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Impaired social brain network for processing
dynamic facial expressions in autism spectrum
disorders
Wataru Sato1,2*†, Motomi Toichi2,3†, Shota Uono3 and Takanori Kochiyama1
Abstract

Background: Impairment of social interaction via facial expressions represents a core clinical feature of autism
spectrum disorders (ASD). However, the neural correlates of this dysfunction remain unidentified. Because this
dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with
static, facial expressions would reveal abnormal brain functioning in individuals with ASD.
We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD
and to age- and sex-matched typically developing controls and recorded their brain activities using functional
magnetic resonance imaging (fMRI).

Result: Regional analysis revealed reduced activation of several brain regions in the ASD group compared with
controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG),
fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG). Dynamic causal modeling
analyses revealed that bi-directional effective connectivity involving the primary visual cortex–MTG–IFG circuit was
enhanced in response to dynamic as compared with static facial expressions in the control group. Group
comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group.

Conclusions: These results suggest that weak activity and connectivity of the social brain network underlie the
impairment in social interaction involving dynamic facial expressions in individuals with ASD.

Keywords: Amygdala, Autism spectrum disorders (ASD), Dynamic facial expression, Fusiform gyrus, Inferior frontal
gyrus, Medial prefrontal cortex, Middle temporal gyrus/superior temporal sulcus, Mirror neuron system
Background
Individuals with autism spectrum disorders (ASD) are char-
acterized primarily by qualitative impairments in social
interaction [1]. One of the most evident features of their so-
cial impairment involves deficient communication via emo-
tional facial expressions [2]. For example, several previous
behavioral studies reported that individuals with ASD
exhibited less attention [3], attenuated emotional behaviors
[4], and reduced and/or inappropriate facial reactions [5] in
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reproduction in any medium, provided the or
response to the facial expressions of other individuals com-
pared with typically developing individuals.
Several neuroimaging studies using functional mag-

netic resonance imaging (fMRI) and positron emission
tomography tested the neural substrates of impaired
facial-expression processing in ASD and reported incon-
sistent findings. Almost all these studies used photos of
emotional facial expressions as stimuli and found that
individuals with ASD showed abnormal activities in sev-
eral brain regions, including the posterior superior tem-
poral sulcus (STS) or its adjacent regions such as the
middle temporal gyrus (MTG) [6-8], the posterior fusi-
form gyrus (FG) [7,9-13], amygdala (AMY) [6-8,12],
medial prefrontal cortex (MPFC) at around the medial
superior frontal gyrus [8,14], and the inferior frontal
gyrus (IFG) [9,15,16]. Most of these studies reported
hypo activation of these regions [6-11,13-16] (however,
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see [12]). Substantial neuroimaging and neuropsycho-
logical evidence in typically developing individuals has
suggested that these brain regions are related to social
activities, such as the visual analysis of dynamic aspects
of faces involving the STS/MTG [17], the visual analysis
of invariant aspects of faces and/or subjective percep-
tion of faces involving the FG [18], emotional proces-
sing involving the AMY [19], attribution of mental
states involving the MPFC [20], and motor mimicry
involving the IFG [21]. Based on these data, these
regions have been called “social brain” regions [22-28].
Hence, the findings in individuals with ASD appear to
account for their impaired processing of emotional facial
expressions. However, it must be noted that different
studies have reported abnormalities in different parts of
the social brain, and thus the results appear to be far
from consistent. Furthermore, whether the neural sub-
strates of impaired expression processing in ASD can be
traced to reduced activity in any specific brain region
and/or to reduced connectivity among the regions,
which has been suggested in other lines of ASD research
(cf. [29]), remains unknown.
Dynamic facial expressions are more natural and

powerful cues in real-life social interaction than are
static expressions. From an evolutionary perspective
[30-32], human minds are programmed to efficiently
process dynamic facial expressions of conspecifics com-
pared with their static expressions, which are artificial
signals or products of technology. The importance of
the dynamic properties of facial expressions is illustrated
by behavioral studies of typically developing individuals.
Researchers who observed facial expressions in real
situations described rich, dynamic information in emo-
tional facial expressions [31,33]. Several experimental
studies have indicated that dynamic facial expressions,
as compared with static expressions, induced more evi-
dent psychological activities, such as perception (e.g.,
[34]), emotional reactions (e.g., [35]), and facial mimicry
(e.g., [36]). Advantages of using dynamic compared to
static facial expressions to induce behavioral reactions
have even been shown in newborn infants [37]. Consist-
ent with these behavioral data, several neuroimaging
studies with typically developing participants have
shown that the social brain regions were more active
when viewing dynamic as compared to static facial
expressions [38-42]. These regions included the STS/
MTG [38-42], FG [38-40], AMY [39,40,42], MPFC
[38,39], and IFG [39,40,42].
Nevertheless, few studies have investigated brain activ-

ities in response to dynamic facial expressions in indivi-
duals with ASD. Impaired social interaction via
emotional expression has consistently been shown in
individuals with ASD in real situations [3-5], and dy-
namic, not static, facial expressions would be plausible
mediums for such impairments. Consistent with this
idea, several behavioral studies have demonstrated that
impairments in the ability of individuals with ASD to
process emotional expressions were more evident in re-
sponse to dynamic than to static facial expressions (e.g.,
[43]). Therefore, it is reasonable to assume that neuroi-
maging studies using dynamic facial expressions would
more clearly identify abnormal brain activities in these
participants. Pelphrey et al. [44] tested this issue by pre-
senting dynamic and static facial expressions depicting
anger, fear, and neutral emotions to a group of indivi-
duals with ASD and to typically developing controls.
The researchers found that the observation of dynamic
facial expressions elicited less activation in the ASD
group as compared with the control group in several so-
cial brain regions including the STS/MTG, FG, AMY,
and MPFC. These data suggest that this reduced brain
activation in response to dynamic facial expressions
reflects the neural basis of impaired facial expression
processing in individuals with ASD. However, this study
did not reveal clear IFG activity in either the ASD or
the control group. This issue could be critical because
the IFG has recently received considerable interest in the
neuroscientific literature on ASD. Indeed, it has been
suggested that the IFG contains specific neuronal popu-
lations, known as “mirror neurons,” that discharge both
when observing and when executing specific actions (for
reviews, see [45,46]). In the context of behavioral data
indicating abnormal mimicking in ASD (e.g., [47]), some
researchers have proposed that IFG dysfunction may
constitute a fundamental deficit in ASD [48-50]. We rea-
soned that we could clarify this issue by using dynamic
facial expression stimuli that were shown to effectively
activate the IFG in typically developing individuals [40].
We hypothesized that the observation of dynamic, com-
pared with static, facial expressions would clearly reveal
hypo activation of social brain regions (i.e., STS/MTG,
FG, AMY, MPFC, and IFG) in individuals with ASD.
Furthermore, the functional network patterns of the

social brain regions for processing dynamic facial
expressions in both typically developing individuals and
those with ASD remain unknown. A previous study
tested the effective connectivity in typically developing
control and ASD groups using dynamic facial expres-
sions as stimuli and found differential patterns of effect-
ive connectivity between groups [51]. However, because
that study focused on the effects of tasks, the functional
network underpinning the processing of dynamic facial
expressions per se remains to be tested. Among the
components of the social brain, converging data from
anatomical and theoretical studies suggest that the STS/
MTG and IFG constitute the circuit. Several anatomical
studies, including histological examinations in humans
[52,53] and non-human primates [54,55], as well as
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diffusion tensor imaging in humans [56-58] and non-
human primates [57], indicated that the STS/MTG and
IFG are directly connected. Some researchers have pro-
posed that this circuit serves an important function in
social interaction as the mirror neuron system (MNS) in
typically developing individuals and is impaired in indivi-
duals with ASD [50,59,60]. However, this idea remains to
be empirically tested. Based on these data, we hypothesized
that observation of dynamic versus static facial expressions
would enhance the functional couplings of the neural net-
works including the STS/MTG and IFG of typically devel-
oping individuals and that reductions would be found in
the same functional neural networks of individuals with
ASD.
In the present fMRI study, we examined the brain activ-

ities of a group of high-functioning individuals with ASD
and age- and sex-matched typically developing controls
while they viewed dynamic and static facial expressions.
The stimuli used to depict dynamic facial expressions were
shown to activate the social brain regions, including the
IFG, in typically developing participants [40]. The stimuli
were also found to sufficiently represent natural changes in
facial expressions [61] and to effectively induce subjective
Table 1 Brain regions showing significant activation for dyna

Brain region BA Control

Coordinates T-valu

x y z

R. middle occipital gyrus 19 34 -84 8 7.12

R. middle temporal gyrus 37 52 -62 0 17.60

R. middle temporal gyrus 37 40 -60 -12 6.92

R. middle temporal gyrus 21 50 -36 6 6.05

R. temporal pole 38 54 6 -12 3.42

R. supra marginal gyrus 48 54 -28 28 5.75

R. precentral gyrus 6 40 -2 50 4.59

R. inferior frontal gyrus 45 56 28 10 4.47

R. middle frontal gyrus 9 52 8 36 4.59

R. hippocampus - 32 -10 -16 4.27

R. amygdala - 28 -8 -12 4.54

R. medial superior frontal gyrus 10 6 64 22 4.50

L. medial superior frontal gyrus 10 -14 50 18 4.76

L. middle occipital gyrus 19 -48 -78 0 13.45

L. middle temporal gyrus 21 -56 -50 10 6.62

L. middle temporal gyrus 22 -52 -18 0 3.19

L. superior temporal gyrus 42 -62 -32 20 3.52

L. fusiform gyrus 37 -42 -58 -16 4.86

L. supra marginal gyrus 48 -46 -32 22 4.07

L. amygdala - -26 -6 -16 4.65

The coordinates of the foci of activation in Montreal Neurological Institute space, th
(ASD) groups are shown in the left and right parts, respectively.The extent threshol
p < .01 (uncorrected) were used.
emotion [35] and facial mimicry [36] in typically developing
individuals. We prepared facial expressions with both nega-
tive (fearful) and positive (happy) emotional valences. The
participants were asked to discriminate the sex of the pre-
sented faces to ensure that they were attending to the stim-
uli and to prevent their explicit processing of the emotional
expressions. By comparing the brain activities under dy-
namic versus static facial expression conditions, we identi-
fied the regions involved in the processing of dynamic facial
expressions. Furthermore, to investigate effective connectiv-
ity, we conducted dynamic causal modeling (DCM).

Results
Behavioral performance
The correct response percentage of the sex-
discrimination task was comparable across groups: dy-
namic fear (control: M= 98.4, SD= 1.1; ASD: M= 92.4,
SD= 5.3), dynamic happiness (control: M= 98.7, SD= 1.0;
ASD: M= 93.4, SD= 5.3), static fear (control: M= 98.7,
SD= 1.0; ASD: M= 93.9, SD= 4.3) and static happiness
(control: M= 97.4, SD= 1.3; ASD: M= 93.8, SD= 3.8). A
three-way repeated-measures analysis of variance
(ANOVA) using group, presentation condition, and
mic versus static facial expressions

ASD

e Cluster Coordinates T-value Cluster

size (mm3) x y z size (mm3)

77624 46 -78 0 6.35 27336

52 -64 -2 9.29

48 -48 6 6.21

60 -24 38 3.92

48 -6 46 3.42

46 8 36 3.73

4720

47592 -52 -72 2 9.28 16928

-58 -54 2 4.55

5368

e T-values, and the cluster sizes for the control and autism spectrum disorders
d of p < .05, corrected for multiple comparisons, with the height threshold of
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emotion as factors on the correct response percentage
showed no significant main effects or interactions.
Correct response reaction times (RTs) were also com-

parable across groups: dynamic fear (control: M= 231.3,
SD= 25.5; ASD: M= 242.0, SD= 52.7), dynamic happi-
ness (control: M= 237.8, SD= 28.6; ASD: M= 205.7,
SD= 53.0), static fear (control: M=183.0, SD=21.0; ASD:
M=186.4, SD=45.5) and static happiness (control:
M=182.0, SD=22.1; ASD: M=201.3, SD= 41.2). An
ANOVA with the same design as described above on the
correct RTs showed only a significant main effect of pre-
sentation condition, indicating longer RTs in response to
dynamic than to static presentations (F(1,23) = 13.96,
p< .005).
In summary, behavioral performance data revealed no

significant effects related to group.
Regional brain activity
We tested regional brain activity using the three-way
repeated-measures ANOVA model with group, presenta-
tion condition, and emotion as factors (Additional file 1:
Figure S1). Initially, the simple main effect of presenta-
tion condition, contrasting dynamic and static presenta-
tions, was tested for each group (Table 1; Figure 1). For
the control group, broad ranges of bilateral posterior
regions, which included activation of the MTG and FG,
were detected as areas of significant activation. Signifi-
cant activation was also observed in the bilateral AMY,
Figure 1 Statistical parametric maps showing significant brain activat
and autism spectrum disorders (ASD) groups are shown in the left and righ
normalized brains (upper) and overlaid on the normalized anatomical MRI
activation (lower). The cross hairs in the lower panels are centered on the a
z -16; t= 4.65; cluster size = 5368 mm3). An extent threshold of p< .05, corre
(uncorrected) were used. L = Left hemisphere; R = Right hemisphere.
bilateral MPFC, and right IFG. For the ASD group, bilat-
eral activation of the posterior regions was found to be
significant, although its size was smaller than that of the
control group. No other areas showed significant activa-
tion, including such social brain regions as the AMY,
MPFC, and IFG.
Then, a planned contrast of the interaction between

group and presentation condition was conducted, testing
for reduced activation in the ASD as compared with the
control group under dynamic versus static conditions
(Table 2; Figure 2). The bilateral posterior regions, in-
cluding the activation foci in the MTG in the right
hemisphere and the FG in both hemispheres, were sig-
nificantly activated. Significant activation was also found
in the left AMY, bilateral MPFC, and right IFG. No sig-
nificant activation was observed in any other region.
We also conducted exploratory analyses for other

interactions related to the group factor in the whole
brain, but found no significant results.
DCM
DCM analyses were conducted to test the MNS network
for each group. Bi-directional (forward and backward) in-
trinsic connections were constructed between the primary
visual cortex (V1) and MTG and between the MTG and
IFG (Figure 3a). The modulatory effect of dynamic pre-
sentation was modeled to modulate each of these bi-
directional connections. Based on the locations of the
ion for dynamic versus static facial expressions. The control (CON)
t panels, respectively. The areas of activation are rendered on spatially
of one of the participants at the coronal section showing amygdala
ctivation focus of the left amygdala in the control group (x -26, y -6,
cted for multiple comparisons, with a height threshold of p< .01



Table 2 Brain regions showing significant interactions
between group and presentation condition

Brain region BA Coordinates T-value Cluster

x y z size (mm3)

R. inferior occipital gyrus 19 42 -78 -16 3.04 9192

R. inferior temporal gyrus 19 48 -70 -8 3.79

R. middle temporal gyrus 37 52 -62 0 5.08

R. fusiform gyrus 37 40 -58 -14 3.00

R. inferior frontal gyrus 45 48 26 8 3.06 840

R. medial superior
frontal gyrus

10 8 66 20 3.87 1864

L. medial superior
frontal gyrus

10 -14 50 18 4.33

L. lingual gyrus 18 -16 -86 -12 3.55 21616

L. inferior occipital gyrus 18 -30 -88 -22 4.27

L. middle occipital gyrus 19 -48 -80 0 5.42

L. fusiform gyrus 37 -42 -60 -16 3.08

L. amygdala - -28 -4 -18 2.89 520

The coordinates of the foci of activation in Montreal Neurological Institute
space, their T-values, and the cluster sizes are shown.
The extent threshold of p< .05, corrected for multiple comparisons, with the
height threshold of p< .01 (uncorrected) were used.
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modulatory effects, we constructed the following four
models (Figure 3b): (1) the null model, with no modula-
tory effect; (2) the MNS-entrance modulation model, with
modulatory effects on the V1–MTG connections; (3) the
MNS-core modulation model, with modulatory effects on
the MTG–IFG connections; and (4) the full model, with
modulatory effects on both the V1–MTG and MTG–IFG
connections. The exceedance probability of the Bayesian
model selection (BMS) indicated that the full model was
the most likely for both groups (Table 3).
To test group differences in coupling parameters,

Bayesian model averaging (BMA) analysis was con-
ducted (Table 3), and the resultant posterior means of
modulatory effect parameters (Figure 3c) were analyzed.
First, to test for differences from zero, one-sample t-tests
were conducted for each group. The results showed that
the facilitative modulatory effects of dynamic presenta-
tion were significant among members of the control
group for all bi-directional connections between the V1
and MTG and the MTG and IFG (t(12) > 3.76; p < .005).
Significant facilitative modulatory effects of dynamic
presentation were found for the connection from the V1
to the MTG (t(11) = 2.73; p < .05) but not for any other
connections (t(11) < 1.20; p > .1) in the ASD group. To
test for differences between groups, two-sample t-tests
were conducted. The results showed reduced modula-
tory effects under the dynamic condition with respect to
all connections in the ASD group as compared with the
control group (t(23) > 1.91; p < .05).
Discussion
Regional brain activity
Our results regarding regional brain activity in the con-
trol group showed that observation of dynamic facial
expressions was associated with greater activation than
observation of static facial expressions in distributed
brain regions including the MTG, FG, AMY, MPFC, and
IFG. The activation of these regions is consistent with
the findings of previous studies (e.g., [40]). All of these
brain regions have been proposed to constitute the social
brain network (e.g., [28]); our results confirm that the
presentations of dynamic versus static facial expressions
are appropriate for activating the social brain networks
of typically developing individuals.
More importantly, the group comparison results

showed that these social brain regions were less acti-
vated in response to dynamic than to static facial expres-
sions in the ASD compared with the control group.
Because the participants in the ASD group had no
symptoms other than social impairment and repetitive
traits, these results can be attributed to the core deficits
of ASD. The reduced activation of the social brain
regions in individuals with ASD in response to dynamic
facial expressions is consistent with the findings of a pre-
vious study [44]. Because group differences in IFG activ-
ities were not reported in the previous study, the current
study is the first to provide evidence that functional ab-
normality in this region is related to the impaired pro-
cessing of dynamic facial expressions in ASD. We
consider the possibility that some methodological differ-
ences may account for the disparity in the results. For
example, the stimuli depicting dynamic facial expres-
sions in the present study reflected more rapid changes
than did those used in the study conducted by Pelphrey
et al. [44]. A previous behavioral study reported that the
speed at which dynamic facial expressions changed influ-
enced the recognition of natural facial expressions and
suggests that the speed used in the present study was
preferable for natural dynamic facial expressions [61].
Because several anatomical studies have reported single-
cell and/or population level structural abnormalities
in the social brain regions (i.e., STS/MTG [62-64],
FG [65,66], AMY [67,68], MPFC [64,69], and IFG
[62,64,70]) it is plausible that these regions reflect char-
acteristics of abnormal brain functioning in ASD. Be-
cause dynamic facial expressions are realistic mediums
for social interaction, our results suggest that the weak
activation in these social brain regions is related to the
real-life impairments in communication via facial
expressions experienced by individuals with ASD.
Previous neuroimaging studies of typically developing

participants (e.g., [71-73]; for reviews, see [17,18]) have
shown that the STS/MTG is involved in visual analyses
of the dynamic or changeable aspects of faces. Previous



Figure 2 Brain activation for the significant interaction between group and presentation condition. Weaker activation was found in the
autism spectrum disorders (ASD) group than in the control (CON) group for dynamic (DY) versus static (ST) expressions. A. Statistical parametric
maps rendered on spatially normalized brains. A height threshold of p< .01 (uncorrected) was used without extent threshold restriction for
display purposes. L = Left hemisphere; R = Right hemisphere. B. Statistical parametric maps of representative brain regions overlaid on the
normalized anatomical MRI of one of the participants in this study. From left to right, the activation of the middle temporal gyrus (MTG; x 52, y
-62, z 0; t= 5.08), fusiform gyrus (FG; x 40, y -58, z -14; t= 3.00), amygdala (AMY; x -28, y -4, z -18; t= 2.89), medial prefrontal cortex (MPFC; x 8, y 66,
z 20; t= 3.87), and inferior frontal gyrus (IFG; x 48, y 26, z 8; t= 3.06) is shown. The statistical thresholds are the same as above. C. Mean parameter
estimates (± SE) of brain regions corresponding to the above overlaid MRIs. The data were extracted at the sites of peaks. FE = Fear;
HA=Happiness.
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neuroimaging studies also showed that observation of
dynamic point-light displays of human actions activated
the STS/MTG in typically developing individuals but
not in those with ASD [74,75]. Consistent with these
neuroscientific data, several behavioral studies have
reported that individuals with ASD showed impaired
perception of dynamic human actions [76-80]. In their
review of behavioral and neuroscientific studies, Dakin
and Frith [81] proposed that individuals with ASD ex-
perience impairment in the perception of human
actions and that this impairment appears to be related
to dysfunction in the STS/MTG. Together with these
data, our results suggest that reduced STS/MTG activa-
tion is involved in impaired visual analyses of the
dynamic aspects of emotional facial expressions experi-
enced by those with ASD.
In contrast, the FG has been shown to relate to the

visual analyses of invariant aspects of faces and/or the
subjective perception of faces in typically developing
participants (e.g., [72,82]; for a review, see [18]). Several
previous neuroimaging studies in individuals with ASD
have also reported reduced FG activation in processes
involved in basic visual discrimination of faces versus
non-faces [83-85]. Together with these data, our results
suggest that the dynamic presentations of facial expres-
sions enhance the visual analyses or perception of faces
in typically developing individuals but not in individuals
with ASD.



Figure 3 Models and results of dynamic causal modeling (DCM) regarding the mirror neuron system (MNS). A. Analyzed brain regions
rendered on the spatially normalized brain. V1 = Primary visual cortex; MTG=Middle temporal gyrus; IFG = Inferior frontal gyrus. B. Analyzed
models. Thin arrows indicate intrinsic connections between brain regions. Bold arrows indicate the modulatory effects of dynamic presentation.
C. Mean coupling parameters (± SE) for the control (CON) and autism spectrum disorders (ASD) groups. Statistical comparisons showed that all
parameters were significantly weaker in the ASD than in the control group (t-test, p< .05).
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The AMY has been shown to be involved in emotional
processing of typically developing participants while they
view dynamic facial expressions [86]. A previous neuroi-
maging study reported consistent changes in the AMY
activities of typically developing controls but not of
those with ASD as a function of the intensity of the
emotional facial expressions depicted in photos, suggest-
ing abnormal emotional processing in the AMY of indi-
viduals with ASD [8]. Several lesion studies in animals
have also indicated that damage to the AMY induced
Table 3 Summary of the results of Bayesian model selection (

Model BMS: Posterior family
exceedance probabilities

Control ASD

1: Null Model 0.00 0.01

2: MNS Entrance Model 0.31 0.27

3: MNS Core Model 0.00 0.02

4: Full Model 0.69 0.70
abnormal emotional reactions to the emotional expres-
sions of other individuals (e.g., [87]), which have been
likened to the socioemotional impairments in ASD [88].
Consistent with these neuroscientific data, a previous
behavioral study reported that individuals with ASD did
not show higher autonomic and behavioral responses to
distressed than to neutral dynamic expressions, although
typically developing controls did show such responses
[4]. Combined with these data, our results suggest that
reduced AMY activation is involved in the impaired
BMS) and Bayesian model averaging (BMA)

BMA: Mean (±SD) number of selected
models in the Occam's window

Control ASD

0.0 (0.0) 0.3 (0.5)

1.0 (0.0) 1.0 (0.0)

0.0 (0.0) 0.3 (0.5)

1.0 (0.0) 1.0 (0.0)
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emotional reactions to dynamic facial expressions shown
by individuals with ASD.
The MPFC has been shown to be activated when par-

ticipants attributed mental states to others (i.e., menta-
lizing or theory of mind; e.g., [89]; for a review, see [20]).
The ability to mentalize has been proposed as a the spe-
cific characteristic that has emerged over the course of
human evolution [90] and as constituting a crucial social
deficit in ASD [91]. The reduced MPFC activation in
mentalizing tasks among individuals with ASD com-
pared with typically developing individuals has also been
shown in previous neuroimaging studies [14,92,93]. Our
results showing that this region was active in response
to dynamic facial expressions among those in the control
group suggest that typically developing individuals auto-
matically try to read others’ mental states in real-life so-
cial interaction. Furthermore, our results showing group
differences in the activities in this region suggest that
such automatic mentalizing is relatively less pronounced
in those with ASD.
Several previous neuroimaging studies involving typic-

ally developing participants have reported greater IFG
activation not only when participants passively observed
dynamic versus static facial actions [39,40,42,94,95], but
also when participants imitated the dynamic facial
expressions that they were viewing than compared with
when they passively viewed these stimuli [96,97]. This
finding is consistent with theories proposing that the
IFG contains mirror neurons [45,46], which are activated
in response to both the observation and the execution of
facial expressions. Previous neuroimaging [16] and mag-
netoencephalographic [98] studies have consistently
indicated that the imitation of facial actions while view-
ing static facial stimuli induced less activation in the IFG
in the ASD than in the control group. Together with
these data, our results suggest that the reduced IFG acti-
vation in individuals with ASD in response to dynamic
facial expressions is related to deficits in automatic facial
mimicry in ASD.
It is interesting to note that visual inspection of IFG

activities (Figure 2) indicates that the ASD group partici-
pants showed clear IFG activation against the resting
condition, although the differences between dynamic
and static conditions were smaller than those in the con-
trol group. Consistent with these data, previous behav-
ioral studies reported that individuals with ASD did not
lack facial reactions to the emotional facial expressions
of other individuals but instead reacted to the facial
expressions differently from the ways in which typically
developing individuals reacted [5,99-101]. Collectively,
our results suggest that the activation patterns of the
mirror neurons in the IFG in individuals with ASD may
be altered, perhaps producing abnormal facial mimicry
during social interaction involving facial expressions.
Effective connectivity
Our results regarding the DCM in the control group
showed that observation of dynamic compared with
static facial expressions enhanced effective connectivity
of the MNS network connecting the V1, MTG, and IFG.
These results provide a mechanistic account of the
enhanced activities manifested by sets of brain regions
in response to dynamic facial expressions by construing
them as a positively connected circuit. For example, the
STS/MTG is more active in response to dynamic than to
static faces because the inputs from the V1 through the
feed forward connection and the inputs from the IFG
through the feedback connection are enhanced. The re-
sult also provides suggestions for information flow in the
neural processing of dynamic facial expressions: When
we observe dynamic facial expressions, the visual infor-
mation processed through the V1 and STS/MTG is
transmitted to the motor processing area in the IFG;
then, the motor representation in the IFG modulates vis-
ual decoding in the STS/MTG, which then modulates
basic visual processing in the V1. These systematic views
are consistent with previous theoretical proposals that
these brain regions constitute the functional network of
the MNS and/or social brain network (e.g., [59]). To our
knowledge, this is the first evidence that dynamic facial
expressions enhance not only regional brain activities
but also effective connectivity among these regions.
More interestingly, our results revealed weaker modu-

latory effects of dynamic facial expressions on the MNS
connections in the ASD group than in the control
group. As in the case of the control group, our results
provide a mechanistic account of the relatively weak ac-
tivities of the social brain regions for processing dynamic
facial expressions in individuals with ASD: In these indi-
viduals, positive connectivity among the regions is weak.
For example, STS/MTG activation induced by dynamic
versus static facial expressions is reduced because feed
forward inputs from the V1 and feedback inputs from
the IFG are weaker than those in typically developing
individuals. The effect of weak neural connectivity in
ASD has been theoretically proposed in several previous
studies (e.g., [102]). Previous empirical studies have also
reported that individuals with ASD showed reduced
functional connectivity while engaging in social tasks,
such as expression recognition [51,103], face perception
[104,105], mentalizing [92], and other non-social cogni-
tive tasks [106-110]. Our results extend the literature by
providing the first evidence that effective connectivity
modulation of the social brain network for processing of
dynamic facial expressions is reduced in ASD.
Our results showed reduced modulatory effects in

both the core (MTG–IFG) and the entrance (V1–MTG)
connections of the MNS in the ASD group. These
results provide insights into the loci of abnormalities in
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the social brain networks of those with ASD. As men-
tioned above, several previous studies have found abnor-
mal activities in the social brain regions of individuals
with ASD (e.g., [16]). These data suggest the existence of
problems in the core parts of the social brain network in
ASD. However, some other studies have reported abnor-
mal activities in the early visual cortices in individuals
with ASD (e.g., [111]; for a review, see [112]), suggesting
that problems begin before the social brain is involved.
Our results allow reconciliation of these lines of research
by indicating functional problems at both the entrance
and the core of the social brain network among those
with ASD.
Our results provide unique explanations and predic-

tions of the behaviors of typically developing individuals
and of those with ASD. For example, a previous behav-
ioral study among typically developing individuals
showed that intentional facial mimicking facilitated the
recognition of dynamic facial expressions [113]. Our
results explain this finding by indicating that one’s own
facial motor commands related to IFG activation facili-
tate the visual analyses of others’ facial expressions that
are related to MTG activation. Such an idea provides the
basis for predicting that the facilitative effect of facial
mimicry on expression recognition may be impaired in
individuals with ASD.

Implications, limitations, and future directions
Our results showing the group differences in the func-
tioning of the social brain network in response to dy-
namic versus static facial expressions have practical
implications for experimental studies on ASD. Several
behavioral and neuroscientific studies have previously
used static emotional facial expressions as stimuli to in-
vestigate abnormalities in the processing of emotional
expressions in individuals with ASD and have produced
inconsistent findings. Based on our results, we propose
that the presentations of dynamic facial expressions are
more appropriate than the presentations of static expres-
sions for revealing abnormalities in social interaction
among those with ASD. Consistent with this idea, some
pioneering behavioral studies have found that dynamic
presentations of facial stimuli revealed abnormal be-
havioral patterns characterizing the social interaction
of individuals with ASD; these results have not been
observed in studies using static presentations. For ex-
ample, Uono et al. [43] reported that experiments using
dynamic facial expressions as stimuli revealed the faci-
litative effect of emotional expression on automatic
gaze-triggered attentional shifts in typically developing
individuals and the impairment in this regard among in-
dividuals with ASD, although such effects were not found
in response to static presentations [114]. We expect
that further studies using dynamic facial expressions as
stimuli will provide pronounced evidence of the cogni-
tive mechanisms and neural substrates underlying the
social impairments of ASD.
Some limitations of this study should be acknowl-

edged. First, the contrast between dynamic emotional
and dynamic neutral expressions remains untested. Such
a contrast would allow us to discriminate between the
effects of facial motion and those of the emotional mes-
sages conveyed by dynamic facial expressions. This issue
could be intriguing because inconsistent findings have
been reported in studies with typically developing indivi-
duals regarding social brain activation patterns for dy-
namic emotional versus dynamic neutral faces (e.g.,
[39,115,116]). Regarding this issue, Pelphrey et al. [44]
measured brain activation in response to dynamic neu-
tral faces, which were derived from identity morphing,
and static neutral faces in ASD and typically developing
control groups. They found no significant interaction be-
tween group (ASD vs. control) and presentation condi-
tion (dynamic neutral vs. static neutral) in the activation
of the AMY, FG, or STS/MTG. These results suggest
that weaker activation of these regions induced by dy-
namic facial expressions in ASD might not be accounted
for by facial motion per se. However, this question
remains unresolved for the activities of other social brain
regions (e.g., the IFG), and further investigation on dy-
namic neutral faces is an important matter for future
research.
Second, we tested only fearful and happy facial expres-

sions. Hence, the effects of dynamic presentations of
other emotions on individuals with ASD remain to be
examined. Observation of dynamic facial expressions
depicting other emotions may reveal abnormal activities
in other brain regions among those with ASD. For ex-
ample, some previous neuroimaging studies with typic-
ally developing participants have reported that the
observation of dynamic and/or static disgusted facial
expressions activated brain regions that were not acti-
vated in the present study, including the basal ganglia
and insula (e.g., [117,118]; for a review, see [19]). A pre-
vious neuroimaging study showed that the observation
of photos depicting disgusted facial expression induced
less activation in these brain regions in the ASD than in
the control group [15], although such a group difference
was not evident in another study [13]. We speculate that
the observation of dynamic versus static facial expres-
sions of disgust may provide clear evidence of abnormal
activities of these brain regions in individuals with ASD.
Third, our study did not record eye movements during

participants’ observations of dynamic and static facial
expressions, although a previous neuroimaging study
suggested that an abnormal fixation pattern on faces
reduced FG activation in individuals with ASD [12]. This
issue may be relevant because we presented stimuli for
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1500 ms to depict dynamic aspects of facial expressions,
which is long enough for the participants to make eye
movements. To reduce the effect of eye movements, we
instructed participants to fixate on a point between the
eyes (the center of the screen). Some previous studies
[119,120] using the same instruction reported that the
FG of individuals with ASD showed normal activation
in response to faces. Accordingly, our fMRI results
(Figure 2) demonstrated that FG activities in response
to static facial expressions were comparable across the
ASD and control groups. These data may rule out the
possibility that the abnormal fixation pattern on faces
would account for the lower levels of brain activation in
individuals with ASD. However, such speculation should
be verified in future studies recording eye movements
during the processing of dynamic facial expressions.
Fourth, our functional coupling analyses were

restricted to a part of the social brain network because
DCM was designed to test specific hypotheses rather
than to act as an exploratory technique [121,122]. Cur-
rently, knowledge about the anatomical and functional
connections among all social brain regions remains lack-
ing. It is plausible that the MNS is a sub-component in
a more widespread network. For example, the AMY may
directly modulate the activities of the MTG and IFG or
may exert a bilinear modulatory effect on the connection
between these regions. Further studies regarding ana-
tomical and functional connectivity are necessary to elu-
cidate the social brain network and related impairments
in ASD.

Conclusions
In summary, our results showed that activation of sev-
eral brain regions (i.e., MTG, FG, AMY, MPFC, and
IFG) in response to dynamic versus static expressions
was weaker in the ASD than in the control group. The
results also revealed that the modulatory effects of dy-
namic facial expressions on bi-directional effective con-
nectivity in the V1–MTG–IFG circuit were weaker in
the ASD than in the control group. These data suggest
that weak activity and connectivity of the social brain
network for processing dynamic facial expressions
underlie the impairments demonstrated by individuals
with ASD in real-life social interaction.

Methods
Participants
The ASD group comprised 12 adults (1 female, 11
males; age, M= 27.5, SD= 7.6). Although an additional
male candidate actually participated, his data were not
analyzed due to large motion artifacts (>3 mm). The
group consisted of eight males with Asperger’s disorder
and four (1 female, 3 males) with pervasive developmen-
tal disorder not otherwise specified (PDD-NOS). As
defined in the Diagnostic and Statistical Manual-Fourth
Edition-Text Revision (DSM-IV-TR)[1], PDD-NOS
includes heterogeneous subtypes of ASD, ranging from
so-called atypical autism to a subgroup with symptoms
milder than Asperger’s disorder (i.e., satisfying fewer
diagnostic criteria than required for a diagnosis of
Asperger’s disorder). In this study, only high-functioning
PDD-NOS participants with milder symptoms than
those associated with Asperger’s disorder were included.
Neurological and psychiatric problems other than those
associated with ASD were ruled out. Participants were
not taking medication. Therefore, all participants in the
ASD group had only the core deficits of ASD (i.e., social
impairments and repetitive traits).
The diagnosis was made using DSM-IV-TR by a strin-

gent procedure in which every item of the ASD diagnos-
tic criteria was investigated in interviews with the
participants and their parents (and professionals who
helped them, if any) by two psychiatrists with expertise
in developmental disorders. Only participants who met
at least one of the four social impairment items (i.e., im-
pairment in nonverbal communication including lack of
joint attention, sharing interest, relationship with peers,
and emotional and interpersonal mutuality) without sat-
isfying any items of the criteria of autistic disorder, such
as language delay, were included. Comprehensive inter-
views were administered in order to obtain information
about the participants’ developmental histories for diag-
nostic purposes.
For 10 individuals among the ASD group, the level of

symptom severity was quantitatively assessed using the
Japanese version of Childhood Autism Rating Scale
(CARS) [123] administered by a psychiatrist with expert-
ise in developmental disorders. The CARS is one of the
most widely used scales to evaluate the degree of ASD
[124]. The CARS scores in the ASD group (M= 21.1,
SD= 1.7) were comparable to those in previous studies
with individuals with Asperger’s disorder [124] and indi-
viduals with Asperger’s disorder and Asperger type
PDD-NOS [125] (t-test, p > .1). These data support that
the symptoms were severe enough in the ASD group.
Full-scale intelligence quotients (IQs), measured by the

Wechsler Adult Intelligence Scale-Revised (WAIS-R), of
all participants in the ASD group fell within the normal
range (full-scale IQ: M= 113.1, SD= 12.5; verbal IQ:
M= 117.3, SD= 10.8; performance IQ: M= 106.3,
SD= 14.9).
The control group comprised 13 adults (1 female, 12

males; age, M= 24.3, SD= 3.4). They had no neurological
or psychiatric problems. They were recruited through
advertisements and were matched with the ASD group
for age and sex. The full-scale IQs, measured by the
WAIS-R, of all control participants also fell within the
normal range (full-scale IQ: M= 126.3, SD= 6.1; verbal
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IQ: M= 128.1, SD= 7.2; performance IQ: M= 118.8,
SD= 11.2).
All participants had normal or corrected-to-normal

visual acuity. All subjects were right handed, as assessed
by the Edinburgh Handedness Inventory [126]. Each par-
ticipant provided informed consent to participate in the
study, which was conducted in accordance with institu-
tional ethical provisions and the Declaration of Helsinki.

Experimental design
The experiment involved a three-way repeated-measures
factorial design, with group (ASD, control) as a between-
participant factor and presentation condition (dynamic,
static) and emotion (fear, happiness) as within-
participant factors.

Stimuli
The stimuli were almost identical to those used in a pre-
vious fMRI study [40]. The raw materials were grayscale
photographs of faces of eight individuals (4 females, 4
males) chosen from a standard set [127] depicting fear-
ful, happy, and neutral expressions. Neutral expressions
were adopted as the starting point of the emotional
expressions. None of these faces was familiar to any of
the participants.
Dynamic expressions were created from photos via

computer animation. First, 24 images that increased
emotional expression by increments of 4% were created
between the neutral (0%) and emotional (100%) expres-
sions using computer-morphing software [128] imple-
mented on a computer operating with Linux. This
software was used in several other studies (e.g., [35,36]).
Next, to create a moving video clip, a total of 26 images
(i.e., one neutral image, 24 intermediate images, and the
image of the final emotion) were presented in succes-
sion. Each image was presented for 40 ms, and the first
and last images were presented for 230 additional ms;
thus, each clip lasted for 1500 ms.
The final expressions under the dynamic expression con-

dition were presented as static expressions for 1500 ms.

Presentation apparatus
The events were controlled by Presentation version 10.0
(Neurobehavioral System) implemented on a Windows
computer. The stimuli were projected from a liquid crys-
tal projector (DLA-G150CL, Victor) onto a mirror that
was positioned on a scanner in front of the participants.
Under these visual conditions, the stimuli subtended a
visual angle of about 15.0° vertical × 10.0° horizontal.

Procedure
The scan session consisted of 12, 20-sec epochs inter-
leaved with 12, 20-sec rest periods in which a blank
screen was presented. Each epoch consisted of eight
trials, and a total of 96 trials were performed in the scan.
Each of the four stimulus conditions (dynamic fear, dy-
namic happiness, static fear, and static happiness) was
presented in different epochs. The order of the epochs
was pseudorandomized, and the order of trials within
each epoch was randomized.
In each trial, a single individual stimulus was pre-

sented for 1500 ms. There was an interval of 1000 ms
before the next trial began, during which a fixation point
(a picture with a small gray “+” of the same size as the
stimulus) was presented on a white background at the
center of the screen. The participants were instructed to
direct their attention to the center of the screen until
the face had disappeared and to specify the sex of the
face presented by pressing one of two buttons with the
forefinger after the face had disappeared. This task
ensured participants’ attention to the stimulus and also
prevented idiosyncratic explicit processing for the emo-
tional expression. Post hoc debriefing confirmed that the
participants were not aware that the purpose of the ex-
periment was unrelated to sex discrimination.
MRI acquisition
Image scanning was performed on a 3-T scanning
system at the ATR Brain Activity Imaging Center
(MAGNETOM Trio A, Tim System, Siemens) using a
12-channel array coil without acceleration mode. The
functional images consisted of 40 consecutive slices
parallel to the anterior–posterior commissure plane
covering the whole brain. A T2*-weighted gradient-echo
echo planar imaging sequence was used with the fol-
lowing parameters: repetition time (TR) = 2500 ms; echo
time (TE) = 30 ms; flip angle (FA) = 90°; field of view
(FOV) = 192 × 192 mm; matrix size = 64 × 64; voxel
size = 3 × 3 × 4 mm. The order of slices was ascend-
ing. After the acquisition of functional images, a T1-
weighted high-resolution anatomical image was also
obtained using a magnetization-prepared rapid gradient-
echo sequence (TR= 2250 ms; TE = 3.06 ms; FA= 9°;
inversion time = 900 ms; FOV= 256 × 256 mm; matrix
size = 256 × 256; voxel size = 1 × 1 × 1 mm). Elastic
pads placed around each side of the participant’s head
were used to stabilize head position during functional
image acquisition.
Behavioral data analysis
The percentage and RTs of correct responses were ana-
lyzed using three-way repeated-measures ANOVAs with
group as a between-participant factor and presentation
condition and emotion as within-participant factors. We
had no specific predictions for the behavioral data, and
hence conducted two-tailed tests. Results were consid-
ered statistically significant at p < .05.
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Image analysis: Preprocessing
Image preprocessing and regional brain activity analyses
were performed using SPM5 (http://www.fil.ion.ucl.ac.
uk/spm) implemented in MATLAB version 7 (Math-
works). First, we performed slice-timing correction to
correct for the different times needed to acquire slices in
functional images. This process was also important to
the robustness of the DCM. To correct for head move-
ments, the functional images of each run were then rea-
ligned using the first scan as a reference. Data from all
participants showed small motion corrections (<2 mm).
Subsequently, the T1 anatomical image was co registered
to the first scan of the functional images. Next, the co
registered T1 anatomical image was normalized to a
standard T1 template image as defined by the Montreal
Neurological Institute (MNI), which involved linear and
non-linear three-dimensional transformations [129,130].
The parameters from this normalization process were
then applied to each of the functional images. Finally,
these spatially normalized functional images were re-
sample to a voxel size of 2 × 2 × 2 and smoothed with an
isotopic Gaussian kernel (8 mm) to improve the signal-
to-noise ratio and to compensate for the anatomical
variability among participants.

Image analysis: Regional brain activity analysis
We used random-effects analyses to identify significantly
activated voxels at the population level [131]. First, we
performed a single-subject analysis [132,133]. The task-
related blood-oxygen-level-dependent (BOLD) responses
under each condition were modeled with a boxcar func-
tion and convoluted with a canonical hemodynamic re-
sponse function. We used a high-pass filter composed of
a discrete cosine basis function with a cut-off period of
128 sec to eliminate the artifactual low-frequency trend.
Serial autocorrelation, assuming a first-order autoregres-
sive model, was estimated from the pooled active voxels
with a restricted maximum likelihood (ReML) procedure
and was used to whiten the data and the design matrix
[134]. To reduce the motion-related artifacts, the six re-
alignment parameters of the rigid-body transformation
used in the realignment step in the preprocessing were
added to the model.
Planned contrast was then performed. The four contrast

images of dynamic fear, dynamic happiness, static fear,
and static happiness versus rest were entered into the flex-
ible factorial model for each participant and each group,
generating a three-way repeated-measures ANOVA to
create a random-effect SPM{T}. The model included
group, presentation condition, and emotion as factors of
interest; participant was a factor of no interest (Additional
file 1: Figure S1). Based on preliminary analyses, the sex of
participants, which showed no significant main effect or
interaction in the results, was disregarded in the reported
analyses. The non-sphericity correction used in the flex-
ible factorial model corrected for possible differences in
variance between the groups due to the unequal sizes of
the samples. The same settings were used under the pres-
entation and emotion conditions to correct for uneven
variance between levels. The observations that were
dependent on presentation and emotion conditions were
also corrected. The ensuing covariance components
were estimated using ReML and then used to adjust the
statistics. This is exactly the same procedure used for
serial correlations in single-subject fMRI models. We
conducted preliminary analyses to test brain activation
under each condition in each group against the resting
condition using the same threshold criterion with
reported results and found that none of the predicted
social brain regions showed significant deactivation.
Hence, we did not use any masking procedures.
First, the simple main effect of dynamic versus static

presentations was tested for each group. For these ana-
lyses, active regions were reported as statistically signifi-
cant only if they survived the correction for multiple
comparisons across the entire brain. Next, our predic-
tion of the interaction between group and presentation
condition was tested. For this analysis, about which we
had specific predictions, we selected regions of interest
(ROIs): the MTG, FG, AMY, MPFC, and IFG. The ROIs
were defined as 8-mm-radius spheres centered on the
activation foci in the above simple main effect analysis
for the control group (cf. [135]). Anatomical specifica-
tion of the ROIs was conducted using the Talairach
Daemon [136] after the transformation of coordinates
from the MNI to Talairach systems. All ROIs were
confirmed to overlap with the activation foci in previ-
ous studies (e.g., [44]). These ROIs were independently
examined in an a priori manner (cf. [137,138]) by ap-
plying small-volume correction [139]. Analyses for this
interaction in other brain regions and for other inter-
actions related to the factor of group were conducted
in an a posteriori manner correcting for the volume of
the entire brain. Significantly activated voxels were
identified if they reached the extent threshold of p < .05
corrected for multiple comparisons, with a height
threshold of p < .01 (uncorrected). In this setting, the
minimum cluster size for the significant extent thresh-
old with the small-volume correction was 58 voxels.
To display the activation patterns across conditions,

the parameter estimate under each experimental condi-
tion (the beta value in the SPM) at the peak voxel of the
random-effect analysis was extracted and then averaged
across participants.

Image analysis: DCM
We used DCM [121] to explore how the effective con-
nectivity between brain regions was modulated by

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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dynamic facial expressions. DCM enabled us to draw
inferences about the influences that one neural system
exerted over another and about how this was affected by
the experimental context. Technically, DCM is described
as an input–state–output model with multiple inputs
and outputs, where inputs are represented by experi-
mental factors determined by the experimental paradigm
and outputs are the BOLD signals of all regions. The
system dynamics of the interacting brain regions are
described by changes in the neural state over time. The
modeled neural dynamics are transformed into area-
specific BOLD signals by a hemodynamic state model.
DCM estimates neural and hemodynamic state para-
meters with a Bayesian inversion scheme [121]. DCM
allowed us to estimate three different types of interac-
tions: (1) intrinsic connections, which represent fixed or
baseline connectivity among neural states; (2) modula-
tions of these connections by experimental manipula-
tions; and (3) driving input, which embodies the
influences of exogenous input on neural states. In this
study, we focused on the modulatory effect of dynamic
presentation on the cortical network for facial expres-
sion processing.
DCM was performed using SPM8 (http://www.fil.ion.

ucl.ac.uk/spm) implemented in MATLAB version 7
(Mathworks). To construct driving and modulatory
inputs in our DCM analysis, we remodeled single-
subject analyses. The design matrix contained the fol-
lowing three experimental factor-specific regressors: vis-
ual input (i.e., all experimental conditions) as the driving
input in the DCM; dynamic presentation as the modula-
tory input; and emotion (fear vs. happiness, which were
coded as 1 and -1, respectively). Emotion regressors
were included as effects of no interest. Other nuisance
regressors (realignment parameters and constant terms),
high-pass filters, and serial autocorrelations were at the
same settings as for regional brain activity analyses.
To define the cortico–cortical connectivity, we selected

three brain regions: the V1 (x 22, y -84, z -4), MTG (x 52,
y -62, z 0), and IFG (x 56, y 28, z 10) in the right hemi-
sphere. These ROIs were selected based on our hypothesis
described in the Background. The coordinates of the
MTG and IFG were defined based on the results of the
simple main effect of presentation condition (dynamic vs.
static) in the control group. The coordinates of the V1
were derived from the strongest activation focus in the
search region of the V1 in response to all stimulus presen-
tations in the control group; this value was defined by the
cytoarchitectonic map derived from data on human post-
mortem brains using the Anatomy Toolbox version 1.5
[140]. The identical activation focus was found in the ASD
group using the same procedure to define the V1. The
ROIs were restricted to the right hemisphere because
some ROIs showed significant activities only in the right
hemisphere. ROI time series were extracted for each par-
ticipant as the first eigenvariate of all voxels within a 3-
mm radius around the selected coordinate. These time
series were adjusted for the effect of interest and the nuis-
ance effects, high-pass filtered, and corrected for serial
correlation.
Next, the hypothesized model was constructed for

each participant. The visual input was modeled as the
driving input into the V1. The bi-directional (forward
and backward) intrinsic connections were constructed
between the V1 and MTG and between the MTG and
IFG. The modulatory effect of dynamic presentation
was modeled to modulate each of these bi-directional
connections. Based on the locations of the modula-
tory effects, we constructed following four models
(Figure 3b): the null model, MNS-entrance modulation
model, MNS-core modulation model, and full model.
To examine group differences in effective connectivity,

we first tested the most appropriate model for each
group using random-effect BMS [141]. We used the
exceedance probabilities as the evaluation measures
based on the belief that a particular model was more
likely than any other model given the group data (cf.
[142,143]). We next analyzed parameter estimates of the
averaged model resulting from BMA. We used the entire
model space and computed weighted averages of each
model parameter for which the weighting was given by
the posterior probability for each model [122,144]. This
approach is preferable in a group DCM study in which
BMS may indicate a group difference in the model
space. To expedite BMA calculation, the low-probability
models were excluded from the summation using an
Occam's window approach. In this study, Occam’s win-
dow was defined using a minimal posterior odds ratio of
1/20 [144]. The modulatory effect parameters were
tested with a priori interests (cf. [138]) in terms with dif-
ferences from zero and differences between groups using
t-tests (one-tailed). The results were deemed statistically
significant at p < .05.

Additional file

Additional file 1: Figure S1. The model for the analysis of regional
brain activity.We constructed a three-way repeated-measures ANOVA
design including participant as a factor of no interest and group,
presentation condition, and emotion as factors of interest. CON=Control;
ASD=Autism spectrum disorders; DY =Dynamic; ST = Static; FE = Fear;
HA =Happiness.
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