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Benefits of ICU admission in critically ill patients:
Whether instrumental variable methods or
propensity scores should be used
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Abstract

Background: The assessment of the causal effect of Intensive Care Unit (ICU) admission generally involves usual
observational designs and thus requires controlling for confounding variables. Instrumental variable analysis is an
econometric technique that allows causal inferences of the effectiveness of some treatments during situations to
be made when a randomized trial has not been or cannot be conducted. This technique relies on the existence of
one variable or “instrument” that is supposed to achieve similar observations with a different treatment for
“arbitrary” reasons, thus inducing substantial variation in the treatment decision with no direct effect on the
outcome. The objective of the study was to assess the benefit in terms of hospital mortality of ICU admission in a
cohort of patients proposed for ICU admission (ELDICUS cohort).

Methods: Using this cohort of 8,201 patients triaged for ICU (including 6,752 (82.3%) patients admitted), the
benefit of ICU admission was evaluated using 3 different approaches: instrumental variables, standard regression
and propensity score matched analyses. We further evaluated the results obtained using different instrumental
variable methods that have been proposed for dichotomous outcomes.

Results: The physician’s main specialization was found to be the best instrument. All instrumental variable models
adequately reduced baseline imbalances, but failed to show a significant effect of ICU admission on hospital
mortality, with confidence intervals far higher than those obtained in standard or propensity-based analyses.

Conclusions: Instrumental variable methods offer an appealing alternative to handle the selection bias related to
nonrandomized designs, especially when the presence of significant unmeasured confounding is suspected.
Applied to the ELDICUS database, this analysis failed to show any significant beneficial effect of ICU admission on
hospital mortality. This result could be due to the lack of statistical power of these methods.
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Background
Most studies on intensive care unit (ICU) triage have
focused on either patients admitted to or rejected from
the ICU [1-3]. Few studies have documented improved
survival by comparing similar patients admitted to ICUs
and regular departments. The limitation of such obser-
vational research is the nonrandom assignment of the
treatments, which may lead to selection bias [4].

Concerning ICU care, confounding by severity could
plausibly occur in either direction; patients’ severity
intrinsically influences both the triage decision and the
outcome. Some physicians may have been concerned
that individuals with more severe organ failures would
not benefit from ICU care while other physicians might
recommend ICU care as a ‘last resort’ for their sickest
patients, for fear of unintended negative effects.
To provide causal evidence from observational data,

notably in critical care [5], appropriate statistical tools
have been proposed [6,7]. The propensity score (PS) was
one of the first techniques that specifically addressed
this question [6]. However, this method relies on the
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strong underlying assumption of exchangeability, that is,
the absence of an unmeasured confounder, which can-
not be tested. An attractive alternative approach is the
instrumental variable (IV) method because it may con-
sistently estimate the average treatment effect of expo-
sure in marginal patients, even in the presence of
unmeasured confounding. This method supposes that
there is an instrument that is correlated with treatment
but uncorrelated with unobserved patient severity. How-
ever, while PSs are mostly used in medical settings [8],
IV has been the standard method in econometrics [9].
Although proposed in the Health Sciences setting [10],
aside from introductory papers to IV for epidemiology
[11,12], IV has been poorly and only recently applied in
medical research [13-15].
In this paper, we sought to illustrate the use of the IV

approach on an observational cohort study that aimed
to evaluate the beneficial effect of ICU admission on
hospital mortality (the ELDICUS study [16]). Our objec-
tive was to assess such a benefit by introducing the con-
cept of IV and by reviewing and comparing different IV
approaches with a special focus on the selection of a
valid instrument and on the best regression method in
the case of a dichotomous outcome. In addition, some
comparison between PS and IV with regard to estimat-
ing the causal benefit of ICU care from a large observa-
tional database was also provided.

Methods
Data source
EDLICUS is a prospective cohort study that was con-
ducted in seven European countries (France, Israel, Italy,
Spain, United Kingdom, Netherland, and Denmark)
from 1 September, 2003 until 1 March, 2005. All adult
patients evaluated for ICU admission were included in
the study. The primary objective was to evaluate the
beneficial effect of ICU admission on mortality in the
elderly.

Study End Point and Covariates
The study end point was the in-hospital mortality.
Potential baseline confounding variables, such as age,

gender, acute medical diagnosis and chronic disorders,
and surgical status, were recorded, as were routinely
used ICU scoring systems, namely, the Karnofsky per-
formance status scale [17], which allows a global evalua-
tion of the health status; the Glasgow Coma Score [18],
which is evaluates the deepness of the coma; the SOFA
score [19], which measures organ failures; and the SAPS
II [20], which is a global evaluation of patient severity
within the first 24 hours following ICU admission
related to in-hospital mortality.
The country of enrolment and variables related to the

physician responsible for the triage decision, namely,

age, gender, main specialization, and years of ICU
experience, were also recorded.

Statistical Analysis
First, to provide some comparison, the beneficial effect
of ICU admission on hospital mortality was estimated
from a standard logistic model, unadjusted and adjusted
to baseline covariates.
Propensity Score approach
A PS model to predict the probability that a given
patient would be admitted to the ICU at his first triage,
conditional on baseline-measured covariates, was
obtained by fitting a multivariate logistic model [6].
Then, a matched-paired analysis was performed with
callipers at 0.2 times the standard deviation of the logit
of the estimated propensity score, as previously recom-
mended [21]. The matching procedure was performed
without replacement. The beneficial effect of ICU
admission on hospital mortality was then estimated by
fitting a logistic model applied to the propensity score
matched database [22].
Instrumental Variable approach
This approach attempts to estimate causal effects by
using differences in medical practice patterns as a quasi-
experiment, bypassing the usual way that physicians
allocate treatment according to prognosis and thus
removing both measured and hidden sources of bias
[23]. IV analysis begins with the identification of an IV
that will be used in the first regression of a multiple-
stage regression process.
Instrument selection An IV is defined as an observable
variable that is predictive of exposure but that has no
direct effect on the outcome and that is independent of
the unobserved confounders [24,12,25]. The potential IV
should meet three requirements: (1) the IV must be
uncorrelated with the outcome of interest, except
through the effect of treatment (usually referred as the
main assumption); (2) it must be highly predictive of
the treatment (strength of the IV); (3) the relationship
between the IV and the exposure must be uncon-
founded, i.e., the instrument should be unrelated to the
patients’ characteristics. Under these conditions, IV ana-
lysis provides an asymptotically unbiased estimate of the
treatment effect on the outcome [26]. Because the main
assumption is empirically unverifiable [27], the choice of
the instrument should rely first on subject-matter
knowledge, i.e., some arguments as to why the assump-
tions are reasonable. Data can then be used to test the
plausibility of the IV assumptions.
After performing bibliographic research [28-31] and

interviewing different experts in critical care and biosta-
tistics, three potential IV were selected from the present
database because they were considered (1) to influence
the propensity to be admitted to the ICU, (2) not to
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influence patients’ chances of surviving, except through
ICU acceptance or refusal, and (3) not to be related to
patients’ characteristics. These three potential IV are as
follows: the country of enrolment, physician’s age
(dichotomized into < or > 40 y/o) and specialization
(dichotomized into anaesthesiologists vs. others). Con-
cerning the country of enrolment, we dichotomized the
variable “country of admission” into “low admission rate
country” vs. “high admission rate country”. The thresh-
old admission rate used to classify the countries was set
at 0.85, allowing us to divide the study sample into two
groups of approximately equal size.
The choice of the best instrument was based on a two-

step procedure. First, we explored the strength of the
potential IV as evaluated by the partial F-statistic from the
first-stage regression [27] and by the partial r2, the square
of the partial correlation between the instrument and the
treatment, conditional on other covariates in the model, as
proposed by Bound et al. [32]. From the econometric lit-
erature, an F-statistic greater than 10 indicates that the
instrument is not weak [23]. However, the computation of
both r2 and the F-statistic require transforming the treat-
ment allocation into a continuous variable. To verify that
such an approach to IV selection was also appropriate for
binary variables, we also examined the ability of each
potential IV to reduce the imbalance in the major covari-
ates. To do so, we compared the mean standardized differ-
ence as stratified by the actual treatment with the mean
standardized difference as stratified by the IV, as proposed
by Rassen et al. [27]. According to these criteria, the best
instrument was the variable associated with the highest F-
statistics and partial r2 and with the greater reduction in
the mean standardized differences.
IV analysis The most commonly used IV approach relies
on linear models with two-stage least-squares (2SLS) [9].
The 2SLS estimator is named as such because it can be
obtained by two consecutive ordinary least-squares (OLS)
regressions. Similar to a propensity model, the first linear
model aims to specify the relationship between treatment
assignment, the instrument and potential confounding
variables. One can then specify a model for the outcome
that includes not the actual exposure but instead the
exposure as estimated for the first-stage equation as well
as the same set of confounding variables.
Let Y be the outcome of interest, X be the treatment,

Z the instrument and b a measure of the effect of X on
Y. When X and Z are binary variables, the classic IV

estimator
�

βIV , also called the Wald estimator, can be

written as follows:

β̂IV =
Ê [Y|Z = 1]− Ê [Y|Z = 0]

Ê [X|Z = 1]− Ê [X|Z = 0]

In the case of dichotomous outcomes, one cannot
simply replace the second-stage of the 2SLS model with
a logistic model [33]. To address this problem, other
approaches have been proposed. Generalizations to non-
linear structural equations based on log-linear or probit
modelling have been recommended [34,35]. Generalized
methods of moments (GMM) estimation have been also
proposed [36], but they have been shown to produce
essentially the same results as the 2-stage logistic
method [37]. However, all IV methods encounter pro-
blems in the presence of effect modification by unob-
served confounders, and sensitivity analyses have
generally been recommended [38,39].
Hence, after selecting the appropriate instrument, we

applied and compared four IV approaches. Double stage
least square [37] was applied first. The second IV
approach was the double stage logistic regression [37]
(2LR), in which the 2 linear models used in the 2SLS
are replaced by two logistic regressions. Double stage
probit structural equation models were also used [40].
Such probit models were specifically developed to derive
probabilities and thus constrain the predicted values of
exposure and outcome to the 0-1 range. However,
unlike those of logistic models, the coefficients of probit
models cannot be directly interpreted as the logarithms
of odds ratios. To offer a more natural interpretation, it
has been demonstrated that multiplying probit coeffi-
cients by 1.6 offers an acceptable approximation of the
logistic coefficients [37]. Finally, we also used a three-
stage model (3LS), as proposed by Angrist et al. [41].
Specifically, a logistic model was used to derive a pre-
dicted probability, which was then used as an instru-
ment in a subsequent 2-stage least squares estimation
procedure.
Parameters of interest
We initially used the odds ratio (OR); since this ratio is
commonly used in the intensive care setting, its perfor-
mance has been also widely studied in propensity-score
methods [42], and it allowed for a comparison with the
IV estimates derived from the 2LR and the probit mod-
els. However, ORs have been criticized and considered
“not collapsible” [43]. It has been argued that both rela-
tive and absolute measures should be reported [44].
Therefore, we also estimated the risk differences (RD)
by computing the difference between the proportions of
non-ICU admitted subjects experiencing the outcome
and the proportion of ICU admitted subjects experien-
cing the outcome, in the overall and in the propensity
matched cohorts [45]. This analysis allowed for a com-
parison with the IV estimates derived from the 2LS and
the 3LS models.
All statistical analyses were performed using R soft-

ware packages http://www.R-project.org. Continuous
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variables are expressed as mean ± SD. Estimated ORs
and RDs are given with their 95-per cent confidence
intervals (95CI). We bootstrapped the standard errors
for all IV estimators of treatment effects [46]. We used
cluster sampling and conducted 1,000 iterations for
bootstrapping.

Results
A total of 8,201 patients were enrolled in the study:
6,752 (82.3%) patients were accepted, and 1,449 (17.7%)
were rejected. Table 1 shows that major characteristics
significantly differed between admitted and nonadmitted
patients. The crude analysis revealed a reduction in hos-
pital mortality associated with ICU admission (OR =
0.74, 95CI: 0.65-0.84, p < 0.0001; RD = -0.06, 95CI:
-0.08;-0.03, p < 0.0001) (Tables 2 and 3). However, after
adjusting for 35 baseline covariates considered asso-
ciated with the outcome, ICU admission was associated
with increased hospital mortality (OR = 1.25, 95CI:
1.07-1.46; p = 0.005; RD = 0.03, 95CI: 0.01; 0.05, p =
0.01).

Propensity Score Analysis
Propensity scores were derived from a nonparsimonious
logistic model including 35 baseline covariates. Only
1,381 of the 6,752 (20.5%) patients could be matched to
a nonadmitted patient, resulting in a matched popula-
tion of 2,762 patients. The matching enabled us to
reduce the mean standardized difference in baseline cov-
ariates (Table 1). Consistent with the adjusted analysis
of the whole population, ICU admission was found to
be associated with increased hospital mortality (OR =
1.23, 95CI: 1.04-1.45, p = 0.014; RD = 0.044, 95CI:
0.010; 0.078; p < 0.0001) (Tables 2 and 3).

Instrumental Variable Analysis
Choice of the instrument
Three baseline variables were evaluated as potential
instruments: country of enrolment, physician’s age and
physician’s specialization. Table 4 summarizes the

strength of these three potential instruments. According
to the partial F-statistic and r2 as well as on the esti-
mated OR, the country of enrolment variable seemed to
have the highest strength. However, examining the resi-
dual imbalance after stratification on the IV, the physi-
cian’s age offered the most homogeneous reduction in
the standardized differences in baseline risk factors.
Considering the strength of the instrument and the
reduction in the residual imbalance, the physician’s spe-
cialization was the instrument that seemed to offer the
best properties. The reduction in baseline imbalance
using the physician’s specialization was close to that
achieved using the propensity score method.
IV based estimation of treatment effect
Using the physician’s specialization as an instrument,
the various multistage approaches all yielded comparable
point estimates.
Table 2 presents the OR for in-hospital death obtained

by two different IV approaches: the double-stage logistic
regression and the double stage probit structural equa-
tion model. Neither the logistic (OR: 0.73, 95CI: 0.24-
2.45, p = 0.56) nor the probit model (OR: 0.89 95CI:
0.24-2.37, p = 0.71) found an effect of ICU admission
on in-hospital mortality. However, the confidence inter-
vals of the IV effects were far higher than those
obtained with standard regression methods.

Table 1 Selected baseline characteristics according to the triage decision

Overall cohort Propensity-based matched cohort

(n = 8,201) (n = 2,762)

ICU triage ICU triage

Admitted Refused Standardized difference Admitted Refused Standardized difference

(n = 6,752) (n = 1,449) (n = 1,381) (n = 1,381)

Age 59.41 ± 18.47 60.76 ± 17.41 0.31 63.15 ± 17.14 63.65 ± 17.50 0.03

SOFA 4.87 ± 2.93 4.71 ± 2.71 -0.20 4.54 ± 2.65 4.40 ± 2.60 -0.05

SAPS 30.30 ± 15.82 29.28 ± 14.91 0.09 31.88 ± 14.01 30.81 ± 14.55 -0.07

GCS 12.43 ± 4.30 12.93 ± 4.00 0.17 12.94 ± 3.78 13.14 ± 3.57 0.05

Karnofsky 79.17 ± 20.22 79.30 ± 18.95 -0.35 75.70 ± 21.03 74.57 ± 21.63 -0.05

(GCS: Glasgow Coma Scale)

Table 2 Effect of ICU admission on in-hospital mortality
using standard logistic regression (crude and adjusted
logistic models) and instrumental variable-based
analyses (double-stage logistic regression and double-
stage probit structural equation model)

Odds Ratio 95CI p-value

Crude Logistic Regression 0.74 0.65-0.84 < 0.01

Adjusted Logistic Regression 1.25 1.07-1.46 0.01

Propensity matched cohort 1.23 1.04-1.45 0.01

2LR 0.73 0.24-2.45 0.56

Probit Model 0.89 0.24-2.37 0.71

The association measure is the odds ratio (with 95% confidence interval, 95CI).
2LR: double stage logistic regression
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Table 3 presents the estimation of the RDs in hospital
mortality between nonadmitted and admitted patients
using the double and the triple stage least squares mod-
els approaches. Consistent with previous IV estimations,
we found no effect of ICU admission on hospital mor-
tality using the 2SLS method (RD: 0.005, 95CI: -2.45;
2.30, p = 0.99) or the triple-stage approach (RD: -0.05,
95CI: -1.41; 0.89, p = 0.49). Again, the confidence inter-
vals of the IV estimators were far higher than those
obtained with standard regression methods.

Discussion
ELDICUS is an observational study that intended to
assess the benefit of ICU admission on mortality. Most
previous studies have been based on cohort data ana-
lysed by standard statistical methods [4]. However,
because ICU admission is likely determined jointly with
an individual’s likelihood of death, conventional esti-
mates might be biased [47,48]. The instrumental vari-
able method, which was initially developed for use with
econometrics, has been proposed to handle such sources
of bias, but it is still seldom applied to medical data
[26,13,15]. To our knowledge, this is the first study to

use IV analysis to examine the effect of first ICU admis-
sion on in-hospital mortality on critically ill patients.
We explored the results by IV methods, using different
instruments and different methods adapted to dichoto-
mous exposures and outcomes as sensitivity analyses
[38]. These results were compared with those obtained
by standard regressions and propensity based analyses,
using the in-hospital mortality as the primary end point.
We first used PS matched analysis [49]. Both the

adjusted and the propensity based analyses found ICU
admission to be associated with increased hospital mor-
tality. However, PS methods might have some limita-
tions. First, given the large imbalance in sample sizes
between admitted and nonadmitted patients (82.3% of
patients admitted to the ICU), the matching-without-
replacement approach resulted in a dramatic reduction
in the sample size. Indeed, only 20.4% of admitted
patients could be matched to nonadmitted patients. Sec-
ond, the PS does not handle the situation of unmea-
sured confounding. In the context of critically ill
patients, it is likely that all the prognostic factors for
hospital mortality would not be measurable at the time
of ICU triage. Therefore, we sought to compare the
results obtained with the PS with those obtained with
specific methods that would handle the potential
unmeasured confounding.
Instrumental variable methods are becoming increas-

ingly popular because they seem to overcome the pro-
blem of unobserved confounding in observational
studies [25]. The principle of IV analysis is to evaluate
how much the variation in the treatment variable that is
induced by the instrument affects the outcome.
Although appealing, IV methods rely on strong assump-
tions that might limit their use in practice: first, the
absence of any direct effect of the instrument on the
outcome (usually described as the main assumption);
second, that the variation in the IV causes substantial
variations in the treatment variable (usually described as

Table 3 Effect of ICU admission on in-hospital mortality
using standard linear regression (crude and adjusted
ordinary least squares models) and instrumental
variable-based analyses (double and triple stage least
squares models)

Risk Difference 95CI p-value

Crude OLS -0.06 -0.08–0.03 < 0.01

Adjusted OLS 0.03 0.01-0.05 0.01

Propensity matched cohort 0.04 0.01-0.08 < 0.01

2LS 0.01 -2.45-2.30 0.99

3LS -0.05 -1.41-0.89 0.49

The association measure is the absolute mortality difference (with 95%
confidence interval, 95CI). OLS: ordinary least squares, 2LS: double stage least
squares, 3LS: triple stage least squares.

Table 4 Evaluation of the qualities of the potential instruments

OR
[95CI]

Partial r2 Partial
F-statistic

p-value IV effect on ICU admission
Estimate (SD)

Standardized Differences

Age SOFA SAPS GCS Karnofsky

Original cohort 0.311 -0.205 0.092 0.166 -0.352

Instrumental Variable (IV)

Country of enrolment 2.90
[2.58-3.28]

0.006 54.90 < .0001 0.15 (0.01) 0.306 0.075 0.209 -0.001 -0.143

Physician’s age 2.03
[1.81-2.27]

0.001 13.42 .0003 -0.13 (0.01) -0.003 -0.036 0.042 -0.031 -0.013

Physician’s main specialization 2.22
[1.96-2.51]

0.003 25.55 < .0001 0.10 (0.01) -0.071 0.075 0.080 -0.094 0.048

Partial r2: square of the partial correlation between the instrument and the treatment. GCS: Glasgow Coma Scale. OR: odds ratio. 95CI: 95% confidence interval.
The IV effect on ICU admission (denominator of the Wald estimator) is expressed as the estimate (SD) of the linear regression that models ICU acceptance
according to the IV.
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the IV strength); and third, that the relationship between
the IV and the treatment is unconfounded. The main
issue is finding a good instrument. However, because
these assumptions are not empirically verifiable [12,25]
the choice of a good instrument first relies on carefully
evaluating the key assumptions of IV when identifying a
potential IV. In our example, three variables served as
potential instruments. The first IV was countries of
enrolment, which shared close populations in terms of
health status and medical resources [31]. This IV found
no effect on the outcome but did find variations in the
treatment exposure due to the countries’ own policies
regarding ICU admission. The second IV, the physician’s
age, has been suggested to influence the triage decision
[30] but not to modify the outcome, given that ICU care
is not provided solely by the physician who admitted the
patient. Finally, the third IV was the physician speciali-
zation, which was chosen because in most European
countries ICU physicians may be anaesthesiologists or
intensivists [29], and this characteristic may influence
the admission policy while not affecting the outcome.
We then selected the best instrument from among

these three potential IVs by examining the strength of
the association between the IV and the treatment, as
evaluated by the partial F-statistic and the partial r2

from the first-stage regression [27,32]. All three selected
instruments had partial F-statistics greater than 10, a
threshold that supposedly indicates that the instrument
is not weak [23]. However, the partial r2 values were
smaller than those usually reported in the medical or
the economic literature [14,27]. Because the treatment
variable was naturally binomial in our database, we
sought to propose a more appropriate solution to evalu-
ate the strength of the association between the IV and
treatment. Using an OR as a measure of the association
between treatment exposure and the IV, we found
results similar to those obtained using the F-statistic or
the partial r2. The quality of the instrument was also
evaluated by its ability to reduce the imbalance in the
major covariates [27]. However, the IV-based analysis
yielded estimates far different from those obtained with
the propensity-matched sample. Indeed, the propensity-
based estimates were similar to those obtained with con-
ventional multivariate regression models, supporting a
negative effect of ICU admission on in-hospital mortal-
ity, while all IV analyses resulted in a lack of impact of
ICU admission on in-hospital mortality. Of course,
because we do not know the true association between
ICU utilization and hospital death, we cannot formally
conclude that the one method is better than the other.
A simulation study to explore differences between these
analytical methods with respect to controlling for con-
founding would be of interest. Nevertheless, in the con-
text of ICU patients, because hospital mortality is

usually considered highly multifactorial the presence of
unmeasured confounders appears likely. The absence of
concordance between PS- and IV-based estimates may
support the existence of unmeasured confounding.
However, as previously emphasized by several authors
[32,23], the use of weak instruments may lead to large
standard errors in the IV estimates or even bias in the
IV estimates if the weakness is associated with a small
sample size or a violation of the main assumption. In
our case, IV methods undoubtedly yielded estimates
with larger confidence intervals; thus, the limited partial
r2 can be considered a threat to the validity of the IV
method. However, Martens et al. showed that when bias
occurs in the IV estimates, it is in the direction of the
ordinary least squares estimation [23]. In contrast, our
results of the 2SLS estimator were far different from the
results obtained using ordinary least square regression.
This finding supports the idea that, despite the limited
partial r2 that may explain the large standard errors, the
large sample size and the validity of the main assump-
tion limited the bias in the IV estimates. Nevertheless,
this finding could illustrate the low precision of the esti-
mates and thus the low statistical power of treatment
comparison.
The second limitation of IV techniques is that they

rely on multiple stage linear models, which might be
nonadaptive in the context of dichotomous outcome
measures [37]. We compared the results obtained by the
different methods previously proposed in the context of
dichotomous outcomes [37] and found relatively large
differences between the various IV approaches. Indeed,
if all IV estimations led to a nonsignificant effect of ICU
admission, then the 2SLS estimator was the only one
that was far different from the crude analysis, which is
expected to be the most biased method. As previously
described in the case of weak instruments [23], all other
IV estimators seemed biased in the direction of the
unadjusted ordinary least squares estimation. Hence, our
results strongly support the use of standard 2SLS meth-
ods, even when dealing with dichotomous outcome
measures.
Our results could be compared with those based on a

previously published propensity-based analysis of the
ELDICUS database [16]. Our IV estimate did not con-
flict with previous PS estimates, though larger confi-
dence intervals modified the conclusions. However, our
PS results were different from those previously pub-
lished [16]. This difference can be explained by major
differences in the analytic procedure: first, we consid-
ered hospital mortality not 28- and 90-days mortalities;
second, we used a PS matching method [21] whereas
Iapichino provided estimates adjusted on PS quintiles.
Thus, conditional estimates provided by Iapichino can
substantially differ from marginal estimates reached by
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the former, especially when using the OR as the associa-
tion measure, because of its noncollapsibility [43]. More-
over, we only assessed the benefit of the ICU first triage
decision whereas Iapichino considered all the triages
independently. Finally, differences in the patient selec-
tion should be stressed because we analysed a total of
8,201 patients including 6,752 (82%) first admissions.
Conversely, Iapichino [16] included in the analysis of
28-day mortality 7,308 first admissions, a lower number
because of the exclusion of patients with a lack of infor-
mation on time of triage, triage decision, or outcome
and the exclusion of those referred to a coronary unit.
These results suggested an ICU benefit among severe
patients and were confirmed with 6,500 patients triaged
only once. It is likely that Iapichino’s cohort included
somewhat more severe patients, suggesting an ICU ben-
efit among severe patients.
Finally, like randomized clinical trials, external validity

depends on the studied population, and it should be
emphasized that IV- and PS-matching attempt to esti-
mate different effects of treatment. Indeed, IV
approaches yield estimates of a local average treatment
effect (LATE) [50-52] while propensity-based
approaches yield estimates of the average treatment
effect on the treated (ATT) [45]. Informally, the effect
of ICU admission, as estimated via PS matching, can be
defined as the effect observed in the patients admitted
as compared with the effect observed in patients with a
similar propensity for ICU admission but who were not
admitted. PS matching does not capture the effect of
ICU admission in nonadmitted patients who had a very
low probability of being admitted. The IV approach
yields estimates of the treatment effect not only in the
treated but also in a restricted subgroup of patients for
whom the instrument was informative about treatment
assignment; these are the so-called “marginal” or com-
pliers. Noncompliers, as opposed to compliers, are
patients who, whatever the value of the instrument,
would always have been treated or untreated. Hence, in
our situation, the effect of ICU admission on hospital
mortality is not captured by the IV approach for the
patients who, whatever the value of the physician’s spe-
cialization, i.e., the chosen instrument, would have
always been accepted or rejected from the ICU. Thus, it
is important for researchers to state the treatment-effect
concept that they are trying to identify before beginning
estimation [53].

Conclusion
Instrumental variable methods offer an appealing alter-
native to handle the selection bias related to nonrando-
mized designs, especially when the presence of
significant unmeasured confounding is suspected.
Applied to the ELDICUS database, this analysis failed to

show any significant beneficial effect of ICU admission
on hospital mortality. When the clinical question under-
lying the creation of the database is to assess a local
average treatment effect, effort should be made to incor-
porate in the dataset covariates that behave as appropri-
ate instruments, allowing IV analysis if the presence of
unmeasured confounding is suspected.
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