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Abstract

Background: This article describes the data mining analysis of a clinical exposure study of 3585 adult smokers and
1077 nonsmokers. The analysis focused on developing models for four biomarkers of potential harm (BOPH): white
blood cell count (WBC), 24 h urine 8-epi-prostaglandin F2a (EPI8), 24 h urine 11-dehydro-thromboxane B2 (DEH11),
and high-density lipoprotein cholesterol (HDL).

Methods: Random Forest was used for initial variable selection and Multivariate Adaptive Regression Spline was
used for developing the final statistical models

Results: The analysis resulted in the generation of models that predict each of the BOPH as function of selected
variables from the smokers and nonsmokers. The statistically significant variables in the models were: platelet
count, hemoglobin, C-reactive protein, triglycerides, race and biomarkers of exposure to cigarette smoke for WBC
(R-squared = 0.29); creatinine clearance, liver enzymes, weight, vitamin use and biomarkers of exposure for
EPI8 (R-squared = 0.41); creatinine clearance, urine creatinine excretion, liver enzymes, use of Non-steroidal
antiinflammatory drugs, vitamins and biomarkers of exposure for DEH11 (R-squared = 0.29); and triglycerides,
weight, age, sex, alcohol consumption and biomarkers of exposure for HDL (R-squared = 0.39).

Conclusions: Levels of WBC, EPI8, DEH11 and HDL were statistically associated with biomarkers of exposure to
cigarette smoking and demographics and life style factors. All of the predictors togather explain 29%-41% of the
variability in the BOPH.

Background
Cigarette smoking is a well known risk factor for cardio-
vascular diseases [1]. Commonly accepted pathophysio-
logical mechanisms underlying many cigarette smoking
associated adverse health effects are inflammation [2,3],
oxidative stress [2,4], platelet activation [5,6] and abnor-
mal lipid metabolism [7,8]. Suitable biomarkers of
potential harm (BOPH) have been identified for these
four different pathophysiological pathways: white blood
cell counts (WBC) for inflammation [3,9,10], urine 8-
epi-prostaglandin F2a (EPI8) for oxidative stress [11-13],
urine 11-dehydro-thromboxane B2 (DEH11) for platelet
activation [11,13,14], and high-density lipoprotein cho-
lesterol (HDL) for abnormal lipid metabolism [15].

The Total Exposure Study (TES) was a stratified,
cross-sectional, multi-center study in 3585 adult smo-
kers and 1077 nonsmokers, designed with the primary
objective of estimating the exposure to cigarette smoke
constituents in a population of U.S. adult cigarette smo-
kers [16]. A secondary objective of the study was to
investigate the relationship between cigarette smoke
exposure and biomarkers of potential harm. The pur-
pose of this study was to explore relationships between
the variables in the TES and four biomarkers of poten-
tial harm and to capture those relationships in statistical
models.

Methods
The TES study database contains data on biomarkers of
potential harm, biomarkers of exposure (BOE), smoking
history, medical history, concomitant medications, clini-
cal laboratory results, and demographics for 3585 adult
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smokers and 1077 non-smokers. Details about the study
have been previously reported [16,17]. The biomarkers
of exposure included nicotine equivalents (NICEQ),
serum cotinine (COTIN), 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanol (NNAL) and NNAL glucuronides
(TOTNN), carboxyhemoglobin (COHb), monohydroxy-
butenyl-mercapturic acid (MHBMA), mercapturic acid
metabolites dihydroxy-butyl-mercapturic acid
(DHBMA), 4-aminobiphenyl (4-ABP) hemoglobin
adducts, 1-hydroxypyrene (1-OHP) and 3-hydroxypro-
pylmercapturic acid (3-HPMA). These biomarkers are
indicators of exposure to cigarette smoke and represent
cigarette smoke constituents. Details about the biomar-
kers and the smoke constituents represented by these
biomarkers can be found in Roethig et al. [16]. They
were measured in either urinary samples or blood sam-
ples in the TES study [16,17].

Overview of variables in the data mining database
In the data mining, variables were selected based on
their scientific relevance to the targeted biomarkers of
potential harm. Table 1 provides an overview of the
variables that appear in the data mining datasets and
Table 2 has the full names of the biomarkers of poten-
tial harm.
Separate imputed data mining data sets were con-

structed for each BOPH. In these data sets, cases were
dropped if the value of the dependant variable was miss-
ing; values for predictor variables were imputed using
methods that are described below. In addition, an unim-
puted data mining data set was constructed. No cases
were dropped from the unimputed data sets and no
imputation of missing values was performed on it. The
data mining data sets were randomly divided into analy-
sis and validation data sets using an 80/20 split.

Data mining analyses using random forests
The Random Forest procedure [18-20], a data mining
approach for variable selection and model building, was
used to perform a preliminary screening of variables for
each BOPH (DEH11, EPI8, HDL and WBC). The R sta-
tistical package [21] was used for the implementation of
Random Forest. Variables that were known to be trivi-
ally related to the target BOPH were not included in the
initial or subsequent Random Forest runs. In the initial
Random Forest analyses, 10,000 trees were generated,
and variable importance and cross-validated R-squared
statistics were produced. The variable importance effec-
tively ranks all variables in each data set with respect to
their ability to predict the target BOPH. At the end, 30
predictor-sets together with cross-validated R-squared
statistics were kept. From this list, a large, a medium,
and a small predictor set was chosen for input into the
Multivariate Adaptive Regression Spline (MARS)

procedure [22]. In each case, the large predictor set was
chosen to contain 30 variables, while medium and small
data sets were chosen to represent natural cut points in
the sequence of cross-validated R-squared values.

Data mining analyses using MARS
Starting with the large, medium and small predictor sets
selected by the Random Forests procedure, the MARS
algorithm [23] was used to find interpretable models for
each BOPH (DEH11, EPI08, HDL, WBC) in each study
population (all subjects, non-smokers, smokers). MARS
is an innovative and flexible modeling approach that
uncovers important data patterns and relationships. It
builds flexible models by the use of separate regression
slopes in distinct intervals of the predictor variable
space. This approach has been increasingly used in
recent years in various scientific fields including disease
risk research [24,25], human genetics [26] and food
sciences [27].

Table 1 Overview of variable group (and number of
variables) that appear in the data mining data set

Group Variables

BOPH (4) DEH11, EPI8, HDL, WBC

Special interest variables:
BOE (9):

HPMA3, DHBMA, MHBMA, NICEQ, COTIN,
OHP, TOTNN, ABP, COHB

Special interest variables:
cumulative effects (2)

“AGE”, “SMKYRS” (years smoked, excluded
from analysis of non-smokers)

Special interest variables:
stratification (1)

Smoking Status

Exposure variables (4) Measures of exposure to exhaust and
chemicals, from questionnaire

Exposure variables
(non-smokers, 8)

Measures of exposure to secondary
smoke, from questionnaire

Exposure variables
(smokers, 19)

Measures of exposure to tobacco,
including number of cigarettes smoked,
tar and nicotine content, presence of
menthol, included only in the analysis for
smokers

Demographics (13) Weight, gender, race, geographical
location, income, etc.

Vital signs (5) Respiratory rate, temperature, blood
pressure, pulse

Clinical measures (2) Measures of respiratory capacity, FVC, FEV1

General health (20) General health questions, from
questionnaire

Lab values (22) Clinical chemistry laboratory values

Creatinine clearance (1) CRCL: 24 h urine creatinine/plasma
creatinine

Lab value flags (6) Lab value flags

Medical history indicators
(15)

Medical history findings broken down into
15 categories

Concomitant medications
(61)

Concomitant medications broken down
into 61 categories
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In our study, the large, medium, and small predictor
variable sets were augmented by adding all nine BOE
and a binary indicator of smoking status. Finally, when
ordinal categorical variables appeared in any of the pre-
dictor sets, they were replaced with appropriately chosen
ordinal dummy variables. Starting with the modified
large, medium and small predictor sets, exploratory
MARS models were fit for a variety of model types, set-
tings for the number of initial basis functions and penal-
ties for adding new variables.
In order to evaluate the appropriateness of the

model, MARS uses generalized cross-validation (GCV)
which is residual square errors penalized by a function

related to complexity of the model [22]. The numera-
tor in GCV is the average residual squared error and
the denominator is a penalty term that reflects model
complexity. The use of the denominator is to prohibit
selection of a model with many terms that decreases
only slightly the residual errors. The GCV statistic is
an estimate of the variance for error in a regression
model that includes a penalty term for the number of
parameters used in the regression. The GCV R-squared
statistic is the ordinary R-squared statistic calculated
with the variance for error replaced with the GCV sta-
tistic [22].
Final MARS runs were performed using exact variable

searches (SPEED = 1), three model types (0 = “simple
linear model”, 1 = “linear model with variable transfor-
mations but no interactions”, and 2 ="two-way interac-
tion models with variable transformations”), 4 values for
the number of initial basis functions (10, 20, 30, and
60), and 2 values for a penalty term for adding new vari-
ables (0, and .01). As before, a 10-fold cross-validation
was used to estimate the cross-validated (or GCV) R-
squared statistic. For each BOPH and predictor set,
GCV R-squared, the number of final model parameters,
and the number of final model variables were plotted
against all other MARS control parameters. These plots
(not included in this manuscript) were examined and a
preferred model was selected for each BOPH and each
study population. Models were preferred if they fit the
data well (i.e. had high GCV-R-squared values) and par-
simonious (i.e. had few predictors).
Using the imputed analysis data sets the MARS proce-

dure was used to fit models to each of the four BOPH
using large, medium, and small predictor sets obtained
in Random Forests. This procedure produced closed-
form linear regression models that display explanatory
power comparable to the best Random Forest models.
For each of the four BOPH, a preferred MARS model
was selected from the MARS runs based on considera-
tions of goodness of fit and parsimony. The selected
models were applied and refit in S-PLUS using the vali-
dation data set [28]. Graphical model displays are pre-
sented to aid in model interpretation. Applying and
refitting models using the validation data set protects
against model over-fit that can result from aggressive
use of data mining procedures.
Variable importance plots were provided for each

BOPH. The marginal R-squared value for a group of
predictor variables is the proportion of variance of the
dependent variable explained by the group of predictor
variables. The delta R-squared for a group of predictor
variables is the difference between the marginal R-
squared value for the full set of dependent variables and
the marginal R-squared value for the full set of predictor
variables with the specified group removed. The

Table 2 Variables appearing in the final models, names
and abbreviations

Names Abbreviations Units/category names

24 h urine 11-Dehydro-
thromboxane B2

DEH11 ng/24 hr urine

24 h urine 8-epi-
prostaglandin F2a

EPI8 ng/24 hr urine

High density lipoprotein
cholesterol

HDL ng/dL

White Blood Cell Count WBC ×10^3/uL

24 h urine Nicotine
equivalents

NICEQ mg/24 hr urine

Serum Cotinine COTIN ng/mL

24 h urine total
1-hydroxypyrene

OHP ng/24 hr urine

24 h urine total
4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanol (total
NNAL)

TOTNN ng/24 hr urine

Creatinine clearance CRCL dL/day

24 h urine creatinine UCRCAL mg/24 hr urine

Aspartate aminotransferase AST U/L

Alkaline phosphatase ALKPH U/L

Serum Triglycerides TRIG mg/dL

Platelet count PLATE ×10^3/uL

High-sensitivity C-reactive
protein

CRP mg/L

Hemoglobin HGB g/dL

Age AGE Yrs

Weight WEIGHTK kg

Vitamin supplements VITIMINS yes, no

Alcohol consumption DRINK > = once/day, >once/
week, once/week,
<once/week, no

Non-steroidal
antiinflammatory drugs

NSAID no, yes

Sex SEX “female”, “male”

Race RACE other, native Amer,
multi-racial, Caucasian,
Asian, black

If greater than IFGT

If less than IFLT

Equal EQ

Warner et al. BMC Medical Research Methodology 2010, 10:19
http://www.biomedcentral.com/1471-2288/10/19

Page 3 of 10



marginal R-squared is a measure of the quality of pre-
diction obtained from a group of predictor variables act-
ing alone, and the delta R-square is a measure of the
improvement in the quality of prediction obtained when
a group of predictor variables is added to the other pre-
dictor variables in the model.

Handling of missing data and BLLOQ values
In general, missing data were present in the data set, but
rare. In the data mining analysis, it was deemed prudent
to impute missing data. Missing continuous variables
were imputed in MARS and Random Forest Analyses by
replacing missing observations with the median of non-
missing cases for each variable: this was done separately
for smokers and non-smokers, and for validation and
analysis datasets. Imputation was carried out on predic-
tor variables only, cases with missing dependant vari-
ables were dropped, not imputed, in the MARS and
Random Forest analyses.
Final regression models were fit to data sets in which

no imputation was used on any variable, i.e. cases with
missing dependant or predictor variables were dropped
from the analysis and the number of cases dropped was
noted in the regression output. In general, final regres-
sion results seemed little changed between imputed and
unimputed datasets.
For categorical variables, missing data were handled by

adding an additional category as indicated in the follow-
ing section. This approach does not depend on any
assumptions about the sources of missing data and we
do not regard it as a form of imputation.
Below the lower limit of quantification (BLLOQ) flags

were present in the data set for 9 variables of exposure
(NECEQ, MHBMA, TOTNN, DHBMA, OHP, HPMA3,
COTIN, COHB, and 4-ABP). If a BLLOQ flag is positive
for any of these variables and if the variable itself has a
missing value, the value of the affected variable is set to
0. Non-missing value variables BLLOQ values with flags
were left unchanged.

Variable transformations
The Random Forest and the MARS procedure are both
designed to find optimal transformations of predictor
variables. This minimized the need to perform variable
transformations manually. Nonetheless a number of
variable transformations were applied to a number of
variables. In particular, character variables were trans-
formed to dummy variable. A variable for creatinine
clearance was also created. Initial random forest runs
found some categorical variables that had natural ordi-
nal interpretations: these variables were replaced with
sets of ordinal dummy variables in the MARS and final
regression analyses.

Variable names and naming conventions for the
final models
Table 2 presents descriptive names and abbreviated
names for all untransformed variables that appear in at
least one of the final models. Units (for continuous vari-
able) and category names (for categorical variables), are
also provided.
Variable names in final regression models will be of

one of the following forms

1. <v.name>
2. <v.name>.EQ.xxx, <v.name>.GT.xxx, <v.name>.
LT.xxx, <v.name>.GE.xxx, <v.name>.LE.xxx
3. <v.name>.IFLT.xxx, <v.name>.IFGT.xxx

Here, <v.name> is the short name of a variable from
Table 2 and xxx is a number or category selected by
MARS. Form 1 is used for variables that enter into the
MARS models as linear functions. Form 2 is used to
describe dummy variables formed from a categorical
variable. In this context “EQ”, “GT”, “LT”, “GE”, “LE”
stand for “equal”, “greater than”, “less than”, “greater
than or equal to”, and “less than or equal to”. For exam-
ple, Race.EQ.BLACK designates a variable that is one
for blacks and zero otherwise. Alcohol consumption.
GT.1 PER WEEK designates a variable that is one for
subjects who have more than one drink per week and 0
otherwise. Form 3 is used for transformed continuous
variables. For example, CRCL.IFGT.100 (read CRCL if
greater than 100) indicates a variable that is equal to
CRCL if CRCL is greater than 100 and 100 otherwise.
Similarly, CRCL.IFLT.100 is a variable that is equal to
CRCL when CRCL is < 100 and equal to 100 otherwise.
Using this notation, regression coefficients can be

interpreted as slopes. Positive slopes indicate that the
dependent variable increases as the predictor variable
increases and negative slopes indicate that the depen-
dant variable decreases as the predictor variable
increases. Variables of Form 3 are called transformations
of the original variable and are thought of as the result
of applying a function (or transformation) to the original
variable. Other commonly used transformations that do
not appear in our regression output are square root,
power, and log transformations.
Collectively, interactions and variables of forms 1, 2, and

3 are called basis functions. The MARS procedure, to be
discussed below, may be thought of as a procedure for
selecting an optimal set of basis functions that are to be
used as the predictor of a given dependent variable. The
basis functions used by MARS differ slightly from the basis
functions described here. We have chosen to use the basis
functions as described here in preference to those used by
MARS, because the former seem easier to interpret.

Warner et al. BMC Medical Research Methodology 2010, 10:19
http://www.biomedcentral.com/1471-2288/10/19

Page 4 of 10



Results
Tables 3 and 4 present parameter estimates, standard
errors and p values for the final models for each of the
four BOPH for the analysis data set. The parameters
often characterize multiple transformations of the same
underlying predictor. Figures 1 to 2 show the impor-
tance plots of the predictor variables based on Marginal
R-squared and Delta R-squared values. All plots were
based on unimputed data.
The model for DEH11 contains predictors COTIN,

UCRCAL, CRCL, AST, ALKPH, NSAID, and VITAMIN
(Table 3). The model accounts for 29% of the total
variability in DEH11 in all subjects. Higher serum coti-
nine, urine creatinine and creatinine clearance were pre-
dictors of higher 24-hour urinary excretion of 11-
dehydrothromboxane B2. Higher serum AST (up to 126
U/L) was mainly a predictor of higher 24-hour urinary
excretion of 11-dehydrothromboxane B2 while use of
nonsteroidal anti-inflammatory agents and vitamin sup-
plements were predictors of lower 24-hour urinary

excretion of 11-dehydrothromboxane B2. In the valida-
tion data set the same predictors were significant with
the exception of ALKPH.
The model for EPI8 contains predictors TOTNN,

OHP, CRCL, AST, WEIGHTK, and VITAMIN and it
accounts for 41% of the total variability in EPI8 in all
subjects (Table 3). Higher total NNAL (up to 1452 ng/
24 h), OHP (if less than 473 ng/24 h), creatinine clear-
ance and weight were predictors of higher 24-hour
excretion of urinary 8-epi-ProstaglandinF2a Type III.
Higher serum AST was either a predictor of higher or
lower 24-hour excretion of urinary 8-epi-Prostaglan-
dinF2a Type III, depending on its concentration level.
Use of vitamin supplements was a predictor of lower
24-hour excretion of urinary 8-epi-ProstaglandinF2a
Type III. In the validation data set the same predictors
were significant with the exception of AST.

Table 3 Parameter estimates in models for DEH11 and
EPI8 for all subjects (analysis data set)

a) Model for DEH11 R2 = 0.29

Parameters Value. Std Error t value P value

Intercept -4045.3022 752.258 -5.38 <0.001

COTIN.IFGT.11 1.4494 0.123 11.78 <0.001

UCRCAL.IFLT.3036 0.3531 0.0484 7.30 <0.001

CRCL.IFLT.4325 0.3698 0.0391 9.45 <0.001

AST.IFGT.25 17.9064 1.2832 13.95 <0.001

AST.IFGT.126 -18.2428 2.3656 -7.71 <0.001

ALKPH.IFLT.184 3.1360 0.6583 4.76 <0.001

ALKPH.IFGT.184 30.7979 3.6627 8.41 <0.001

NSAID.EQ.YES -346.0560 38.2528 -9.05 <0.001

VITAMIN.EQ.YES -211.7183 29.8500 -7.09 <0.001

b) Model for EPI8 R2 = 0.41

Parameters Value. Std Error t value P value

Intercept 1383.0200 574.483 2.41 0.016

TOTNN.IFLT.57 5.1813 0.7683 6.74 <0.001

TOTNN.IFGT.57 0.5548 0.0593 9.35 <0.001

TOTNN.IFGT.1452 -1.4595 0.3895 -3.75 0.000

OHP.IFLT.473 0.8552 0.1212 7.05 <0.001

CRCL 0.6268 0.0262 23.93 <0.001

AST.IFGT.22 -135.4800 30.5048 -4.44 <0.001

AST.IFGT.24 247.4960 59.5308 4.16 <0.001

AST.IFGT.26 -108.4000 33.1568 -3.27 0.001

AST.IFLT.106 12.2512 2.2425 5.46 <0.001

WEIGHTK 6.2845 0.7274 8.64 <0.001

VITAMIN.EQ.YES -250.7700 28.4736 -8.81 <0.001

Table 4 Parameter estimates in models for WBC and HDL
for all subjects (analysis data set)

a) Model for WBC R2 = 0.29

Parameters Value Std. Error t value P value

Intercept -6.4951 1.4436 -4.50 <0.001

TOTNN.IFGT.51 -0.0055 0.0026 -2.17 0.030

TOTNN.IFLT.471 0.0078 0.0023 3.36 0.001

TOTNN.IFGT.471 0.0065 0.0026 2.49 0.013

CRP.IFLT.2 0.3426 0.0548 6.25 <0.001

CRP.IFGT.2 0.0715 0.0096 7.48 <0.001

CRP.IFGT.20 -0.0477 0.0169 -2.82 0.005

PLATE.IFLT.245 0.0106 0.0014 7.69 <0.001

PLATE.IFGT.245 0.007 0.0007 10.64 <0.001

HGB.IFLT.14 0.3242 0.0477 6.80 <0.001

TRIG.IFLT.171 0.0051 0.0008 6.32 <0.001

TRIG.IFGT.503 0.0025 0.0008 3.17 0.002

RACE.EQ.BLACK -0.679 0.0914 -7.42 <0.001

b) Model for HDL R2 = 0.39

Parameters Value Std. Error t value P value

Intercept 55.4292 2.948 18.80 <0.001

COTIN.IFGT.31 -0.0291 0.0036 -7.97 <0.001

COTIN.IFGT.193 0.0258 0.0069 3.75 0.000

TRIG.IFGT.52 -0.5819 0.0786 -7.40 <0.001

TRIG.IFGT.64 0.483 0.0816 5.92 <0.001

TRIG.IFGT.177 0.0753 0.0086 8.76 <0.001

WEIGHT.IFLT.76 -0.267 0.032 -8.34 <0.001

WEIGHT.IFGT.76 -0.0834 0.0157 -5.30 <0.001

AGE.IFLT.55 0.3119 0.0197 15.83 <0.001

SEX.EQ.F 6.72 0.4723 14.23 <0.001

DRINK.EQ.Y 2.0567 0.5099 4.03 0.0001

DRINK.GT.1.PER.WK 7.875 0.5393 14.60 <0.001
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The model for WBC in all subjects contains predictors
TOTNN, CRP, PLATE, HGB, TRIG, and RACE (Table
4). The model accounts for 29% of the total variability
in WBC. Increases in total NNAL (if greater than 51
and less than 471 ng/24 h), high sensitivity c-reactive
protein (up to 20 mg/L), platelet count, hemoglobin (if
less than 14 g/DL), and triglycerides were predictors of
higher WBC count, while race categories of Black and
“other” were predictors of lower WBC count. In the
validation data set the same predictors were significant.
The model for HDL in all subjects contains predictors

COTIN, TRIG, WEIGHTK, HGB, AGE, SEX, and
ALCOHOL CONSUMPTION (Table 4). The model
accounts for 39% of the total variability in HDL. Higher
age, alcohol consumption and female gender were pre-
dictors of higher HDL cholesterol, while higher trigly-
cerides was a predictor of lower HDL cholesterol.
Higher weight and cotinine (if less than 31 ng/ml) were
predictors of lower HDL cholesterol. In the validation
data set the same predictors were significant.
Table 5 provides a summary of fit statistics across

models for the analysis data set and the validation data

set. Figures 1 and 2 gives the importance plots for the
predictors for the 4 BOPH.

Discussion
The primary purpose of this analysis was to explore the
quantitative associations of biomarkers of exposure and
other variables with biomarkers of potential harm
related to cigarette smoking. We examined the covari-
ates (or secondary variables) to see whether they could
mediate or modulate the effect of biomarkers of expo-
sure. In pursuing this, we developed a systematic
approach to the mining of a complex biomarker data-
base. This approach helped us find interpretable linear
models that could explain a substantial proportion of
the variability for all four of the biomarkers of potential
harm (WBC, EPI8, DEH11, HDL). These regression
models summarize the information originally contained
in 169 variables.
We began by applying a general purpose data mining

procedure (Random Forest) to find a list of important
variables that could plausibly affect the chosen depen-
dant variables and black box models that relate these

Figure 1 Variable importance plots for DEH11 and EPI8 for All Subjects (Analysis data set).
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variables to the four BOPH. Results from the Random
Forest procedure were used as a starting point for the
MARS algorithm which produced the multiple regres-
sion models. The regression models found by MARS
were then applied and refit to a validation data set in
SPLUS. It is remarkable that (as shown in Table 5) the
R-squared statistics generated by the Random Forests,
MARS and regression procedures are in good agreement
with each other, suggesting that the proposed models
will be reproducible in future studies.
MARS is a nonparametric regression model in which

no assumption is made regarding the function

relationship between dependent and independent vari-
ables [22,29]. Instead of residual plots, other
approaches are commonly used for assessing nonpara-
metric regression models [29]. Due to the availability
of a relatively large sample size in our dataset, we set
aside a validation dataset of 20% of the observations
and use it to assess the performance of our models. As
presented in Table 5 of our manuscript, the R-squared
values of the final models based on the analysis dataset
are in good agreement with those based on the valida-
tion dataset. This approach confirmed the appropriate-
ness of the models.

Figure 2 Variable importance plots for HDL and WBC for All Subjects (Analysis data set).

Table 5 Summary of model fit statistics across models for all subjects

Model Random Forest R2:
Analysis Data Set

MARS GCV R2:
Analysis Data Set

Linear Regression R2:
Analysis Data Set

Linear Regression R2:
Validation Data Set (applied)

Linear Regression R2:
Validation Data Set (Refit)

WBC 0.28 0.27 0.29 0.29 0.31

EPI8 0.40 0.42 0.41 0.35 0.38

DEH11 0.28 0.28 0.29 0.25 0.27

HDL 0.40 0.37 0.39 0.40 0.41
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The proposed regression models, which involve the
transformations of some predictor variables, provide
predictive capability comparable to that produced by the
Random Forest models. Interactions between dependent
variables are not needed. In spite of the generally good
agreement of model fit statistics between analysis and
validation data sets, the linear models fit to the analysis
and validation data sets are not identical, i.e. some vari-
ables that are highly significant in the analysis data set
do not remain so in the validation data set. These dis-
crepancies, which may suggest aspects of the modeling
that will not be generalized to future studies or may be
artifacts of the smaller sample size of the validation data
set, will be discussed below.
The role of smoking status in our analysis is of special

interest. It is notable that smoking status does not
appear in any of the regression models. This suggests
that the effect of smoking on each biomarker of poten-
tial harm is mediated by one or more of the biomarkers
of exposure or covariates. 19 additional variables, which
measured specifics of smoking behavior, were also
entered as candidate variables, but none were included
in the final model.
Each model contains at least one BOE predictor:

COTIN appears as a predictor of DEH11 and HDL,
TOTNN appears as a predictor of EPI8 and WBC, and
OHP appears as a predictor of EPI8.
The inclusion of the variables COTIN or TOTNN,

instead of smoking status or nicotine equivalents, in the
final model for DEH11 or EPI8 does not necessarily
mean that these variables by themselves are more biolo-
gically important than smoking status or nicotine
equivalents. In MARS modeling, the inclusion of a new
predictor is dependent on the number of predictors
already in the model and the correlation(s) of the new
predictor with the remaining predictor(s). COTIN or
TOTNN is included in the final model because its con-
tribution and that from other existing predictors
accounts for a larger variability in DEH11 and EPI8
than smoking status or nicotine equivalents. On the
other hand, the contribution of smoking status or nico-
tine equivalents is most likely already captured by
COTIN or TOTNN and other variables in the model.
As shown in Figure 1, UCRCAL and CRCL are overall

important predictors of DEH11, accounting for more var-
iation in DEH11 than the BOE COTIN. Similarly, CRCL
is the most important predictor of EPI8, with TOTNN
and OHP also playing important roles. The importance
of CRCL here is likely related to the fact that DEH11 and
EPI8 were both measured in urine. As defined here,
CRCL is a marker of kidney function. UCRCAL reflects
variability in creatinine production, which is known to be
related to muscle mass and is thus influenced by AGE,
WEIGHT, and SEX. One of the purposes of this analysis

was to investigate various sources of variability, therefore
we included the creatinine excretion and creatinine clear-
ance in the model, so that we could understand the mag-
nitude of impact of these factors on the variability.
Indeed it was not surprising that, based on the marginal
r-squared values (Figure 1), urine creatinine/creatinine
clearance had a relatively large contribution on the final
models for EPI8 and DEH11. This suggests that normali-
zation for creatinine could potentially reduce the variabil-
ity in these biomarkers.
The variables TRIG, SEX, WEIGHTK and ALCOHOL

CONSUMPTION are all more important predictors of
HDL than is the BOE COTIN. The situation is some-
what different for WBC, where the BOE TOTNN
appears as the most important predictor, followed by
the variables PLATE and CRP.
The model for WBC contains the following predictors:

TOTNN, CRP, PLATE, HGB, TRIG, and RACE. The
model reflects some well known factors influencing
WBC, such as smoking, race and inflammation. The
model also indicates a relationship with other hematolo-
gic variables such as platelets and red blood cells. Meta-
bolic factors are also known to impact WBC [30].
The model for EPI8 contains the following predictors:

TOTNN, OHP, CRCL, AST, WEIGHTK, and VITA-
MIN. The model suggests that kidney function and
body mass are related to the excretion of this biomarker
in urine. Exposure to cigarette smoke is thought to
increases oxidative stress [11-13], whereas use of vitamin
consumption decreases oxidative stress. Oxidative stress
may also impact cell membranes, so that enzymes may
leak to a higher degree from cells. The weak relationship
between AST and EPI8 may be suggestive of the oxida-
tive damage to the cells, since serum AST is localized in
heart, brain, skeletal muscle and liver tissue and is gen-
erally considered a general biomarker of leaky/damaged
cells e.g. hepatocytes as well as myocytes [31]. However
this relationship should be interpreted with caution
since the contribution of the AST levels to the variabil-
ity of EPI8 was relatively small (Figure 1). Furthermore
AST levels are also reported to be influence by the use
of medications [31-33].
The model for DEH11 contains the following predic-

tors: COTIN, UCRCAL, CRCL, AST, ALKPH, NSAID,
and VITAMIN. The model suggests that kidney func-
tion and muscle mass are related to the excretion of this
biomarker in urine. Exposure to cigarette smoke
increases platelet activation, whereas use of non-steroi-
dal anti-inflammatory drugs, e.g. aspirin and vitamin
consumption decrease platelet activation [11,15]. The
relationship with serum enzymes is less clear but might
indicate that processes, which activate platelets, impact
cell membranes, so that enzymes may leak to a higher
degree from cells.
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The model for HDL contains COTIN, TRIG,
WEIGHTK, AGE, SEX, and ALCOHOL CONSUMP-
TION. It suggests that bodyweight and male gender
impact HDL negatively, whereas older age, female sex
and regular alcohol consumption have a positive effect
on HDL cholesterol. Higher triglycerides is generally
associated with lower HDL cholesterol [34].

Conclusions
In summary, levels of WBC, EPI8, DEH11 and HDL
were statistically significantly related to biomarkers of
exposure to cigarette smoking, demographics and life
style factors. The statistical models successfully captured
a large amount of variability in the biomarkers and
depicted the important biological relationships between
the biomarker and the effects. Considering the numer-
ous potential sources of variability for the 4 biomarkers
and their complex relationships, the R-squared values of
29% to 41% are significant.

List of abbreviations
The abbreviations of all model variables are listed in Table 2.
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