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Improved curve fits to summary survival data:
application to economic evaluation of health
technologies
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Abstract

Background: Mean costs and quality-adjusted-life-years are central to the cost-effectiveness of health technologies.
They are often calculated from time to event curves such as for overall survival and progression-free survival.
Ideally, estimates should be obtained from fitting an appropriate parametric model to individual patient data.
However, such data are usually not available to independent researchers. Instead, it is common to fit curves to
summary Kaplan-Meier graphs, either by regression or by least squares. Here, a more accurate method of fitting
survival curves to summary survival data is described.

Methods: First, the underlying individual patient data are estimated from the numbers of patients at risk (or other
published information) and from the Kaplan-Meier graph. The survival curve can then be fit by maximum likelihood
estimation or other suitable approach applied to the estimated individual patient data. The accuracy of the
proposed method was compared against that of the regression and least squares methods and the use of the
actual individual patient data by simulating the survival of patients in many thousands of trials. The cost-
effectiveness of sunitinib versus interferon-alpha for metastatic renal cell carcinoma, as recently calculated for NICE
in the UK, is reassessed under several methods, including the proposed method.

Results: Simulation shows that the proposed method gives more accurate curve fits than the traditional methods
under realistic scenarios. Furthermore, the proposed method achieves similar bias and mean square error when
estimating the mean survival time to that achieved by analysis of the complete underlying individual patient data.
The proposed method also naturally yields estimates of the uncertainty in curve fits, which are not available using
the traditional methods. The cost-effectiveness of sunitinib versus interferon-alpha is substantially altered when the
proposed method is used.

Conclusions: The method is recommended for cost-effectiveness analysis when only summary survival data are
available. An easy-to-use Excel spreadsheet to implement the method is provided.

Background
The estimated cost-effectiveness of health technologies
(e.g. drugs, medical devices, surgical procedures) or pub-
lic health interventions is often strongly influenced by
the choice of survival curve. This is because the esti-
mated expected costs and benefits (e.g. quality-adjusted
life years) for each treatment are functions of the
expected time patients stay in any particular health
state, a summary feature of the survival distributions for

the times patients stay in the health states. For example,
the choice of both functional forms and parameters for
curves to model progression-free survival and overall
survival in the economic evaluations of drugs for renal
cell carcinoma, for lenalidomide for multiple myeloma,
and for sorafenib for hepatocellular carcinoma for the
National Institute for Health and Clinical Excellence
(NICE) in the UK [1-3] were subject to much debate.
Indeed, often, seemingly minor changes in curve fits can
have important impacts on cost-effectiveness, especially
if considerable extrapolation is necessary.
Clearly, if individual patient data (IPD) are available,

that is, the times of events or censorships for each
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patient, then these should be used for curve fitting. In
cost-effectiveness analysis it is usual to estimate the sur-
vival curves by fitting a parametric survival model [4]. A
variety of statistical distributions can be used to parame-
terise the model, with common choices including the
Weibull, exponential and log-logistic distributions [5].
Choice of statistical distribution can be made by inde-
pendently fitting the different models to the data by
maximum likelihood, and selecting the distribution that
achieves the best fit (e.g. the lowest Akaike’s Informa-
tion Criteria or Bayesian Information Criterion) [5]. Esti-
mates of the mean survival time and other relevant
parameters for the cost-effectiveness analysis can be cal-
culated from the chosen model. The standard errors of
the parameters and the covariance between parameters
are recorded, and these are used to estimate the degree
of uncertainty in cost-effectiveness via the probabilistic
sensitivity analysis [4].
However, complete IPD are often unavailable for the

purposes of economic evaluations, due to confidentiality,
especially when the analyst is not employed by the
sponsor of the relevant clinical trial, e.g. [2,6]. If so, and
if there are only a small number of patients in a trial, it
is sometimes possible to estimate the underlying IPD by
reading off the times of the censorships, indicated by
tick marks on the published Kaplan-Meier graph, and
the times of events, indicated by stepped drops in the
graph. However, this is rarely the case. Instead, sum-
mary survival data are very often used to inform cost-
effectiveness models. Specifically, survival curves are
often fit to Kaplan-Meier curves. Two very common
methods are first, to fit by minimising the sum of
squares of differences between the actual and expected
survival probabilities at a range of time points (the “least
squares” method), and second to regress some function
of the survival probability against some other function
of time, e.g. to fit a Weibull curve, regress ln(-ln(S(t)) vs.
ln(t) (the “regression” method) [7]. These two methods
are either applied separately to the Kaplan-Meier graphs
for each treatment, or to one baseline treatment with
the survival curve for the other treatment being esti-
mated by applying the hazard ratio to the survival curve
for the baseline treatment [2].
There are two important shortcomings with the tradi-

tional methods of fitting to summary survival data. First,
the curve fits are influenced by all parts of the Kaplan-
Meier curve equally, but the tails of Kaplan-Meier
curves are often highly uncertain due to small numbers
of patients at risk [8,9]. Furthermore, cost-effectiveness
is driven by mean (as opposed to median) survival,
which is strongly influenced by the tail of the survival
curve.
Second, the traditional methods do not capture the

true uncertainty in survival estimates. This is

problematic because this is a key component of uncer-
tainty in cost-effectiveness, which should be modelled in
the probabilistic sensitivity analysis [4]. Clearly the true
uncertainty is not captured when we fit curves to both
treatments independently. For example, for the regres-
sion method, it is possible to estimate uncertainty only
due to the uncertainty in estimates of the mean regres-
sion fit. The true uncertainty in effectiveness is more
closely approximated when we fit a survival curve to the
baseline treatment and estimate the curve for the other
treatment by allowing for the uncertainty in the
reported hazard ratio. However, this method does not
capture the uncertainty in the baseline curve fit.
Here, we present a new method for estimating the

underlying survival distribution from summary survival
data. The approach is relevant for modeling the range of
events typically considered in the analysis of cost-effec-
tiveness of health technologies including overall survival,
disease-free survival, progression-free survival and dis-
ease-specific outcomes such as time without epileptic
seizure and time to institutionalization for dementia suf-
ferers. The method could also be applied in other fields,
such as economics, engineering and ecology, where
there is a need to extract time-to-event information
from published survival curves. First, we describe the
method. Next, we use simulation to demonstrate that
the method is likely to give a more accurate curve fit
than using the least squares or regression methods.
Finally, we apply the method to an economic evaluation
of a cancer drug that was used to guide policy.

Methods
1. Method of curve fitting
In Step A, the method estimates the underlying IPD.
This is coded in an easy-to-use Microsoft Excel spread-
sheet, which is available from several sources (see Con-
clusions) (Figure 1). In Step B, the fitted curve is
estimated by maximisation of the likelihood function for
the IPD. The relevant R statistics code to estimate the
survival curves is also available in the spreadsheet.
Step A: Estimation of underlying individual patient data
The widely cited paper by Parmar et al. [10] and the
paper by Williamson et al. [11] describe a method of
estimating the number of censored patients and the
number of patients with events in each time interval,
given the Kaplan-Meier curve. Tierney et al [12] later
provided a useful spreadsheet to implement these calcu-
lations. These quantities were not used to parameterise
survival curve fits (as they are in this paper), rather to
estimate the hazard ratio between treatments for indivi-
dual trials and then meta-analyse the hazard ratios
across trials. Parmar et al. [10] and Tierney et al. [12]
consider two cases: when the numbers of patients at
risk at various time intervals is given, and when they are
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not given. In the first case, we denote the survival prob-
abilities at each time point t from the Kaplan-Meier
curve as S(t), and the number of patients at risk as R(t),
in a single treatment arm in a trial with any number of
treatments. R(0) is therefore the number of patients in a
single treatment arm in the trial. We define the esti-
mated number of events (e.g. deaths or clinical progres-
sion events) in each time interval [t, t+1) as D(t, t+1),
and the estimated number of censorships as C(t, t+1).
For simplicity, we assume that the numbers at risk are
given at times t = 0, 1, 2, ...., tmax , typically at about 5-
12 time points. Then, assuming censoring is constant
within each time interval [11,12];

S(t + 1) = S(t)
(
R(t) − C(t, t + 1)/2−D(t, t + 1)

R(t) − C(t, t + 1)/2

)
(1a)

R(t + 1) = R(t)− C(t, t + 1)−D(t, t + 1)

Solving these equations [11,12];

D(t, t + 1) =

(
R(t) + R(t + 1)

) (
S(t)− S(t + 1)

)
S(t) + S(t + 1)

(1b)

C(t, t + 1) =
2

(
S(t + 1)R(t) − S(t)R(t + 1)

)
S(t) + S(t + 1)

A limitation of the method for estimating IPD as
described by Parmar et al. [10] and Tierney et al. [12] is
that the Kaplan-Meier curve can only be divided into
intervals linking time points for which the numbers at
risk are presented, and this may result in relatively few
time points from which to estimate the survival curve.
Williamson et al. [11] extended this to estimate the
number of events and censorships in intervals different
to those corresponding to the numbers at risk reported
in the trial. The motivation was to establish time

Figure 1 Excel spreadsheet to estimate the numbers of patients with events and censorships per time interval. The user needs only
enter the survival probabilities from the Kaplan-Meier curve and the number of patients at risk. The R code to fit survival curves is also given in
the spreadsheet.
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intervals common to several trials in order to estimate
the pooled hazard ratio within each interval across the
trials, and thus the overall pooled hazard ratio. In the
next step, we use the survival probabilities at intermedi-
ate times, S(t + 1/2), to estimate the number of events
and censorships in each time interval of length 1/2.
Although Williamson et al. [11] also used survival prob-
abilities at intermediate times (corresponding to their
required common time points across trials), our method
differs in that we use the additional probabilities to
improve estimates of the numbers of events within each
interval, whereas the motivation for Williamson et al.
[11] was to establish common time intervals across
trials. Using the survival probabilities at intermediate
times, the curve fits substantially improve, see the simu-
lation study below. Again assuming that censoring is
constant within each time interval;

S(t + 1
/
2) = S(t)

(
R(t) − C(t, t + 1)/4−D(t, t + 1

/
2)

R(t) − C(t, t + 1)/4

)
(2a)

S(t + 1) =

S(t + 1
/
2)

(
R(t)− 3

/
4C(t, t + 1)−D(t, t + 1

/
2)− D(t + 1

/
2, t + 1)

R(t) − 3
/
4C(t, t + 1)−D(t, t + 1

/
2)

)

R(t + 1) = R(t) −D(t, t + 1
/
2)−D(t + 1

/
2, t + 1)− C(t, t + 1)

where D(t, t + 1/2) and D(t + 1/2, t + 1) are the num-
bers of events over the time intervals [t, t+1/2) and [t
+1/2, t+1) respectively, and in general, the sum of these
does not necessarily equal D(t, t + 1) from Equation 1
because we use the additional information of S(t + 1/2).
We must estimate the relative sizes of the number of
censorships in each interval [t, t+1/2) and [t+1/2, t+1),
because otherwise, we would have three equations in
four unknowns, for which there is no unique solution.
Therefore, for simplicity, in Equation 2a, we assume
that the rate of censoring is constant over the time
interval [t, t+1). Note that, in general, C(t, t + 1) in
Equations 1 and 2 are not equal. The solution to these
three equations in three unknowns is;

D(t + 1
/
2, t + 1) =

[
S(t + 1

/
2)− S(t + 1)

]
(
S(t + 1

/
2)R(t) + S(t + 1

/
2)R(t + 1) + 2S(t)R(t + 1)

S(t + 1
/
2)S(t) + S(t + 1

/
2)S(t + 1) + 2S(t)S(t + 1)

)

D(t, t + 1
/
2) = R(t) + 3R(t + 1)− [

3S(t + 1) + S(t + 1
/
2)

]
(
S(t + 1

/
2)R(t) + S(t + 1

/
2)R(t + 1) + 2S(t)R(t + 1)

S(t + 1
/
2)S(t) + S(t + 1

/
2)S(t + 1) + 2S(t)S(t + 1)

)

C(t, t + 1)

=
[
R(t)− R(t + 1)−D(t, t + 1

/
2)− D(t + 1

/
2, t + 1)

] (2b)

Also, the estimate of the number at risk at the inter-
mediate time points is;

R(t + 1
/
2) = R(t) −D(t, t + 1

/
2)− C(t, t + 1)/2

Next, to further improve our estimate of the number
of events and censorships, we now also use the survival
probabilities at intermediate times, S(t + 1/4) and S(t +
3/4). This allows us to estimate the number of events
and censorships in each time interval of length ¼. This
substantially improves the curve fits, see the simulation
study below. By analogy with Equation 2b;

D(t + 1
/
4, t + 1

/
2) =

[
S(t + 1

/
4)− S(t + 1

/
2)

]
(
S(t + 1

/
4)R(t) + S(t + 1

/
4)R(t + 1

/
2) + 2S(t)R(t + 1

/
2)

S(t + 1
/
4)S(t) + S(t + 1

/
4)S(t + 1

/
2) + 2S(t)S(t + 1

/
2)

)
(3a)

D(t + 3
/
4, t + 1) =

[
S(t + 3

/
4)− S(t + 1)

]
(
S(t + 3

/
4)R(t + 1

/
2) + S(t + 3

/
4)R(t + 1) + 2S(t + 1

/
2)R(t + 1)

S(t + 3
/
4)S(t + 1

/
2) + S(t + 3

/
4)S(t + 1) + 2S(t + 1

/
2)S(t + 1)

)

For simplicity, we also specify;

D(t, t + 1
/
4) = D(t, t + 1

/
2)−D(t + 1

/
4, t + 1

/
2)

D(t + 1
/
2, t + 3

/
4) = D(t + 1

/
2, t + 1)−D(t + 3

/
4, t + 1) (3b)

C(t, t + 1
/
4) = C(t + 1

/
4, t + 1

/
2)

= C(t + 1
/
2, t + 3

/
4) = C(t + 3

/
4, t + 1)) = C(t, t + 1)

/
4

where C(t, t + 1) refers to the estimates from Equation
2b, not Equation 1. More complex expressions for D(t, t
+ 1/4) and D(t + 1/2, t + 3/4) may be specified which
are analogous to that for D(t, t + 1/2) in Equation 2b,
but simulation reveals no improvement in accuracy of
these estimates.
The number of patients at risk over time is not always

reported. In this case, the number of censorships and
events in each time interval can be estimated assuming
censorship only when the event has not occurred at the
calendar cutoff time, and that censoring occurs at a con-
stant rate [10,12]. A user-friendly spreadsheet for imple-
menting this method, developed by Tierney et al [11], is
given at https://static-content.springer.com/esm/art/10.-

the user inputs the start times of each time interval, the
survival probabilities (columns C and D in worksheet
“(2a)_Curve_Data”) and the minimum and maximum
follow up times (cells D5 and E5) and the number of
patients in the trial (cell E20) into this spreadsheet. The
estimated number of events and censorships in each
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time interval (columns G and H) are then provided.
These quantities should then be input into the spread-
sheet provided with this paper, as described in the
spreadsheet.
Step B: Fitting a curve to the estimated individual patient
data
In the second step, survival curves are fit to the esti-
mated IPD, i.e. to the numbers of events and censor-
ships in each time interval estimated in the previous
step, by the method of maximum likelihood. The curves
are parameterized using an appropriate probability
model for survival data. Suppose we assume a two para-
meter distribution with parameters l and g (e.g. a Wei-
bull distribution with shape parameter g and scale
parameter l), and consider time intervals starting at t =
0, ¼, ½, ¾,..., tmax - ¼. Then the likelihood is a product

of three terms. The first term is S(tmax)R(tmax) , because
occasionally, the last reported number at risk R(tmax), i.
e. at the latest time point tmax, which is slightly less
than the maximum follow-up time, is greater than zero.
Note that at the maximum follow-up time, by definition,
there are no patients at risk, as all patients are censored.
Therefore, if there are no patients at risk at maximum
follow-up, this does not of course imply that we esti-
mate a survival probability of zero at that time. The sec-
ond term is

∏
t=0,1/4,

1/2,
3/4,..,tmax−1/4

[
S(t)− S

(
t +

1
4

)]D(t,t+1/4)

, and

accounts for the fact that there are D(t, t + 1/4) events
in the time interval [t, t + 1/4). Here we assume the
events are interval censored (i.e. we do not know pre-
cisely when the events occurred, only that they occurred
in this time interval). In the simulation study below, we
find that it is important to assume interval censorship
for the D(t, t + 1/4) events that are predicted to have
occurred, because curve fits are worse when we assume
that all events occur in the middle of the time intervals,
i.e. at times t + 1/8. The third term in the product

∏
t=0,1/4,

1/2,
3/4,..,tmax−1/4

S
(
t +

1
8

)C(t,t+1/4)

allows for the C

(t, t + 1/4) censorships that are predicted to have
occurred in the time interval [t, t + 1/4). Given that we
do not know the exact times of the censorships, for sim-
plicity, we assume they occur in the middle of the time
intervals, i.e. at times t + 1/8. In the simulation study
below, we find that this assumption is reasonable.
Combining these three terms, the likelihood is;

L(λ, γ ) = S(tmax)R(tmax)

∏
t=0,1/4,

1/2,
3/4,..,tmax−1/4

[
S(t) − S

(
t +

1
4

)]D(t,t+1/4)
S
(
t +

1
8

)C(t,t+1/4)

(4)

The parameters λ̂ and γ̂ that maximize the likeli-
hood L̂ in Equation 4 can be estimated using standard
routines in a statistical software package. Although the
Weibull distribution provides a natural choice for the
distribution of survival times in cost-effectiveness analy-
sis, it is often necessary to consider alternative models,
for example, to deal with situations in which the hazard
function does not have a monotonic relationship with
time. Other common choices include the exponential,
logistic, log-normal and log-logistic distributions. One
approach to selecting the best fitting curve is to chose
the model which minimises Akaike’s Information Cri-
teria, given as −2 log L̂ + αq [5], where q is the number

of unknown parameters and a is a constant, generally
taken as 2. The mean and standard deviation for each
parameter, the covariance between parameters, and the
Cholesky matrix, C, can be recorded from the output.
For the cost-effectiveness model, the mean parameter
values are used for the deterministic base, and for the
probabilistic sensitivity analysis, the probabilistic para-

meters are simulated as �̂ + Cz, where �̂ =
(

λ̂

γ̂

)
and

z is a vector of independent standard normal variables
[4].
All calculations in Step B can be performed in R soft-

ware [13] using the code provided in the online
spreadsheet.

2. Estimating the accuracy of the method by simulation
The accuracy of the proposed method was tested by
simulation. Survival data were generated by simulating
multiple independent trials by the Monte Carlo method
in the statistics package R. Patient recruitment was
modelled at a constant rate over a time period of 10
units, without loss of generality. This was also assumed
to be the calendar time at maximum follow up. In this
way, follow up varied from 0 to 10 time units. Patient
survival was assumed to follow a Weibull distribution, S
(t) = exp(-ltg), and three shapes were independently
modelled which were deemed to cover the great major-
ity of cases experienced in practice (see Figure 2 for a
plot of the survivor functions): (a): decreasing hazard
over time (g = 0.6, l = 0.321) (e.g. patients recovering
from surgery), (b) constant hazard (i.e. exponential dis-
tribution) (e.g. healthy people), (g = 1, l = 0.1), and (c)
increasing hazard (g = 2, l = 0.0079) (e.g. leukaemia
patients). The mean time to event was set to 10 in all
three cases, corresponding to the maximum follow up
time, which is typical for published survival data. The
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total number of patients was independently set at 100
and 500, as this covers the typical range from trials.
In addition to censoring due to patients being alive at

the cut-off time, in some simulations, additional non-
informative censoring was modelled at a constant hazard
(e.g. to model loss to follow-up/drop out at a constant
rate), with expected time of censoring equal to 5 units.
Typically, the number of patients at risk are reported at
about 5-12 time points. For the simulations, 6 time
points were conservatively chosen, corresponding to the
times 0, 2, 4, 6, 8 and 10. Survival probabilities were then
recorded at time points 0, ½, 1, 1½, 2, 2½, etc, up to 10,
as required from the description of the method above.
For each combination of parameter values (e.g. 100

patients, g = 0.6, l = 0.321, no additional censoring),
1,000 independent trials were simulated by the Monte
Carlo method because this gave highly reproducible
results. For each trial, the number of patients censored
and the number of patients with events over each time
interval of length 1/2 units were estimated from Equa-
tions 3. These were compared to the actual numbers
censored and with events. The maximum likelihood esti-
mates of the parameters of the Weibull distribution λ̂

and γ̂ were then estimated under the proposed method

by Equation 4, and the mean time
(
1

λ̂

)( 1
γ̂

)
�

(
1 +

1
γ̂

)
for each simulation was recorded. The mean survival
time is particularly important because cost-effectiveness,
as measured by the incremental cost-effectiveness ratio
(ICER), is a ratio of incremental mean costs to incre-
mental mean benefits.

Next, the performance of the proposed method was
compared to that achieved by variations on the pro-
posed method. To measure the importance of interval
censoring the events, as described in the description of
the method above, for some simulations, the parameters
of the Weibull distribution were instead calculated
assuming that all events occurred half way through the
relevant interval (rather than being interval censored
across the interval). Next, the importance of using the
reported survival probabilities at intermediate time
points was measured in the following ways. First, the
number of patients censored and the number with
events over each time interval of length 1 unit were cal-
culated from Equations 2b, and the parameters of the
Weibull distribution were calculated from an expression
equal to Equation 4, but with half as many time inter-
vals. Second, in a separate exercise, this procedure was
repeated by calculating the number of patients censored
and the number with events over each time interval of
length 2 units, calculated from Equations 1b, and the
parameters of the Weibull distribution calculated from
an expression equal to Equation 4, but with a quarter as
many time intervals. Finally, also in a separate exercise,
the impact of any errors in the estimated number of
patients censored and number with events over each
time interval, as estimated by the proposed method in
Equations 3, was measured as follows. For each simu-
lated trial, the optimal Weibull distribution was esti-
mated as in Equation 4, but using the actual numbers of
events and censorships in each interval, instead of the
estimated numbers from Equations 3.
For each combination of parameter values and for

each simulated trial, the estimated mean survival time
calculated by the proposed method was then compared
against the estimated mean times from the following
three popular alternative methods, where in each case, a
Weibull distribution was chosen;
(1) Fit to the complete IPD.
(2) Fit by minimising the sums of squares of differ-

ences between the actual and estimated survival prob-
abilities S(t) at times t = 0, ½, 1, 1½, 2, 2½, etc, up to 10.
(3) Fit by regression of log(-log(S(t))) against log(t),

with S(t) again at time points 0, ½, 1, 1½, 2, 2½, etc, up
to 10. The resulting slope estimates parameter g and the
intercept estimates l.
Clearly, the first method is only possible if the full IPD

are available, whereas the other two methods are com-
monly used in the absence of IPD. Performance of the
different methods was assessed by comparing the bias
and the absolute error of the mean survival times.
All the analyses above concerned estimates of the

mean time. However, the uncertainty in the estimate of
the mean time is a crucial determinant of the uncer-
tainty in the cost-effectiveness of health technologies

Figure 2 Survivor functions for three simulated distributions.
Each distribution is parameterized by a Weibull distribution with
mean time to event of 10: decreasing hazard over time (g = 0.6, l =
0.321), constant hazard (g = 1, l = 0.1), and increasing hazard (g =
2, l = 0.0079).
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[4]. Clearly, our best estimate of the uncertainty of the
mean would be calculated from the actual IPD. At the
other extreme, it is impossible to estimate the uncer-
tainty using the sums of squares and regression meth-
ods. Here, the accuracy of the estimated uncertainty in
the mean using our proposed method was calculated by
comparing the estimated standard error of the mean
using our method against the estimated standard error
of the mean using the actual IPD from simulated trials.
To this effect, for each of the 1,000 simulations
described in this Section, using the actual IPD, both the
means of the parameters l and g of the Weibull distri-
bution, and the variance-covariance matrix for these
parameters were recorded. Then, for each of the 1,000
simulations, the standard error of the mean was esti-
mated as follows. 10,000 pairs of l and g were randomly
drawn from the means and variance-covariance matrix,
and for each of these samples, the mean of the Weibull
distribution was calculated. Finally, the standard devia-
tion of these 10,000 means was calculated. This gave an
estimate of the standard error of the mean for each of
the 1,000 simulations. Next, this method was repeated
to estimate the standard error of the mean using our
proposed method for each of the 1,000 simulations. All
simulations were run with g set to 1 and for no addi-
tional censoring.

3. Application to cost-effectiveness of sunitinib vs.
interferon-alpha for renal cell carcinoma
In this section, the proposed curve fitting method is
applied to the economic evaluation of sunitinib versus
interferon-alpha for renal cell carcinoma, recently per-
formed for the National Institute for Health and Clinical
Excellence (NICE) [2] in the UK. For each treatment,
the following survival curves were fitted;
(a) the method originally used in the economic evalua-

tion, by regressing ln(-ln(S(t)) against ln(t).
(b) the least squares method,
(c) the proposed method.
Next, the cost-effectiveness of sunitinib was calculated

separately with these curve fits, using the original cost-
effectiveness model.

Results
Simulation results
First, the proposed method accurately predicts the num-
bers of events and censorships in each time interval.
The method is particularly accurate when there is no
extra censoring (additional non-informative censoring
was modelled at a constant hazard) and when the
hazard decreases over time (Figure 3a), and least accu-
rate when there is extra censoring and when the hazard
increases over time (Figure 3b): the typical overestima-
tion of the total number of events and censorships is 0%

and 0% respectively for decreasing hazard, no extra cen-
sorship; 3% and -2% for decreasing hazard, with extra
censorship; 1% and -0.5% for constant hazard, no extra
censorship; 6% and -2% for constant hazard, with extra
censorship; 2% and -0.5% for increasing hazard, no extra
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Figure 3 Simulated actual versus expected numbers of events
and censorships. (a) one typical example simulated trial with
decreasing hazard, 500 patients, no extra censoring, and (b) another
typical example simulated trial with increasing hazard, 500 patients,
with extra censoring. In (a) the curves for numbers of events are
almost concurrent.
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censorship; 7% and -0.5% for increasing hazard, with
extra censorship. We believe that the accuracy of the
estimated numbers of events and censorships increases
with the total number of events: for the scenario in Fig-
ure 3a, there are typically approximately 265 events, and
for the scenario in Figure 3b, typically 45 events. Later
in this section, it is shown that any slight errors in the
estimated number of events and censorships have very
little impact on the accuracy of the curve fits.
Second, we consider the performance of the proposed

method in isolation (black bars in Figure 4). There is
virtually no bias in estimates of the mean time (the dif-
ference between the mean over all simulations of the
mean times and the population mean of 10) assuming

trials of 100 and 500 patients. This is consistent with
the finding that the method accurately predicts the total
number of events and censorships. Estimates of the
mean error in the mean time (mean absolute error) are
displayed because this indicates the approximate
expected error in resulting estimates of cost-effective-
ness due to uncertainty in the survival distribution. As
expected, the mean error is greater with additional cen-
soring and with 100 (Figure 4a) compared to 500
patients (Figure 4b).
Third, we consider the accuracy of the proposed

method compared to variations on the method. The
method improves markedly when the time interval is
split into more and more subsections. The bias in esti-
mates of the mean time with the proposed method
(splitting intervals into 4 subsections) is less than the
bias when we split each interval in to two subsections,
and this bias is itself less than the bias when we do not
split the intervals (Figure 4). This is particularly so when
the hazard decreases over time, and with additional cen-
soring. The mean error in mean times is similar for the
three methods for trials of 100 patients (Figure 4a),
whereas it is least for the proposed method for trials of
500 patients (Figure 4b).
The results using the actual simulated numbers of

events and censorships per time interval are similar to
the results using the proposed method (using the esti-
mated numbers from Equations 3) (Figure 4). This is no
surprise because the proposed method accurately pre-
dicts the numbers of events and censorships in each
time interval.
It is clearly preferable to interval censor the times of

events, rather than assume they occur in the middle of
each interval (Figure 4). The bias assuming events occur
in the middle of each interval is substantial when the
hazard decreases over time, particularly with additional
censoring. The mean error in mean times is similar for
both methods for trials of 100 patients, but is lower for
the proposed method with 500 patients.
Fourth, the accuracy of the proposed method is com-

pared to three alternative established methods for trials
of 100 patients (Figure 5) and 500 patients (Figure 6).
First, considering 100 patients, it is immediately obvious
that the mean of the estimates of the mean time for the
regression and least methods are vastly over-estimated
when we allow for extra censoring, although the median
of the mean estimates are very accurate (Figure 5). This
is because both methods occasionally greatly over-esti-
mate the mean time when there are relatively few events
at long follow up times, and because the methods give
equal weight to the Kaplan-Meier curve at long and
short follow up times (Figure 7). Neither the proposed
method nor fitting survival curves directly to the under-
lying IPD suffer from this problem.

Figure 4 Simulation results for variations on proposed method.
The mean, over 1,000 simulations, of the mean time and the error
in the mean time for trials with (a) 100 and (b) 500 patients for the
proposed method and variations on the proposed method. The
population mean time is 10, as indicated by the horizontal lines.
1,000 simulations are sufficiently large that the 95% error bars (not
shown) are virtually indistinguishable from the mean/median values
in Figures 4, 5 and 6.
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As expected, the method of fitting to the IPD per-
forms well. However, the proposed method is about as
accurate, and gives similar estimates of the mean for
each simulated trial (see Figure 8, where the estimated
mean for each trial based on the IPD method is closer
to the estimated mean based on the proposed method
than the least squares or regression methods: mean dif-
ference between proposed method and IPD = - 2% com-
pared to corresponding mean differences of 12% and 7%
for the least squares and regression methods in the
absence of extra censoring). The IPD method appears to
be preferable to the proposed method only when con-
sidering the median of the mean times, particularly for
smaller trials, when the hazard decreases over time and
with additional censoring (Figures 5).

Turning to trials of 500 patients (Figure 6), as expected,
the performances of the regression and least methods are
much improved. Indeed, all methods perform well. How-
ever, the proposed method very slightly underestimates
the mean time when the hazard decreases and with addi-
tional censoring, and the error in the mean time for the
least squares method is marginally higher in this case.
Turning now to uncertainty, we find that the estimated

uncertainty in the mean using our proposed method was
strongly correlated with that using the actual IPD when
the underlying distribution was exponential and with no
additional censoring (Figure 9). This implies, at least for
this combination of parameter values, that the uncertainty
in the mean estimated by the proposed method is approxi-
mately as accurate as that estimated using the actual IPD.

Application to cost-effectiveness of sunitinib vs.
interferon-alpha for renal cell carcinoma
Mean progression-free survival, and hence the cost-
effectiveness of sunitinib, was strongly influenced by the
method of curve fitting as outlined below.
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Figure 5 Simulation results for proposed method vs.
traditional methods: 100 patients per trial. For 1,000 simulated
trials, (a) mean(mean time) and median(mean time) and (b) mean
(error in mean time) and median(error in mean time) for trials with
100 patients for the proposed method and for other established
methods. The population mean time is 10, as indicated by the
horizontal lines. Bars occasionally extend above 30.
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Figure 6 Simulation results for proposed method vs.
traditional methods: 500 patients per trial. As Figure 5, but for
trials of 500 patients.
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(a) In one of the sensitivity analyses of the original
economic evaluation, a Weibull curve was fit to the
Kaplan-Meier graph of progression-free survival for
interferon-alpha from the Motzer et al. [14] randomised
controlled trial of sunitinib versus interferon-alpha, by
regressing ln(-ln(S(t)) against ln(t). Survival probabilities
were taken at monthly intervals from the Kaplan-Meier
graph. This yielded Weibull parameters l = 0.16 and g
= 0.88 (Figure 10). Next, l for sunitinib was calculated
as l for interferon-alpha multiplied by the hazard ratio
of 0.42, reported in the trial [14]. g for sunitinib was set
equal to g for interferon-alpha (Figure 10). This gave a
mean progression-free survival of 8.6 months for inter-
feron-alpha and 23.0 months for sunitinib, and an ICER
of £62,000 per quality-adjusted life year (QALY) [2].
(b) Next we fit a curve to progression-free survival for

interferon-alpha by least squares, using data points at
0.75-monthly intervals. This interval was chosen because
the numbers of patients at risk are given at 3-monthly
intervals, and for consistency with the proposed method
in (c) below, we took four measurements from the
Kaplan-Meier curve for each measurement of numbers
at risk (see description of the method above). The inter-
feron-alpha curve is largely unchanged, with mean pro-
gression-free survival again 8.6 months (Figure 10).
Next, we independently fit a curve for sunitinib by least

squares, against using data points at 0.75-monthly inter-
vals. In this case, progression-free survival became far
shorter tailed, with a mean of 11.5 months, and the
ICER fell substantially, to £38,000/QALY, because
patients on sunitinib are predicted to spend far less time
taking the drug, as the drug is taken whilst patients are
progression-free.
(c) Finally, the proposed method was applied using the

survival probabilities at 0.75-monthly intervals, and the
numbers at risk at 3-monthly intervals. Progression-free
survival for interferon-alpha became far shorter-tailed,
with a mean of 6.2 months, because this approach
attaches relatively less importance to the tail of the
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Kaplan-Meier curve compared to the other methods,
due to the small numbers of patients at risk. Progres-
sion-free survival for sunitinib, mean 13.8 months, was
longer-tailed than using the least squares method, but
far shorter tailed than the method used in the original
evaluation. The ICER for the proposed method was
£43,000/QALY. The results of the simulations suggest
that this is most likely to be the most accurate estimate
of the ICER. Furthermore, only this method provides an
accurate estimate of the uncertainty in the curve fit,
which is essential for the probabilistic sensitivity
analysis.
The results of the proposed method, but neither the

results of the hazard ratio method nor the least squares
method, can be validated against other published data.
First, the total estimated and actual numbers of progres-
sions (as reported in Motzer et al [14] are very similar:
for sunitinib, 95 versus 92 patients, and for interferon-
alpha 165 versus 170 patients. Second, the reported
hazard ratio of 0.42 [14], is very similar to the hazard
ratio of 0.40 estimated by maximum likelihood, consid-
ering both treatments in the same statistical model
(using a natural extension of the likelihood function
defined in Equation 4). Whilst the number of patients
taking sunitinib and interferon-alpha in the trial, at 375,
are within the range of the simulation study (100 and
500), simulation to assess the accuracy of the proposed
method assuming realistic patterns of censoring would
further increase confidence in the accuracy of the
method.

Discussion
Parmar et al. [10] and Williamson et al. [11] provided
methods of estimating the number of patients with
events and the number censored in each time interval
from summary survival data. These quantities were used
to estimate the hazard ratios between treatments for
individual trials, which were then meta-analysed across
trials. The original contributions of this paper are (a) to
use the estimates of the number of patients with events
and the number censored in each time interval as a
proxy for the IPD and to estimate the underlying survi-
val distribution (and hence the mean survival time) with
this estimated IPD and (b) to improve our estimates of
the underlying IPD by using survival probabilities at
additional time points. Contribution (b) was necessary
because curves fits based on the unimproved estimates
are frequently inaccurate. On the other hand, curves fit
using the proposed method are very nearly as accurate
as those fit from the actual IPD. Indeed, if it is not
necessary to stratify by covariates such as age and sex,
or to estimate the correlation between events when the
trial reports more than one type of event per patient (e.
g. cancer progression and death), in which case IPD is
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needed, then it is not clear that it is always worth
obtaining the IPD.
Simulation demonstrates that all methods perform

well in trials with many (500) patients, although the
expected error in the estimate of the mean is slightly
less with the proposed method and the IPD method
compared to the traditional methods of least squares or
regression. However, the proposed method, like the IPD
method, provides much more stable estimates than the
traditional methods for trials with few patients and con-
siderable censoring. Six time points were conservatively
chosen for the simulations, whereas the numbers at risk
at 5-12 time points are typically reported. Clearly, the
method will become more accurate with more time
intervals. Therefore, if numbers at risk are reported at
more than 6 time points, the curve fits using the pro-
posed method will be more accurate than reported here.
One advantage of the proposed method is that it is

not necessary to make the assumption of proportional
hazards, because the curve fits for each treatment are
estimated independently. This contrasts with the popu-
lar method of fitting a curve to the baseline treatment
directly from the Kaplan-Meier graph and then estimat-
ing the curve for the other treatment by applying the
hazard ratio to the baseline treatment. Another impor-
tant advantage of the proposed method is that the true
uncertainty in the survival curves is estimated for use in
the probabilistic sensitivity analysis in the economic eva-
luation. This is not possible using the traditional meth-
ods of estimating survival curves from summary survival
data. Simulation suggests that the uncertainty estimated
by the proposed method is close to that estimated from
the actual IPD (Figure 9). However, the uncertainty esti-
mated by the proposed method will be slightly underes-
timated, because we are assuming the IPD in Step A (in
the description of the method above) are estimated with
complete certainty. However, given that the method
estimates the IPD well, this inaccuracy is likely to be
very slight.
The main disadvantage of the proposed method is that

slightly more work is required to implement the method
compared to the least squares or regression methods.
However, the underlying IPD are estimated automati-
cally using the Online spreadsheet, and the curves can
be fit using the Online R statistics code with minimal
input from the user. Given that the cost-effectiveness of
health technologies is often strongly determined by the
estimated survival curve, we believe that any extra effort
is easily justified. Nonetheless, some analysts may be put
off by using what may be an unfamiliar statistics pack-
age. The R package was chosen because it is freely avail-
able and provides functions to maximise the likelihood
in the presence of interval censoring, (simulation
demonstrates that interval censoring is important to

improve the curve fits). Other widely used statistical
packages such as Stata and SAS also provide procedures
for estimating failure time models in the presence of
interval censoring, and could be used to carry out Step
B of the proposed method.
We now make some general recommendations. Given

the consistent performance of the proposed method in
the simulation study, we recommend it is used in pre-
ference to the least squares and regression methods
regardless of the size of trial or level of censoring. This
is for three reasons. First, the analyst need not consider
whether the traditional methods are likely to be subject
to the extreme bias seen in smaller trials with additional
censoring. Second, even in large trials, there may be just
a few patients with very long follow up, and these will
strongly influence curve fits using the traditional meth-
ods, but not using the proposed method. Third, only the
proposed method gives estimates of the true uncertainty
in the curve fit.
We further recommend that either (a) the sponsor of

the trial publishes the best fit underlying survival distri-
bution estimated directly from the IPD, or (b) Kaplan-
Meier graphs should always be accompanied by the
numbers of patients at risk, ideally at as many time
points as possible. Either way, the sponsor need not
release the IPD, and therefore confidentiality of the data
is maintained. The second recommendation is included
because the proposed method works best when the
numbers at risk are available (although the proposed
method can be used without the numbers at risk, by
first estimating the IPD from the spreadsheet of Tierney
et al [12], then applying Equation 4).
Throughout, we have considered a single trial arm.

However, clearly the method can easily be extended to
allow for two treatments in a single trial. First, the IPD
for both arms can be independently estimated from
Equations 3. Then either the maximum likelihood esti-
mates of the parameters can be calculated separately for
each treatment using Equation 4, or a two-group para-
metric survival model can be fitted to the IPD for both
treatment arms in a statistics package such as R. Under
the second method, the estimated hazard ratio can be
compared with the published hazard ratio as a validity
check (as described in the section on the cost-effective-
ness of sunitinib).
Alternatively, instead of using the published hazard

ratio as a validity check, it is reasonable to ask whether
it could be used to improve the accuracy of our survival
estimates for the two treatment arms. Consider the fol-
lowing three methods;
1. Fit a survival curve to one of the two treatment

arms using one of the traditional methods of fitting to
summary survival data, i.e. the least squares method or
the regression method, and then estimate the survival
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curve for the other treatment arm by applying the
hazard ratio to the first arm.
2. Repeat the first method, but instead, fit a survival

curve to one of the two treatment arms using our pro-
posed method.
3. Fit independent survival curves to the two treat-

ment arms using our proposed method. In this case, the
published hazard ratio is not used.
This study has shown that Method 2 is superior to

Method 1. Further, we believe that the hazard ratio
which can be calculated from Method 3 is likely to be
very similar to the published hazard ratio because we
have shown that the proposed method accurately pre-
dicts the underlying IPD, which is used to calculate the
published hazard ratio. Therefore, we believe that
Method 3 is preferable to Method 2, given also that
Method 2, but not Method 3, requires the proportional
hazards assumption, which may or may not be realistic.
Whilst the published hazard ratio provides a useful
summary of the relative survival between the two treat-
ments, cost-effectiveness is often driven not just by rela-
tive survival, but also by absolute survival in the two
treatment arms (e.g. when the costs associated with a
health state are very different between treatment arms).
So far, we have assumed that the numbers of patients at
risk at each of several follow-up times are available. If
instead this data is not available, it is not clear which of
Methods 2 or 3 are likely to be superior, given that we
have not evaluated the accuracy of the proposed method
by simulation when the numbers at risk are not avail-
able. Therefore, we encourage further research to
answer this question.
We now suggest some further research. It is impossi-

ble to cover every possible combination of parameters
in simulations. Those presented were chosen as they
were deemed plausible in actual clinical trials: the
underlying survival distribution was assumed to be Wei-
bull (although the R code supplied can fit other func-
tional forms) because of it flexibility in modeling both
increasing and decreasing hazard functions: allowance
was also made for variation in the number of the
patients enrolled in a trial and the effect of additional
censoring. Nonetheless, further research is required to
explore the accuracy of the proposed method in other
circumstances which are deemed relevant to actual
trials, e.g. with alternative survival distributions and/or
variations in the degree of censoring to reflect the levels
experienced in actual trials. In this study, it has been
assumed that each individual has a constant hazard of
additional censoring during the study follow-up (in this
way, additional censoring is non-informative, since the
censoring time is statistically independent of the failure
time). Other censoring mechanisms that allow for varia-
tion in the rate of censoring with time and incorporate

informative drop-out may be more realistic in some
contexts and could be explored. It has been shown that
sub-dividing the time intervals and using survival prob-
abilities at additional time points improves the accuracy
of the method. Further work is also encouraged to
quantify the improvement of the method if the time
intervals are further sub-divided. One possible criticism
of the simulation study is that we used the exact survi-
val probabilities, rather than being forced to read the
probabilities off published Kaplan-Meier curves. How-
ever, we believe that survival probabilities can usually be
read with good accuracy. Furthermore, any inaccuracies
apply equally to all methods assessed, with the exception
of use of the actual IPD.
The proposed method accurately predicts the underly-

ing distribution in the great majority of scenarios. How-
ever, the simulation study showed that the method gives
estimates with a small degree of bias in some scenarios.
For example, estimates of the mean survival time were
biased when the sample size was 100 patients and the
hazard was decreasing (e.g. estimated bias = 5% without
additional censoring). These results reflect the known
bias in the Weibull shape parameter when it is esti-
mated by maximum likelihood estimation for smaller
sample sizes or in the presence of heavy censoring [15].
The proposed method outperforms the traditional meth-
ods despite this bias: the relative efficiency of the pro-
posed method relative to the IPD model was 1.02
compared to 0.19 and 0.34 for the least squares and
regression methods respectively. Furthermore, in the
presence of additional censoring, the relative efficiency
of the proposed method relative to the IPD model
improved to 1.52 compared to 0.0005 and 0.01 for the
least squares and regression methods respectively.
Yang and Xie [15] propose an alternative estimator of

the Weibull shape parameter based on a modified pro-
file likelihood applied to the IPD. Through simulation,
Yang and Xie demonstrate that this modified maximum
likelihood estimate (MMLE) approach is almost
unbiased and much more efficient than the regular MLE
when the data are complete or Type II censored. In the
case of Type I censoring, the MMLE approach also per-
forms much better than regular MLE. Step B of the
method of curve fitting proposed in this paper provides
a flexible framework and could be extended to include
use of MMLE or other relevant methods to reduce bias
in situations where the regular MLE approach is known
to perform poorly.

Conclusions
We have presented a method for estimating the under-
lying survival distribution from a Kaplan-Meier graph.
The number of patients at risk improves the accuracy of
the survival distribution. Simulation demonstrates that
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the method provides more accurate estimates of mean
survival compared to the least squares and regression
methods under a plausible range of parameter values.
Furthermore, application of the method to a model of
the cost-effectiveness of a cancer drug demonstrates
that the method may yield cost-effectiveness estimates
that differ substantially from those using traditional
methods. Therefore, we recommend the method in pre-
ference to the traditional methods when IPD are not
available. We further recommend that published results
of trials should provide not only Kaplan-Meier graphs
but also the numbers of patients at risk, ideally at as
many time points as possible, so that our method can
be employed to greatest effect. An easy-to-use Microsoft
Excel spreadsheet that implements the proposed method
is available either directly from the authors or from the
PenTAG website: http://sites.pcmd.ac.uk/pentag, under
“Staff/Martin Hoyle”.
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