event such as death or disease progres-
sion analysed. In advanced disease trials are often
designed with progression free survival as the primary
endpoint, and overall survival as a secondary endpoint.
It is common for patients to switch from the treat-

ment to which they are randomised, either to the other
trial treatment, a non-trial treatment or to stop receiving
treatment altogether. Trial protocols often attempt to
control these switches while maintaining a degree of
flexibility over the treatment a patient can receive,
although this varies greatly between trials, and switching
remains common. Switches may occur for a number of

reasons, many of which are related to an individual’s
prognosis. Most commonly patients will switch from the
control arm to the intervention arm. A clinician may
decide that a patient is responding poorly to their allo-
cated treatment and it is therefore unethical to let them
continue on this regime. Alternatively, a patient may
switch because of treatment related side effects. Most
often patients are allowed to switch to the new therapy
at the point of disease progression. The estimate of the
treatment effect on progression-free survival is unbiased
if a patient’s sole reason for switching treatments is
their progression. However, the estimate of the treat-
ment effect on overall survival is biased due to switching
from control to the new therapy at progression. The
question of interest is what would have been the overall
survival treatment effect had no patients in the control
arm switched?
Policy decisions (such as whether a health-care provi-

der will fund a new treatment) increasingly rely on judg-
ments of both clinical and cost effectiveness, both of
which are heavily determined by the estimated survival
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gains of a technology. If there is crossover then
individuals may receive treatments that are not consis-
tent with the policy being evaluated. For example, if
individuals switch from a standard treatment to a new
treatment then they are not adhering to the policy of
retaining standard care. Thus, failure to appropriately
account for switching in deriving an estimate of treat-
ment effect may lead to incorrect policy decisions and
reduced efficiency of the health-care system as a whole.
An intention-to-treat (ITT) approach is often used

where patients are analysed dependent on the treatment
they are randomised to, regardless of whether they actu-
ally went on to receive this treatment for the entire
follow-up period. This pragmatic approach is said to
reflect the overall effectiveness of a treatment policy if it
were introduced on a wider scale [1]. However, this is
only the case where switching treatments is a feasible
option. If the treatment is not currently available then
treatment switching may not be an option in practice. It
is often of interest to estimate the effectiveness of the
experimental treatment alone, in the absence of switch-
ing. This appropriate policy effectiveness is especially
important when assessing the cost-effectiveness of a
treatment, something which is increasingly used as an
input to drug reimbursement decisions [2].
Appropriate policy effectiveness is often quantified

using a per-protocol (PP) approach which measures how
well a patient fares dependent on the treatment they
actually receive, regardless of which treatment arm they
were randomised to. Patients who switch from their ran-
domised treatment are therefore excluded from the ana-
lysis or censored at the time of their switch. This
approach can lead to severe selection bias if those
excluded differ in prognosis from those retained in the
analysis, which is likely in this setting as patients often
switch treatments because their condition has deterio-
rated [3].
The National Institute for Health and Clinical Excel-

lence (NICE) has considered several drugs where cross-
over has been a feature of the key clinical trials. In the
appraisal of trastuzumab for the treatment of metastatic
breast cancer [4], 75% of patients randomised to control
treatment in the key trial eventually switched to the
experimental arm. These patients were excluded com-
pletely from the analysis and a median survival gain of
17.9 months was found. However, if all control patients
had been included, this median survival gain was greatly
reduced to just 7 months. The true median survival gain
from the treatment is likely to be somewhere between
these two values.
Crossover was also a feature of trials used in the

recent appraisal of renal cell carcinoma therapies where
the impact of alternative approaches on estimates of
cost-effectiveness was highlighted [5]. For sunitinib, an

analysis of overall survival which excluded all patients
who received any subsequent therapy led to an Incre-
mental Cost-Effectiveness Cost Ratio (ICER) of £59, 819
compared to standard care (interferon), based on a
hazard ratio of 0.65. However if these patients were not
excluded from the analysis, the overall hazard ratio is
increased to 0.82, increasing the ICER to £118,005. In
reality, the ICER is likely to lie somewhere in between
these two estimates.
Various methods have been proposed to evaluate the

appropriate policy effectiveness of a treatment taking
into account deviations from the randomised treatment
group. These range from relatively simple methods,
such as per protocol analysis, to methods that account
for switching using either a proportional hazards or
accelerated failure time model. As it unclear how the
various methods perform in different situations we eval-
uate them using a simulation study.

Methods
The different approaches considered in this investigation
can be grouped into simple methods (those which are
currently widely used), and more sophisticated methods
which make adjustments to the hazard ratio or use
accelerated failure time models.

Simple methods
Various methods have been used in existing literature in
situations where patients depart from their randomised
treatment. We refer to them here as simple methods
which tend to involve only small adjustments to stan-
dard survival techniques. This section will focus on four
of these, intention-to-treat, excluding or censoring
patients if they switch treatments and modelling treat-
ment as a time-varying covariate.
Intention-to-treat
Many authors take the pragmatic approach and use an
intention-to-treat (ITT) analysis. Patients are analysed
depending on which treatment arm they were rando-
mised to. An important feature of an ITT analysis is
that data from all randomised patients is utilised, with
censoring used in time-to-event analysis for patients
who are lost to follow-up to ensure this.
The results from an ITT analysis should always be

given regardless of whether the effectiveness of the
treatment is of interest as it reflects the design and con-
duct of the study. While analysis of this type is perfectly
valid, it may underestimate the appropriate policy effec-
tiveness of a treatment [6]. For example, if the experi-
mental treatment truly is superior to the control
treatment, and some patients have switched from con-
trol to experimental, and are therefore receiving the
benefits of this, using an ITT analysis will make
the treatments appear more similar than they really are.
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The benefit of this type of analysis is that randomisation
balance between groups is maintained, reducing the pos-
sibility of bias affecting the results [7-9].
Per-protocol (excluding switchers or censoring at switch)
A per-protocol (PP) or as-treated approach involves ana-
lysing patients according to the treatment they actually
received rather than that to which they were rando-
mised. This is commonly used to supplement an inten-
tion-to-treat analysis [6].
Here we define a per-protocol approach as an attempt

to estimate the policy effectiveness by censoring patients
at the point at which they switch, or completely exclud-
ing any switching patients from the analysis. Therefore
unlike the ITT analysis described previously, not all
available patient data is utilised. Whereas ITT uses ran-
domisation to ensure treatment arms are balanced in all
aspects other than that of treatment, PP analysis may be
subject to selection bias as groups may no longer be
balanced after a patient is censored or excluded [7].
This type of bias is particularly likely if a patient’s prob-
ability of switching treatments is strongly related to
their underlying prognosis [10].
Treatment as a time-varying covariate
An extension of the Cox proportional hazards model is
to include treatment as a time-varying covariate to
assess the effect of treatment actually received by a
patient. The model takes the form:

  i it t X t( ) = ( ) ( )( )0 exp (1)

where l0(t) is the baseline hazard function and Xi(t)
takes a value of zero while a patient is receiving the
control and 1 while they are receiving the experimental
treatment. However, like the PP methods presented
above, this method can break the randomisation balance
and is therefore subject to selection bias if switching is
related to prognosis [11].

Adjusted hazard ratio methods
The two methods described here make adjustments to
the hazard ratio in order to take into account patients
switching from one treatment arm to the other.
Adjusted Cox model (Law and Kaldor, 1996)
Law and Kaldor [12] propose a method of adjusting the
standard Cox model to take into account patients who
depart from their randomised treatment. The method
can be used in situations where patients switch both
from control to experimental treatment and/or in the
opposite direction.
The method works on the principle that patients can

be divided into four groups depending on their switch-
ing pattern. So given an RCT comparing two treatments
(A and B), patients are classified as being in Group AA
or BB if they were allocated to A or B and did not

switch treatments, or to Group AB or BA if they
switched from their allocated treatment to the other
treatment. The hazard rates in each group are assumed
proportional. A Cox model is then fitted with a time-
varying covariate for switching time. Full details of the
method can be found in the paper itself [12].
The method makes a number of assumptions which

may not be appropriate in all situations. The assumption
that the underlying hazard rates of switchers and non-
switchers allocated to each treatment can be expressed
as multiplicative factors may not be appropriate and is
not testable. Also, it is assumed that switching onto a
new treatment will cause an instantaneous improve-
ment, which may be important, but would be difficult to
test in reality. The method also makes the assumption
that the treatment effect for patients switching on to a
treatment will be the same as for those initially allocated
to receive it. This assumption is unlikely to be true in a
real trial setting for a number of reasons, the most
important of which may be that patients switching onto
a treatment will typically be at a more advanced stage of
their disease than those in the treatment arm were at
the start of the trial. This assumption could be tested
for a real dataset by comparing the survival times of
patients from their switch with the survival times of
treatment arm patients, although analysis of this type
would itself be subject to bias.
Problems with this method have been raised by White

[13]. Patients are grouped as described above according
to future events, i.e. a treatment switch which has not
yet occurred. So for example, subjects in group AB are
said to have a certain hazard function before they
switch. However, in reality they have a hazard of zero
up to the point at which they switch treatment, as they
cannot die before this point or they would be in group
AA. White states that this is likely to bias the estimated
hazard ratio towards the null.
Causal proportional hazards estimator (Loeys and
Goetghebeur, 2003)
Loeys and Goethebeur [14] present a method for calcu-
lating the true treatment efficacy in situations where all
patients take their allocated treatment in one arm and
compliance is “all-or-nothing” in the other arm. This
means that if a patient in this arm switches, the switch
is assumed to have happened at time zero, and the
patient is assumed to have only received the treatment
they switched onto and none of their allocated treat-
ment. The method and its implementation in the Stata
package are described further by Kim and White [15].
The authors consider a clinical trial in which patients

are randomised to receive either a control treatment or
an experimental treatment. The method works on the
assumption that all patients in the control arm comply
fully, and patients in the experimental arm may either
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comply fully (complier) or not at all (non-complier).
Patients in the control arm are also classed as either
being a complier or non-complier depending on how
they would have behaved if they had been randomised
to the experimental arm. The proportion of non-
compliers is assumed to be the same in both arms due
to randomisation (often referred to as the exclusion
restriction [16]).
The method then makes use of Kaplan-Meier survival

estimates and the assumed relationship between control
and experimental compliers to find an estimate of the
hazard ratio. Loeys and Goetghebeur [14] give full
details of the methodology used. The method was
applied in this investigation using the Stata program
stcomply as described by Kim and White [15,17].
The all-or nothing compliance assumption is a very

important limitation of this method as this type of compli-
ance is only likely to occur in very specific scenarios, such
as a trial to investigate a new screening program where
patients may be allocated to attend screening but may not
attend. As mentioned previously the method also makes
the important exclusion restriction assumption, which
although untestable, we feel is likely to hold in most set-
tings. The implications of a violation of this assumption
has been discussed elsewhere [16,18], and may be reduced
by incorporating covariates that predict compliance.

Accelerated failure time model methods
The methods in this section make use of accelerated
failure time (AFT) models, an alternative form of survi-
val model to the commonly used proportional hazards
model. A proportional hazards model assumes that cov-
ariates multiply the hazard by a constant, whereas
an AFT model assumes that a covariate multiplies the
predicted event time by a constant [19].
These methods have been referred to as randomisa-

tion-based efficacy estimators (RBEEs) [6], as they com-
pare groups as randomised and therefore are intended
to reduce biases which may be introduced by comparing
groups as-treated. The method of Loeys & Goetghebeur
[14] described previously is also an RBEE as it preserves
the randomisation balance and the significance level
from an ITT analysis.
Rank preserving structural failure time models (Robins and
Tsiatis, 1991)
Robins and Tsiatis [20] describe the use of AFT models
to estimate the true efficacy of a treatment. A patient’s
observed event time is related to their counterfactual
event time, that which would have been observed for a
particular patient if they had not received any treatment.
These models are referred to as rank preserving as they
make the assumption that given two patients i and j, if i
failed before j when both were on one treatment, then i
would also fail before j if both patients took the same

alternative treatment. Consider a randomised trial with
two arms, a control arm (A) receiving no treatment, and
an experimental arm (B). Each patient i has an observed
time to event or censoring Ti. Ri = A or B is the
patient’s randomised treatment arm.
Each patient also has a counterfactual event time Ui

which is the event time which would have been
observed if no treatment had been received. Patients in
the control arm who do not switch treatment will have
Ti = Ui, so their counterfactual event time will be
observed. Ui is unobserved for all other patients. The
assumption is made that Ui is independent of Ri due to
randomisation balance.
Consider the observed event time Ti as being made up

of a patient’s time on the control treatment TAi and their
time on the experimental treatment TBi, so Ti = TAi + TBi.
For patients who did not switch treatments, either TAi or
TBi will be equal to zero. Ti is related to the counterfactual
event time Ui by the following causal model:

U T e Ti Ai Bi= + − 0 (2)

e 0 is often called the acceleration factor, the amount

by which a patient’s expected time to event is increased
by treatment. A value of e 0 1> indicates a beneficial
treatment effect whereas e 0 1< suggests treatment has
a detrimental effect, increasing the speed at which a
patient moves towards their event. e 0 is perhaps easier
to interpret than e − 0 so results will be presented in
this form.
By defining a binary process Xi(t) which equals 1

when a patient is on experimental treatment and 0
otherwise, equation (2) can be rewritten as:

U X t dti i

Ti
= ( )⎡⎣ ⎤⎦∫ exp 

0
(3)

For a given value of ψ, the hypothesis ψ0 = ψ can be
tested by first calculating Ui(ψ) using equation (2). Z(ψ)
is then calculated as the test statistic for the hypothesis
U(ψ)╨R, i.e. a patient’s counterfactual event time is inde-
pendent of the treatment arm to which they were
randomised.
A number of different tests could be used to calculate

Z(ψ). We considered four different statistical tests in
this investigation: the logrank, Cox, exponential and
Weibull tests. The value of ψ for which Z(ψ) = 0 is
taken as the point estimate. This is the value for which
U is balanced between treatment arms.
The method has been extended and implemented in

Stata (through the strbee program) by White et al
[21,22] as follows. Define Ci as the administrative censor-
ing time which corresponds to the end of follow-up. Using
equation (3), the censoring time for Ui(ψ) is given by:
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D X t dti i

Ci

 ( ) = ( )⎡⎣ ⎤⎦∫ exp
0

(4)

However, because switching may be related to prog-
nosis, both Xi and Di may also depend on prognosis and
therefore the censoring of Ui(ψ) may be informative, and
thus including censoring in this way can result in biased
estimates as shown by White et al [22]. They suggest this
bias could be avoided by recensoring counterfactual sur-
vival times so that the censoring time equals the mini-
mum of the administrative censoring time (Ci) and Ci

exp ψ. Then the counterfacutal survival time Ui(ψ) is
replaced by the censoring time of the counterfactual
event times Di

* ( ) if D Ui i
*  ( ) < ( ) .

An interval bisection process can be used to find the
point estimate and confidence interval for ψ. Further
details of this can be found in the discussion of the
strbee program [21].
The Robins & Tsiatis method makes a number of

assumptions. As mentioned previously the models are
rank-preserving, which may not be plausible with certain
patients likely to see more or less benefit than others on
different types of treatments due to biological factors.
However testing for any violations of this assumption in
real data may not be possible. The method also assumes
an equal treatment effect for patients switching to a
treatment as for those initially allocated to receive it as
discussed previously for the Law & Kaldor method

Iterative parameter estimation algorithm (Branson and
Whitehead, 2002)
Branson and Whitehead [23] build on the method devel-
oped by Robins and Tsiatis [20] by replacing the test-
based estimation of ψ with a likelihood-based analysis.
An iterative parameter estimation (IPE) algorithm is

used. This retains all patients to the treatment group to
which they were initially randomised. Using the same
notation as used in the previous section, consider the
model relating counterfactual and observed event times
seen previously.
An initial estimate for eψ is obtained by comparing the

treatment arms as randomised using an parametric fail-
ure time model (equivalent to an intention-to-treat
approach). A number of parametric distributions could
be chosen for this such as log-logistic, log-normal or
gamma. We use a Weibull distribution as it has the
advantage of having both AFT model and proportional
hazards model parameterisations [19].
Given this initial estimate, the observed survival times

of patients who switched from control to experimental
treatment are transformed using the current estimate
for eψ and equation (2). Groups are compared again,
giving an updated estimate for eψ. The process is then
repeated until the latest value of eψ becomes sufficiently

close to its value from the previous iteration, at which
point the process is said to have converged. Further
explanation of the algorithm can be found in the origi-
nal paper [23].
If the algorithm projects a patient’s survival time

beyond the administrative censoring time Ci, the patient
is considered censored and their projected survival time
is replaced by Ci. This recensoring is restricted only to
patients in the control arm who switch treatments,
unlike the recensoring implemented to the Robins and
Tsiatis method by White et al [22].
Standard errors can be calculated by either taking the

standard error from the final regression in the algorithm
or by using bootstrapping [24]. The authors discuss how
the standard error from the final regression may be too
small meaning bootstrapping may be preferable. This is
because the covariance matrix from the final iteration of
the IPE does not does not take into account the fact
that control arm patients have had their survival time
adjusted by the algorithm.
This method makes all the assumptions of the Robins

and Tsiatis method, and in addition assumes that survi-
val times take a certain parametric form (although the
relationship between a patient’s prognosis and their
switching pattern is still not modelled). This is an
important additional assumption, with a violation having
a potential impact on the estimation of an adjusted
treatment effect. The authors suggest that given a real
dataset, a parametric form is chosen which fits the
observed data most closely.
Parametric randomisation-based methods (Walker et al,
2004)
In the previous two methods ψ is chosen to balance the
counterfactual event time, U, between treatment arms.
However as discussed previously, and by Robins and
Tsiatis [20], these methods can be associated with a loss
of information through recensoring and arbitrary differ-
ences from the results of ITT analysis. Walker et al [25]
present an extension to these semi-parametric methods
which involve full parametric modelling of the relation-
ship between U and the treatment a patient actually
receives Z. Again we consider a trial with control (A)
and experimental (B) arms where some patients who are
randomised to control actually switch to receive the
experimental treatment at some point during follow-up.
Consider Ui as a patient’s counterfactual event time and
Zi as the time at which they start receiving experimental
treatment. The authors propose specifying a joint para-
metric model for Ui and Zi which is made up of three
parts:

1. A causal model relating Ui to a patient’s
observed failure time Ti. This is the AFT model
seen in previous sections.
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2. A model for the association between U and Z.
This is a bivariate frailty model. Either a positive
stable [26] or gamma [27] frailty are suggested.
These models include a parameter j which describes
the level of association between U and Z.
3. Models for the marginal cumulative hazards.
Hu(u) and Hz(z) are the marginal cumulative hazards
of U and Z respectively.

Fitting this model using maximum-likelihood techni-
ques would only ensure the original randomisation
balance is preserved if all models are correctly specified.
Parameter estimates will therefore be very sensitive to
inaccuracies in the model specification. To deal with
this, the authors suggest an alternative approach to
maximum likelihood to estimate parameters. They use
an augmented model to maintain the randomisation bal-
ance between groups which corresponds to the Cox
model based test statistic in the semi-parametric
approach of Robins & Tsiatis. The model has the form:

H u e H uu
R

u
* ( ) = ( ) (5)

An estimate of ψ can be found so that an estimate of
r would be equal to zero, indicating there is no relation-
ship between a patient’s underlying survival time and
the treatment arm they are randomised to so randomi-
sation balance is maintained. Full details of the estima-
tion process are described by Walker et al [25]. The
method is implemented here through the gparmee
program in Stata [17].
This method makes the same assumptions as the

Robins & Tsiatis method, and in addition makes assump-
tions about the parametric form of the data. The authors
suggest distributions chosen could be based on the
observed data, although choosing an appropriate frailty
distribution could be difficult. However the authors sug-
gest that the method is robust to model misspecifications
when the estimating equations approach is used.

Simulation study design
To formally assess the various methods, a simulation
study was conducted. Independent datasets were simu-
lated with the true difference between each treatment’s
effect on survival known and each method applied to
the data to see how well they performed in terms of
bias, variability and coverage. The simulated data was
designed to reflect data which is obtained from real clin-
ical trials based on a review of recent submissions to
NICE. This section contains details of the design of the
simulation study.
Underlying survival times
The starting point for simulating data was to generate a
number of patients with an underlying survival time. A

sample size of 500 was chosen, with 250 patients allo-
cated each to receive control or experimental treatment.
This sample size reflects what is often seen in large can-
cer trials [4,28,29]. Survival times for these patients were
then generated from a Weibull distribution as described
by Bender et al [30]. The shape parameter g was set at
0.5 which assumes mortality rate is decreasing over
time, a situation often observed in cancer data [31,32].
The scale parameter l was chosen so that approximately
90% of patients who receive no treatment had died after
three years of follow-up.
Entry and exit times
Patients were assumed to have entered the study at
some point during a one-year period, with their entry
time generated from a uniform distribution between
time zero and 1 year. Patients were then censored at 3
years to represent the end of the follow-up period.
Therefore all patients were followed up for between 2
and 3 years, dependent on their entry time, representing
what is often seen in a real trial setting.
Patient prognosis
As described previously, bias can often occur when
patients with different underlying prognoses have differ-
ent probabilities of switching between treatment arms.
To investigate this, patients were split into two groups,
those with a ‘good’ prognosis and those with a ‘poor’
prognosis. The probability of a patient being in the
‘good’ prognosis group was set at either 30% or 75%.
Patients allocated to the ‘good’ prognosis group were
assumed to have their previously generated underlying
survival time multiplied by an inflation factor. Values of
1.2 and 3 were chosen to represent relatively small and
large differences between the prognostic groups. Rando-
misation should ensure the proportion with ‘good’ and
‘bad’ prognosis was balanced between treatment arms.
Switching probability
The probability of a patient switching was then set,
dependent on their prognosis group. Only switching
from the control to the experimental treatment was con-
sidered. The assumption was made that patients in the
‘poor’ prognosis group were more likely to crossover, as
is often the case with the experimental treatment consid-
ered as a “rescue” measure. Two sets of probabilities
were considered; probabilities of switching 10% and 25%
for ‘good’ and ‘poor’ prognosis groups respectively to
represent a relatively small proportion of patients switch-
ing treatments or 50% and 75% for ‘good’ and ‘poor’
groups respectively to represent a trial with a large pro-
portion of control patients switching. These probabilities
were then used to generate a binary variable indicating
whether or not a patient switches treatments.
Switching time
For patients who switched treatments, a switching time
was generated which occurred between their entry into
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the study and their exit (through either death or censor-
ing). Switching times were generated using a uniform
distribution. This assumes that a patient is equally likely
to switch at any point between their entry into the
study and death or censoring.
Adjusting survival times for treatment received
The next step is to adjust survival times based on the
amount of treatment a patient actually receives. For
each patient, survival time is made up of time on con-
trol TAi and time on experimental treatment TBi.
Patients randomised to control who do not switch treat-
ments will have TBi = 0. All patients randomised to
experimental treatment will have TAi = 0 as no patients
from this arm are allowed to switch treatments.
Adjusted patient survival time Ti

* is then calculated
using the formula for the causal accelerated failure time
model as described by Walker et al [25]:

T T e Ti Ai Bi
* = +  (6)

where eψ is the true effect of treatment. Patient times
are therefore extended beyond the time that they spend
on control. If a patient’s survival time is extended
beyond three years they are censored at three years.
Treatment effect
Initial treatment effect hazard ratios of 0.9 and 0.7 were
chosen to represent situations with a smaller and larger
true difference between treatments, with the experiment
treatment considered beneficial.
As the values l of and g used to simulate the underly-

ing survival times are known, the hazard ratios
b described above can be converted into eψ form
required by equation (6) by using the formula described
by Collett [19]:





= − ln

(7)

For example, a hazard ratio of 0.7, with g = 0.5
equates to ψ = 0.7133 and therefore eψ = 2.04.
Table 1 gives a summary of all variables considered

when simulating patient data and the values chosen for
these.
Applying the methods
By considering all possible combinations of the variables
described in Table 1, 16 scenarios were identified. For
each of these, data was generated as described above,
and the various methods applied to this dataset. This
process was repeated 1000 times for each scenario. For
each method the mean treatment effect  and its stan-
dard error SE(  ) over the 1000 simulations were calcu-
lated. The means of the standard error and 95%
confidence limits from each method were also calcu-
lated. No standard errors are given by the Loeys &

Goetghebeur or Robins & Tsiatis methods. For the
Branson & Whitehead method, standard errors were
taken from the final regression of the algorithm rather
than bootstrapping due to the large computing time
bootstrapping for each simulated dataset would require.
Performance measures
Measures which can be used to assess the methods pre-
sented were calculated as described by Burton et al [33].
The bias of each method δ was calculated as:

  = −ˆ (8)

where b is the true initial treatment effect for that
particular scenario.
The mean square error (MSE) is a useful measure of

the overall accuracy of a method as it includes both
measures of bias and of the variability of estimates given
by a method [33]. The MSE is calculated as:

MSE SE= −( ) + ( )( )ˆ ˆ  
2 2

(9)

Also calculated was the coverage of each method. This
is the defined as the proportion of times the 95% confi-
dence interval for a particular method contains the true
treatment effect, b. Coverage should be approximately
equal to 95%, indicating that around 95% of the confi-
dence intervals include the true value. As some methods
may not successfully converge in certain situations, the
proportion of times each method successfully gave a
parameter estimate was also calculated. Methods which
are unsuccessful for a large number of simulated datasets
may be of little practical use.

Results
Table 2 shows details of the parameter values used in each
of the 16 scenarios and the table in which the results for
this scenario can be found. Results from scenarios 3, 4, 7,
8, 11, 12, 15 and 16 can be found in [Additional files 1, 2,
3 and 4]. A selection of results are presented in this
section.
For figures in this section, method names were abbre-

viated as follows: Intention-to-Treat (ITT), Exclude
switchers (PP-EXC), Censor at switch (PP-CENS),
Treatment as time-varying covariate (TVC), Law & Kal-
dor (LK), Loeys & Goetghebeur (LG), Robins & Tsiatis
with logrank test (RT-LR), with Cox test (RT-COX),
with exponential test (RT-EXP), with Weibull test (RT-
WB), Branson & Whitehead (BW) and Walker et al
parametric method (WALK).

Prognosis and bias
We will first focus on four particular scenarios, 2, 6, 10
and 14. Each of these has 30% of patients with ‘good’
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prognosis, a true treatment difference of b = 0.7 on the
hazard ratio scale or eψ = 2.04 on the AFT scale.
The scenarios vary in the difference in survival

between ‘good’ and ‘poor’ prognosis groups, with ‘good’
prognosis patient’s survival multiplied by 1.2 in scenar-
ios 2 and 6 and by 3 in scenarios 10 and 14. The sce-
narios also differ in the probabilities of switching in
‘good’ and ‘poor’ prognosis groups, with probabilities of
10% and 25% respectively in scenarios 2 and 10 and of
50% and 75% respectively in scenarios 6 and 14. Full
results from these scenarios can be found in Tables 3, 4,
5 and 6.
Figure 1 shows mean estimates and mean upper and

lower confidence intervals for four simple methods
(ITT, PP-EXC, PP-CENS, and TVC) and two adjusted
hazard ratio methods (LK, LG). Figure 2 shows
mean estimates and mean upper and lower confidence
intervals for three simple methods (ITT, PP-EXC,

PP-CENS) and for six accelerated failure time model
methods (RT-LR, RT-COX, RT-EXP, RT-WB, BW, and
WALK).
As expected, the ITT approach underestimated the

true treatment effect in each of these four scenarios.
This under-estimation was relatively small in the scenar-
ios with a small proportion of switchers (2 and 10),
around 0.03 - 0.04 on the hazard ratio scale in both
cases. This increased to around 0.11 in scenarios 6 and
14 with a large proportion of control patients switching.
Excluding switchers from the analysis produced rela-

tively small bias in scenarios 2, 6 and 10. However, in
scenario 14, where the difference between ‘good’ and
‘poor’ prognosis groups and the proportion of switchers
were both large, significant bias was seen (0.08 on the
hazard ratio scale). The results from this approach are
perhaps better than expected with many estimates very
close to the true treatment effect, particularly in

Table 1 Summary of simulation variables

Variable Scenarios Details

Sample size 1 500 patients, 250 in each treatment arm

Weibull shape parameter g 1 0.5, to represent mortality rate decreasing over time

Weibull scale parameter l 1 1.33, chosen such that 90% of patients have died after 3 years of follow-up

Probability of patient having ‘good’ prognosis 2 30% or 75%

Difference in survival between ‘good’ and ‘poor’
Prognosis groups

2 Survival times of ‘good’ prognosis group multiplied by a factor of either 1.2 or 3

Probability of switching treatment dependent on
prognosis group

2 10% (’good’ prognosis) and 25% (’poor’ prognosis) or 50% (’good’ prognosis) and
75% (’poor’ prognosis)

Switching time 1 Generated from a Uniform distribution

Initial treatment effect 2 Hazard ratio of 0.9 or 0.7

Table 2 List of scenarios

Scenario
Number

Treatment
effect (HR)

% with ‘good’
Prognosis

’Good’ prognosis Survival Crossover probabilities
(’good’ and ‘poor’ prognosis)

Table
Number

0.9 0.7 30% 75% ×1.2 ×3 10% and 25% 50% and 75%

1 √ √ √ √ 3

2 √ √ √ √ 3

3 √ √ √ √ Additional file 1

4 √ √ √ √ Additional file 1

5 √ √ √ √ 4

6 √ √ √ √ 4

7 √ √ √ √ Additional file 2

8 √ √ √ √ Additional file 2

9 √ √ √ √ 5

10 √ √ √ √ 5

11 √ √ √ √ Additional file 3

12 √ √ √ √ Additional file 3

13 √ √ √ √ 6

14 √ √ √ √ 6

15 √ √ √ √ Additional file 4

16 √ √ √ √ Additional file 4
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scenarios where only a small proportion of patients
switch treatments. This is possibly explained by the fact
that patients who switch treatments have a number of
mechanisms acting on them which might cancel each
other out. This will be investigated further by comparing
biases in scenarios with a smaller and larger true treat-
ment effect in the next section.

Perhaps the most striking results from these scenarios
relate to the methods which give particularly large biases,
suggesting they are very sensitive to the differences in prog-
nosis between switchers and non-switchers. Of the hazard
ratio methods, censoring patients at the time of switching
and considering treatment as a time-dependent covariate
both produced large biases, particularly when a large

Table 3 Scenarios 1 & 2: 30% ‘good’ prognosis, ×1.2 ‘good’ prognosis survival, 10% and 25% switching probabilities,
100% treatment effect for switchers, uniform distribution for switching times

True HR
and eψ

Method Mean
estimate

Mean
SE

SE of
mean

95% Confidence
interval

Bias MSE Coverage
(%)

Successful
estimation (%)

Lower Upper

Hazard ratio methods

ITT 0.9120 0.0884 0.0882 0.7542 1.1027 0.0120 0.0079 94.6 100.0

PP - Exclude switchers 0.9053 0.0932 0.0929 0.7399 1.1076 0.0053 0.0087 94.3 100.0

PP - Censor at switch 1.0589 0.1091 0.1086 0.8653 1.2957 0.1589 0.0370 67.5 100.0

Time-dependent
covariate

1.1998 0.1189 0.1211 0.9880 1.4570 0.2998 0.1046 19.1 100.0

Law and Kaldor 0.9168 0.1136 0.1132 0.7192 1.1688 0.0168 0.0131 94.7 100.0

Loeys and Goethebeur 0.8900 - 0.1086 0.6999 1.1354 -0.0100 0.0119 94.8 100.0

0.9 & 1.23 AFT methods

ITT 1.2357 0.2392 0.2423 0.8457 1.8060 0.0011 0.0587 94.6 100.0

PP - Exclude switchers 1.2586 0.0932 0.2616 0.8415 1.8830 0.0240 0.0690 94.3 100.0

PP - Censor at switch 0.9214 0.1864 0.1897 0.6199 1.3700 -0.3132 0.1341 66.3 100.0

Robins and Tsiatis -
Logrank

1.2715 - 0.2852 0.8244 1.9604 0.0370 0.0827 94.7 100.0

Robins and Tsiatis - Cox 1.2703 - 0.2806 0.8199 1.9888 0.0357 0.0800 95.2 97.2

Robins and Tsiatis -
Exponential

1.2781 - 0.2820 0.9712 1.7776 0.0436 0.0814 83.0 99.7

Robins and Tsiatis -
Weibull

1.2714 - 0.2845 0.8278 1.9933 0.0369 0.0823 95.0 99.7

Branson and Whitehead 1.2681 0.2455 0.2745 0.8678 1.8536 0.0335 0.0765 92.7 100.0

Walker et al 2.2108 1.1659 1.1869 0.8323 1218.7190 0.9763 2.3617 76.6 99.4

Hazard ratio methods

ITT 0.7315 0.0731 0.0743 0.6014 0.8897 0.0315 0.0065 93.6 100.0

PP - Exclude switchers 0.7050 0.0744 0.0776 0.5733 0.8669 0.0050 0.0060 94.3 100.0

PP - Censor at switch 0.8215 0.0868 0.0886 0.6678 1.0106 0.1215 0.0226 69.2 100.0

Time-dependent
covariate

0.9364 0.0950 0.0982 0.7675 1.1424 0.2364 0.0655 18.8 100.0

Law and Kaldor 0.7376 0.0957 0.0968 0.5720 0.9511 0.0376 0.0108 93.6 100.0

Loeys and Goethebeur 0.6733 - 0.0876 0.5220 0.8672 -0.0267 0.0084 93.2 100.0

0.7 & 2.04 AFT methods

ITT 1.9259 0.3858 0.3992 1.3007 2.8524 -0.1150 0.1726 93.5 100.0

PP - Exclude switchers 2.0825 0.0744 0.4676 1.3766 3.1516 0.0417 0.2204 94.3 100.0

PP - Censor at switch 1.5194 0.3140 0.3241 1.0136 2.2786 -0.5214 0.3769 66.5 100.0

Robins and Tsiatis -
Logrank

2.1014 - 0.5024 1.3483 3.3204 0.0606 0.2561 94.5 100.0

Robins and Tsiatis - Cox 2.0969 - 0.4977 1.3303 73.7821 0.0561 0.2508 94.9 93.5

Robins and Tsiatis -
Exponential

2.1041 - 0.5090 1.4957 3.1128 0.0633 0.2631 87.1 100.0

Robins and Tsiatis -
Weibull

2.1017 - 0.5024 1.3497 3.4566 0.0609 0.2561 94.9 100.0

Branson and Whitehead 2.0889 0.4188 0.4770 1.4104 3.0949 0.0481 0.2299 92.2 100.0

Walker et al 3.6507 1.8935 1.5878 1.3852 92.4403 1.6099 5.1127 79.5 93.1
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proportion of patients switched treatments (Scenarios 6 and
14) with mean hazard ratio estimates of 1.68 and 1.77 for
censoring at switch and 2.42 and 2.58 for treatment as a
time-varying covariate. These large biases are reflective of
what was seen throughout the simulation study for these
methods and suggest they may be inappropriate for use due

their large sensitivity to even a relatively weak relationship
between switching and prognosis.
The parametric method of Walker et al over-estimated

the true treatment effect in all four scenarios presented
here. This over-estimation was particularly significant in
scenarios with a large difference in survival between

Table 4 Scenarios 5 & 6: 30% ‘good’ prognosis, ×1.2 ‘good’ prognosis survival, 50% and 75% switching probabilities,
100% treatment effect for switchers, uniform distribution for switching times

True HR and
eψ

Method Mean
estimate

Mean
SE

SE of
mean

95%
Confidence
interval

Bias MSE Coverage
(%)

Successful
estimation (%)

Lower Upper

Hazard ratio methods

ITT 0.9364 0.0909 0.0909 0.7741 1.1328 0.0364 0.0096 93.6 100.0

PP - Exclude switchers 0.9204 0.1275 0.1278 0.7016 1.2074 0.0204 0.0167 96.0 100.0

PP - Censor at switch 2.1663 0.3018 0.2975 1.6488 2.8466 1.2663 1.6921 0.0 100.0

Time-dependent
covariate

3.0639 0.4065 0.4054 2.3625 3.9740 2.1639 4.8466 0.0 100.0

Law and Kaldor 0.9396 0.1168 0.1144 0.7364 1.1987 0.0396 0.0147 94.2 100.0

Loeys and Goethebeur 0.8435 - 0.2725 0.4578 1.8486 -0.0565 0.0774 92.8 99.9

0.9 & 1.23 AFT methods

ITT 1.1732 0.2280 0.2311 0.8018 1.7173 -0.0613 0.0572 93.2 100.0

PP - Exclude switchers 1.2492 0.1275 0.3479 0.7276 2.1475 0.0146 0.1212 95.9 100.0

PP - Censor at switch 0.2373 0.0665 0.0663 0.1371 0.4115 -0.9973 0.9989 0.0 100.0

Robins and Tsiatis -
Logrank

1.2882 - 0.3862 0.6906 2.2552 0.0536 0.1521 93.8 100.0

Robins and Tsiatis - Cox 1.2855 - 0.3874 0.6868 2.2531 0.0509 0.1527 93.9 96.3

Robins and Tsiatis -
Exponential

1.3036 - 0.3693 0.9172 1.9617 0.0691 0.1412 83.6 100.0

Robins and Tsiatis -
Weibull

1.2879 - 0.3857 0.6988 2.2550 0.0534 0.1516 94.5 100.0

Branson and Whitehead 1.2841 0.2497 0.3619 0.8772 1.8802 0.0495 0.1334 83.7 100.0

Walker et al 2.1037 0.7802 0.7791 1.0276 4.4146 0.8692 1.3624 70.0 99.8

Hazard ratio methods

ITT 0.8073 0.0812 0.0814 0.6629 0.9833 0.1073 0.0181 71.5 100.0

PP - Exclude switchers 0.7179 0.1009 0.1019 0.5451 0.9457 0.0179 0.0107 94.8 100.0

PP - Censor at switch 1.6825 0.2388 0.2454 1.2740 2.2223 0.9825 1.0256 0.0 100.0

Time-dependent
covariate

2.4211 0.3257 0.3396 1.8602 3.1516 1.7211 3.0776 0.0 100.0

Law and Kaldor 0.8110 0.1064 0.1046 0.6271 1.0488 0.1110 0.0233 81.2 100.0

Loeys and Goethebeur 0.5248 - 0.1728 0.2544 1.0233 -0.1752 0.0606 83.8 99.0

0.7 & 2.04 AFT methods

ITT 1.5845 0.3208 0.3294 1.0657 2.3569 -0.4563 0.3167 72.2 100.0

PP - Exclude switchers 2.0610 0.1009 0.6062 1.1886 3.5793 0.0202 0.3679 94.4 100.0

PP - Censor at switch 0.3894 0.1088 0.1126 0.2254 0.6742 -1.6514 2.7398 0.0 100.0

Robins and Tsiatis -
Logrank

2.1120 - 0.6624 1.1204 3.8159 0.0712 0.4439 94.8 100.0

Robins and Tsiatis - Cox 2.1062 - 0.6612 1.1095 3.8198 0.0654 0.4415 95.1 92.6

Robins and Tsiatis -
Exponential

2.1121 - 0.6636 1.3323 3.3923 0.0713 0.4455 87.4 100.0

Robins and Tsiatis -
Weibull

2.1128 - 0.6631 1.1249 3.8301 0.0719 0.4449 94.9 100.0

Branson and Whitehead 2.0536 0.4177 0.6096 1.3787 3.0601 0.0127 0.3718 83.0 100.0

Walker et al 3.6581 1.3293 1.2498 1.8098 7.5537 1.6172 4.1774 63.9 98.0
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‘good’ and ‘poor’ prognosis groups (10 and 14), with
mean treatment effects of 4.20 and 4.25 over double the
true treatment effect of 2.04.
The Law & Kaldor and Loeys & Goetghebeur methods

both gave biased estimates in these four scenarios.

These biases were particularly large in scenarios with a
high proportion of switchers (6 and 14). The Law &
Kaldor method seems to underestimate the true treat-
ment effect in all scenarios which is likely to be due to
the way in which the method conditions on future

Table 5 Scenarios 9 & 10: 30% ‘good’ prognosis, ×3 ‘good’ prognosis survival, 10% and 25% switching probabilities,
100% treatment effect for switchers, uniform distribution for switching times

True HR and
eψ

Method Mean
estimate

Mean
SE

SE of
mean

95%
Confidence
interval

Bias MSE Coverage
(%)

Successful
estimation (%)

Lower Upper

Hazard ratio methods

ITT 0.9136 0.0911 0.0926 0.7515 1.1107 0.0136 0.0088 94.8 100.0

PP - Exclude switchers 0.9235 0.0979 0.0968 0.7504 1.1367 0.0235 0.0099 94.6 100.0

PP - Censor at switch 1.0721 0.1137 0.1128 0.8709 1.3197 0.1721 0.0424 63.7 100.0

Time-dependent
covariate

1.2253 0.1249 0.1254 1.0035 1.4962 0.3253 0.1215 15.2 100.0

Law and Kaldor 0.9121 0.1173 0.1223 0.7088 1.1737 0.0121 0.0151 94.1 100.0

Loeys and Goethebeur 0.8933 - 0.1137 0.6975 1.1444 -0.0067 0.0130 95.3 100.0

0.9 & 1.23 AFT methods

ITT 1.2399 0.2523 0.2519 0.8323 1.8479 0.0054 0.0635 94.7 100.0

PP - Exclude switchers 1.2159 0.0979 0.2580 0.7959 1.8583 -0.0187 0.0669 94.9 100.0

PP - Censor at switch 0.8983 0.1911 0.1890 0.5922 1.3632 -0.3363 0.1488 64.4 100.0

Robins and Tsiatis -
Logrank

1.2838 - 0.3018 0.8085 2.0389 0.0492 0.0935 94.6 100.0

Robins and Tsiatis - Cox 1.2854 - 0.3020 0.8073 2.0820 0.0508 0.0938 94.7 95.2

Robins and Tsiatis -
Exponential

1.2895 - 0.2934 0.9593 1.8561 0.0549 0.0891 84.8 99.8

Robins and Tsiatis -
Weibull

1.2836 - 0.3003 0.8153 2.0802 0.0490 0.0926 94.5 99.8

Branson and Whitehead 1.2713 0.2589 0.2823 0.8530 1.8954 0.0368 0.0810 92.9 100.0

Walker et al 2.9706 1.4458 1.4409 1.1904 20.7004 1.7360 5.0898 57.0 98.6

Hazard ratio methods

ITT 0.7390 0.0760 0.0777 0.6041 0.9041 0.0390 0.0076 92.0 100.0

PP - Exclude switchers 0.7267 0.0791 0.0800 0.5872 0.8995 0.0267 0.0071 93.8 100.0

PP - Censor at switch 0.8418 0.0918 0.0938 0.6798 1.0422 0.1418 0.0289 60.1 100.0

Time-dependent
covariate

0.9698 0.1012 0.1054 0.7904 1.1899 0.2698 0.0839 14.8 100.0

Law and Kaldor 0.7397 0.0998 0.1027 0.5679 0.9637 0.0397 0.0121 92.8 100.0

Loeys and Goethebeur 0.6840 - 0.0908 0.5243 0.8886 -0.0160 0.0085 95.5 100.0

0.7 & 2.04 AFT methods

ITT 1.9110 0.4010 0.4163 1.2669 2.8838 -0.1298 0.1901 92.5 100.0

PP - Exclude switchers 1.9836 0.0791 0.4501 1.2841 3.0655 -0.0573 0.2059 94.7 100.0

PP - Censor at switch 1.4612 0.3165 0.3284 0.9560 2.2344 -0.5796 0.4438 59.4 100.0

Robins and Tsiatis -
Logrank

2.1150 - 0.5430 1.3172 3.4305 0.0742 0.3004 94.7 100.0

Robins and Tsiatis - Cox 2.1140 - 0.5395 1.2935 27.2997 0.0732 0.2964 94.9 92.2

Robins and Tsiatis -
Exponential

2.1112 - 0.5439 1.4578 3.1966 0.0704 0.3008 87.4 100.0

Robins and Tsiatis -
Weibull

2.1150 - 0.5434 1.3189 3.5350 0.0742 0.3008 94.8 100.0

Branson and Whitehead 2.0643 0.4343 0.4923 1.3670 3.1186 0.0235 0.2430 92.2 100.0

Walker et al 4.1987 2.1153 1.6132 1.6252 17.0861 2.1579 7.2589 68.2 75.4
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events as described by White [13]. Therefore the
assumptions made for this method are not met and
biases given are likely to be less predictable for a real
dataset. The Loeys & Goetghebeur method consistently
overestimates the true treatment effect which is perhaps
surprising given the method makes the assumption of
all-or-nothing compliance, and therefore assumes that a

switching patient receives more of the experimental
treatment than they actually do. This means that any
positive treatment effect seen will actually be due to a
smaller amount of treatment than accounted for by the
method, so an underestimation of the true treatment
effect might be expected. The Robins and Tsiatis
method when used with all tests gave very similar mean

Table 6 Scenarios 13 & 14: 30% ‘good’ prognosis, ×3 ‘good’ prognosis survival, 50% and 75% switching probabilities,
100% treatment effect for switchers, uniform distribution for switching times

True HR and
eψ

Method Mean
estimate

Mean
SE

SE of
mean

95%
Confidence
interval

Bias MSE Coverage
(%)

Successful
estimation (%)

Lower Upper

Hazard ratio methods

ITT 0.9406 0.0940 0.0965 0.7733 1.1442 0.0406 0.0110 92.2 100.0

PP - Exclude switchers 1.0018 0.1448 0.1472 0.7547 1.3300 0.1018 0.0320 89.6 100.0

PP - Censor at switch 2.2865 0.3323 0.3282 1.7198 3.0403 1.3865 2.0301 0.0 100.0

Time-dependent
covariate

3.2815 0.4544 0.4520 2.5017 4.3050 2.3815 5.8757 0.0 100.0

Law and Kaldor 0.9508 0.1230 0.1263 0.7379 1.2251 0.0508 0.0185 93.7 100.0

Loeys and Goethebeur 0.8548 - 0.2874 0.4414 1.7657 -0.0452 0.0847 93.6 99.9

0.9 & 1.23 AFT methods

ITT 1.1696 0.2386 0.2446 0.7843 1.7447 -0.0650 0.0640 92.6 100.0

PP - Exclude switchers 1.0631 0.1448 0.3143 0.5983 1.8922 -0.1715 0.1282 90.0 100.0

PP - Censor at switch 0.2100 0.0626 0.0640 0.1172 0.3769 -1.0246 1.0539 0.0 100.0

Robins and Tsiatis -
Logrank

1.2876 - 0.4161 0.6611 2.3440 0.0530 0.1759 94.4 100.0

Robins and Tsiatis - Cox 1.2835 - 0.4156 0.6581 2.3451 0.0489 0.1751 94.4 95.9

Robins and Tsiatis -
Exponential

1.3120 - 0.3923 0.9033 2.0554 0.0774 0.1599 84.0 99.7

Robins and Tsiatis -
Weibull

1.2898 - 0.4125 0.6781 2.3512 0.0553 0.1732 94.5 99.8

Branson and Whitehead 1.2789 0.2613 0.3755 0.8571 1.9090 0.0443 0.1429 82.6 100.0

Walker et al 2.6653 0.9576 0.9545 1.3297 5.5524 1.4307 2.9579 46.7 99.9

Hazard ratio methods

ITT 0.8109 0.0842 0.0843 0.6616 0.9939 0.1109 0.0194 71.4 100.0

PP - Exclude switchers 0.7834 0.1147 0.1158 0.5880 1.0437 0.0834 0.0204 89.7 100.0

PP - Censor at switch 1.7695 0.2612 0.2559 1.3250 2.3634 1.0695 1.2092 0.0 100.0

Time-dependent
covariate

2.5841 0.3613 0.3598 1.9647 3.3991 1.8841 3.6791 0.0 100.0

Law and Kaldor 0.8147 0.1113 0.1125 0.6233 1.0649 0.1147 0.0258 81.4 100.0

Loeys and Goethebeur 0.5287 - 0.1897 0.2352 1.0444 -0.1713 0.0653 86.9 96.9

0.7 & 2.04 AFT methods

ITT 1.5826 0.3351 0.3379 1.0452 2.3973 -0.4582 0.3242 72.8 100.0

PP - Exclude switchers 1.7560 0.1147 0.5427 0.9817 3.1462 -0.2849 0.3757 90.5 100.0

PP - Censor at switch 0.3494 0.1032 0.1020 0.1961 0.6240 -1.6914 2.8712 0.0 100.0

Robins and Tsiatis -
Logrank

2.1469 - 0.7376 1.0853 4.0598 0.1061 0.5552 95.7 100.0

Robins and Tsiatis - Cox 2.1363 - 0.7256 1.0640 4.0757 0.0955 0.5356 95.9 92.4

Robins and Tsiatis -
Exponential

2.1549 - 0.7419 1.3002 3.6453 0.1140 0.5635 88.4 100.0

Robins and Tsiatis -
Weibull

2.1472 - 0.7359 1.0961 4.0901 0.1064 0.5528 95.6 100.0

Branson and Whitehead 2.0328 0.4340 0.6210 1.3380 3.0899 -0.0080 0.3857 82.6 100.0

Walker et al 4.2491 1.5202 1.2616 2.1208 8.6357 2.2083 6.4681 45.3 88.3

Morden et al. BMC Medical Research Methodology 2011, 11:4
http://www.biomedcentral.com/1471-2288/11/4

Page 12 of 20



estimates of eψ , not differing by any more than 0.02, on
the hazard ratio scale, in these four scenarios. In all
cases the mean estimate of eψ was greater than the true
treatment effect of 2.04, suggesting the method is con-
sistently over-adjusting for treatment switching. The
mean upper confidence limits given by the Cox model
test based method were erratic, suggesting they were
being unduly influenced by a few large values. There
were also some estimation problems with this method,
particularly in scenario 14 with 7.6% of simulations
unsuccessful when estimating either eψ or its upper or
lower confidence limits.
Very small biases were observed from the Branson and

Whitehead method, less than any other AFT method in
scenarios 6, 10 and 14. The method also appears to be
very robust to more extreme simulated datasets, with
100% successful estimation. Coverage for this method
was lower than expected, as low as 82.6% in scenario 14.
However, as discussed previously, standard errors calcu-
lated from the final regression in the algorithm tend to
be too small, giving unduly narrow confidence intervals
and therefore lower coverage.
The relationships between point estimates from each

method in scenario 14 were further investigated through
pairwise scatter plots which can be seen in Figures 3
and 4. Vertical and horizontal reference lines show the

true treatment effect of b = 0.7 for adjusted hazard ratio
methods in Figure 3 or eψ = 2.04 for AFT methods in
Figure 4.
The relationship between ITT and PP estimates

appears to be fairly weak, reflecting the unpredictabil-
ity of estimates due to biases in this particular sce-
nario. The plots also further illustrate dilution of the
true treatment effect when analysing patients as-
randomised.
The scatter plot for AFT methods shows the strong

relationship between estimates from the Robins &
Tsiatis method when using logrank, Cox, exponential or
Weibull tests. Relationships between these estimates and
those from the Branson & Whitehead method are also
strong, although less so than between the Robins &
Tsiatis methods themselves. This is to be expected as
the model used by Branson & Whitehead takes the
same form as that presented by Robins & Tsiatis, differ-
ing only by the way in which the estimate of ψ is found.
Scatter plots for scenarios 2, 6 and 10 showed similar

relationships between parameter estimates.

Size of true treatment effect
All scenarios focussed on up to this point have had a
large true treatment effect (a hazard ratio b = 0.7 or eψ

= 2.04). As seen previously, biases seen from excluding
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all switching patients from the analysis were perhaps not
as large as expected. The way in which simulated data-
sets were generated meant that patients who switch
treatments should in general have worse prognosis than
those who do not, so excluding these patients from the
analysis should make the control group have better sur-
vival in general and therefore reduce the observed differ-
ence between control and experimental groups.
However, these switching patients also go on to receive
a beneficial treatment, perhaps meaning their survival is
approximately similar to the control patients who do
not switch treatments. If this was the case, excluding
these patients would have a relatively small effect on the
estimate of the true treatment effect.
To investigate the competing factors acting upon

patients who switch treatments in these simulations, we
consider scenarios 9 and 13, which are identical to
scenarios 10 and 14 respectively except with a smaller
true treatment effect of b = 0.9 or eψ = 1.23. Scenarios 9
and 10 have probabilities of 10% and 25% of switching
treatments in ‘good’ and ‘poor’ prognosis groups
whereas 13 and 14 have switching probabilities of 50%
and 75%. Full details of these scenarios can be found in
Table 2. Full results can be found in Tables 5 and 6.
In general, biases observed were greater in scenarios with

a larger true treatment effect than a small effect. A notable

exception to this can be seen when comparing scenarios 13
and 14 (Table 6). The bias when excluding switchers was
greater in scenario 13 with a small treatment effect. This
may be because patients in this scenario who switch treat-
ment have worse prognosis but this is “corrected” to a les-
ser extent by the treatment they switch onto, making the
control arm switchers and non-switchers less similar than
in scenario 14 with a larger true treatment effect.
The Branson & Whitehead method also seems to have

larger bias in scenarios with a smaller treatment effect.
However, these biases are still small, with the mean esti-
mate of eψ closer to the true value than when excluding
switchers in both scenarios 13 and 14. There also
appears to be a greater difference between estimates
given by the various Robins & Tsiatis methods when the
true treatment effect is smaller as in scenario 13,
although estimates are still strongly related.

Successful estimation
Most of the methods investigated successfully gave an
estimate of the treatment effect in all scenarios. How-
ever some of the methods experienced problems in
certain situations.
The Walker et al parametric method was particularly

unsuccessful in scenarios with a large difference in sur-
vival between ‘good’ and ‘poor’ prognosis groups and a

ITT

PP−EXC

PP−CENS

TVC

LK

LG

.4

.7

1

.4 .7 1

.4

.7

1

.4 .7 1

.4

.7
1

.4 .7 1

.4

.7
1

.4.7 1

.4

.7

1

.4 .7 1

.4

.7

1

.4 .7 1

Figure 4 Scatter plot matrix of AFT method point estimates from Scenario 14.

Morden et al. BMC Medical Research Methodology 2011, 11:4
http://www.biomedcentral.com/1471-2288/11/4

Page 15 of 20



large true treatment effect, most notably in scenario 12
where the method was successful for only 43.9% of
simulated datasets. These problems may have been due
to the way the method was implemented in Stata, where
attempts to find a maximum likelihood estimate failed
to converge. This is further evidence that the method
may not be suitable for use, especially given the true
treatment effect would not be known in real life.
Some estimation problems were also seen with the

Robins & Tsiatis methods when used with a Cox,
Weibull or exponential test. Given the similarities
between estimates with each test, the logrank test would
seem to be the most appropriate choice for this method
as it was 100% successful for all scenarios.

Extension of the Branson & Whitehead method
As seen previously, the method of Branson & White-
head performed well, giving particularly small biases in
scenarios with a large difference in survival between
‘good’ and ‘poor’ prognosis groups and a large propor-
tion of switchers, scenarios which other methods gave
very biased estimates for (see Tables 4, 5 and 6).
One of the limitations of this method and its practical

use is that estimates are given in the AFT model form
which is less commonly seen in medical literature than
hazard ratios from a proportional hazards model [34].
However, as seen previously if the shape parameter of
the Weibull model g is known, hazard ratios can be con-
verted to the AFT parameter ψ.
Rearranging (7) gives the following expression for the

hazard ratio b in terms of ψ and g :

 = −exp( )γ (10)

By taking the value of g estimated in the final iteration
of the IPE algorithm, a hazard ratio b can be estimated
from the method using (10). The standard error of b
can be calculated using the Delta method as described

by Collett [19]. However, these standard errors are likely
to be too small as the standard errors of ψ and g from
which they are calculated are also too small, as
described previously. Note that this conversion to a
hazard ratio would not be possible for the other AFT
methods presented here as they do not directly estimate
a shape parameter, g, from the data.
To investigate this extension to the Branson and

Whitehead method further, simulations for the scenarios
focused on previously (2, 6, 10 and 14) were repeated,
with g estimated from the last iteration of the Branson
& Whitehead method and used to calculate a hazard
ratio and its corresponding standard error as described
above. This was compared to hazard ratios from both
intention-to-treat and per-protocol approaches for the
same simulated data. Table 7 shows mean estimates,
bias and the mean standard error for each of the four
scenarios.
As seen previously, estimates from the ITT approach

are biased towards the null in all four scenarios. This
bias is particularly large in scenarios 6 and 14 which
have a higher proportion of patients switching from the
control arm.
There is very little difference between the mean

hazard ratios for the PP and Branson & Whitehead
methods in scenarios 2 and 6, with the PP approach giv-
ing relatively unbiased estimates due to the small differ-
ence in survival between ‘good’ and ‘poor’ prognosis
patients. However, when this difference is increased in
scenarios 10 and 14, the bias from the PP method
increases, most notably in scenario 14 where the differ-
ence between prognosis groups is coupled with a large
proportion of patients switching. The Branson & White-
head method gives estimates close to the true treatment
effect for all four scenarios. The method copes particu-
larly well with the large potential biases in scenario 14,
giving a mean hazard ratio of 0.73 compared to 0.78
and 0.81 from the PP and ITT approaches respectively.

Table 7 Comparison of mean hazard ratios from the Branson & Whitehead method and ITT and PP approaches

Scenario Method Mean HR Bias Mean SE

2 ITT 0.7346 0.0346 0.0734

(×1.2 ’Good’ prognosis survival, 10% and 25% switching probabilities) PP - Exclude switchers 0.7071 0.0071 0.0746

Branson and Whitehead 0.7077 0.0077 0.0708

6 ITT 0.8030 0.1030 0.0808

(×1.2 ’Good’ prognosis survival, 50% and 75% switching probabilities) PP - Exclude switchers 0.7153 0.0153 0.1004

Branson and Whitehead 0.7172 0.0172 0.0724

10 ITT 0.7411 0.0411 0.0763

(×3 ’Good’ prognosis survival, 10% and 25% switching probabilities) PP - Exclude switchers 0.7280 0.0280 0.0793

Branson and Whitehead 0.7165 0.0165 0.0738

14 ITT 0.8121 0.1121 0.0843

(×3 ’Good’ prognosis survival, 50% and 75% switching probabilities) PP - Exclude switchers 0.7810 0.0810 0.1142

Branson and Whitehead 0.7325 0.0325 0.0762
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The Branson & Whitehead method seems to be robust
and to correct for treatment switching most successfully
of all methods investigated in situations where a
patient’s switching pattern is strongly related to their
prognosis. The fact that the method can give hazard
ratios providing g is estimated from the final iteration of
the algorithm is a further advantage if the method were
to be more widely used in the analysis of clinical trials.

Discussion
As expected, adopting an ITT approach underestimated
the known treatment effect, most notably in scenarios
where a high proportion of patients switched treatments.
Results of the ITT analysis are important as they reflect
the overall effectiveness of a treatment policy if it were
introduced on a wider scale, but in some situations
measures of appropriate policy effectiveness are needed
in order to answer the relevant policy question.
Commonly adopted approaches of censoring patients

at their switching time or considering treatment as a
time-dependent covariate were found to be particularly
inappropriate, giving biased estimates of the true treat-
ment effect in situations where a patient’s switching pat-
tern is strongly related to their underlying prognosis.
Excluding switching patients from the analysis alto-
gether gave relatively small biases in situations with a
low proportion of switchers, but selection bias increased
as switching probabilities increased. Biases from this
approach were fairly predictable in this simulation
study, but they are likely to be far less so if the approach
was applied to real life trials where the underlying prog-
nosis of each patient, and the true treatment effect, are
not known.
The Loeys & Goetghebeur method generally gave

biased estimates which may be due to the fact that
simulations conducted here assumed patients received
at least some of their initial treatment, making the
“all-or-nothing” assumption inappropriate.
Law & Kaldor’s method gave fairly small biases in

some scenarios, although the direction of these was dif-
ficult to predict. In addition, questions remain about the
way in which the method conditions on future events
which may bias results towards the null [13,22].
The method of Branson & Whitehead gave the smal-

lest biases of all methods in situations where the poten-
tial for selection bias was high. The method performed
particularly well when the difference in survival between
‘good’ and ‘poor’ prognosis patients was high, which
meant patients who switched had worse underlying sur-
vival than those who did not. The method was also par-
ticularly robust in scenarios with a high proportion of
patients who switched, and successfully gave a para-
meter estimate for all simulated datasets in all of the
scenarios presented here. The method did not suffer any

convergence problems unlike some of the other meth-
ods investigated. It was also demonstrated how the esti-
mates of eψ can be converted to a hazard ratio scale,
overcoming one of the main problems with the method
being adopted on a wider scale for the analysis of clini-
cal trials with switching patients. In addition, decision
models are usually designed in such a way that treat-
ment effects are incorporated using hazard ratios The
method of Robins & Tsiatis also gave estimates close to
the true treatment effect, but biases were larger than
those from the Branson & Whitehead method. The
interval bisection method used is more computationally
intensive than the IPE algorithm used in the Branson &
Whitehead method. Concerns have been raised pre-
viously about how the Branson & Whitehead method
deals with censoring, with the recensoring used as part
of the Robin & Tsiatis method said to be more appro-
priate [35]. Further investigations into situations with a
higher proportion of censored observations are needed.
Problems were seen with the Walker parametric

method which gave biased estimates and had estimation
problems, most notably in scenarios with a high propor-
tion of switchers. These estimation problems may be
due to the way the method was implemented in Stata
where convergence to a maximum likelihood estimate
was often not achieved. It may be possible for a single
dataset to try different initial values and estimating
methods, but this was not feasible in our simulation
study.

Limitations
There is a limit to the number of possible scenarios that
can be looked at in any simulation study. Clearly there
is a need for further simulation work involving many
interesting trial variables whose spread of values, indivi-
dually and in combination could be explored. Most
important is the need to assess the performance of
methods seen to be successful here in scenarios which
violate their model assumptions. It may have been of
interest to consider scenarios with even greater potential
for selection bias and see how well each method per-
formed. An even greater difference in survival between
‘good’ and ‘poor’ prognosis groups could have been
introduced which should ensure that patients who
switch and those who do not differ greatly in their
underlying survival. In addition, the scenarios consid-
ered all reflect broadly patients with advanced disease,
i.e. events are relatively common; how well the various
methods perform in patient populations with less severe
disease and therefore fewer events would also be of
interest.
Only two true treatment effects were looked at, hazard

ratios of 0.9 and 0.7 to represent relatively small and
large treatment effects. More values could be
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investigated, possibly an even larger true effect such as a
hazard ratio of 0.5, or a scenario where the treatment
which patients were switching onto actually had a nega-
tive effect, so a hazard ratio of greater than 1 (or eψ <1).
The second of these scenarios would involve a patient’s
observed survival time being shorter than their underly-
ing event time, a situation in which the recensoring
used by the Branson & Whitehead method could be
adapted [35].
The method of Branson & Whitehead involves fitting

parametric models to the data. In this paper a Weibull
distribution was used for this, which allowed the conver-
sion to hazard ratios as described previously. Other
parametric distributions commonly used with AFT
models could also be used to find an estimate of ψ
although the same conversion to the hazard ratio scale
would not be possible. For example the log-logistic
distribution could be used which can deal with non-
monotonic hazard functions unlike the Weibull [19].
Branson & Whitehead suggest that a distribution is cho-
sen which best fits the experimental data [23]. A limita-
tion of this work may be that we used a Weibull
distribution for our application of the Branson & White-
head method, and also used a Weibull to generate our
simulated data. Potentially, this could make the Branson
& Whitehead method appear artificially successful.
Further work could be done to investigate how well the
method would perform with different choices of distri-
bution, or when applied to data generated from a differ-
ent distribution.
In simulated datasets patient’s switching times were gen-

erated from a uniform distribution meaning they were
equally likely to switch at any point during their follow-up.
This assumption may not be valid in all trial settings and
it would be of interest to investigate other switching time
distributions, perhaps where the probability of switching is
expressed as a function of time since randomisation.
As discussed previously, standard errors given from the

last iteration of the IPE algorithm in the Branson &
Whitehead method may be too small, with bootstrapping
required to give standard errors of the correct size. Given
the large number of scenarios considered, and the fact
that each of these required 1000 simulations, it was not
possible to perform bootstrapping for every one of these.
An initial investigation into this was made by repeating
simulations for scenario 14 (for which the Branson &
Whitehead method previously gave a relatively low cov-
erage of 82.6%) with confidence intervals calculated from
100 bootstrapped samples using the normal approxima-
tion method. When using bootstrapping coverage
improved to 94.1%.
The simulation study presented only considered the

situation where patients switch from the control arm to
receive experimental treatment. In reality patients may

switch in both directions. For example, some patients
may suffer severe side-effects from the experimental
treatment and be advised to switch to the control arm.
The method of Robins & Tsiatis as implemented through
the strbee program in Stata does allow switches in both
directions to be adjusted for. Branson & Whitehead also
state their method can be extended to deal with switch-
ing in both directions, although this is yet to be imple-
mented. Further investigation could be done into the way
these methods perform in this more complex situation.
We have not covered adjusting for baseline covariates,

which can be used to control for imbalances between
treatment arms (although this is unlikely in large rando-
mised trials) [36]. Differences in baseline covariates may
also account for some of the differences in switching pat-
tern between patients, for example patients of a certain
age may be more or less likely to switch treatment groups.
Adjusting for these baseline covariates could therefore
reduce the biases seen when using some of the simple
methods. Branson & Whitehead describe how their
method is easily extended by simply including variables in
the models fitted as part of the IPE algorithm. Investiga-
tions could be performed into this and the extent to which
adjusting for baseline covariates can reduce the selection
bias observed from the simple methods.
All methods presented give one overall treatment

effect and are therefore not necessarily suitable in situa-
tions where the treatment effect for patients who switch
onto a treatment is not the same as for those who were
initially allocated to the experimental treatment arm.
This may be particularly important in disease areas such
as cancer where treatment switching typically occurs
upon disease progression. For example, a recent NICE
appraisal of treatments for colorectal cancer [37] found
treatment to be around half as effective for patients who
switched onto the treatment compared to those who
received it from the start of the trial. To properly deal
with this situation, new methodology may be needed
which gives two different estimates of treatment effect
dependent on the time from randomisation or stage of
disease at commencement of treatment.
Further methods for dealing with treatment switching

which have been published in medical literature were not
investigated. A large body of work into causal inference
to adjust for post-treatment variables (of which treatment
switching would be a special case) has been conducted
[38], which may merit further investigation. Hernan et al
[39] put forward a method in which patients are censored
at the point of their treatment switch but then use
inverse probability weighting to adjust for the selection
bias this may introduce. Shao et al [40] build on the work
of Branson and Whitehead by allowing the causal effect
of treatment to differ between patients, although con-
cerns have been raised about their method of estimation
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[35]. Further investigation may be needed to compare
these methods with those presented in this paper.
A recent simulation study by Odondi and McNamee

[41] also compared methods for adjusting for non-
random complicance, including the Loeys & Goetghe-
beur and Robins & Tsiatis methods considered here.
They concluded that all the methods they considered
gave small biases, with the Robins & Tsiatis method per-
forming the best in terms of bias and coverage. However
their study differs from ours in the way data were simu-
lated and in some of the outcome measures considered.
Another approach to the analysis of a trial of this sort

would be to make use of any external information there
is about a treatment. Patients in the control group who
switch treatments could have their survival adjusted
using this prior information to estimate the survival time
they may have experienced if they had not switched.
Comparisons between treatment groups could then be
made as usual. This would, of course, depend on the
availability and quality of external information about the
treatment and also the way in which switching had been
dealt with in the previous studies, if relevant [42].

Conclusions
We have illustrated the problem of analysing data from
trials in which patients switch treatments and why the
ITT approach may not always be sufficient if the appro-
priate policy effectiveness of a treatment is of interest.
The susceptibility of simple methods to selection bias
was also seen, particularly if patients who switch treat-
ments were not representative of all patients in the trial.
Given a trial in which a significant proportion of

patients switch treatments, a method to adjust for this
switching could be used to find an improved estimate of
the appropriate policy effectiveness of the treatment.
When reporting a trial with treatment crossover, the
authors should report the proportion of switchers, a sum-
mary of the distribution of switching times and any evi-
dence of a relationship between switching and relevant
prognostic variables. Of the methods investigated here,
the Branson & Whitehead method gave the smallest bias
and was seen to be robust in a variety of scenarios.
Further advantages of this method include the conversion
of AFT estimates to hazard ratios and its possible exten-
sion to trials in which patients switch in both directions
between treatment arms, thus easily enabling inclusion of
the results into an economic decision model.
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