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Abstract
Background: Mycobacteria have developed a number of pathways that provide partial protection
against both reactive oxygen species (ROS) and reactive nitrogen species (RNS). We recently
identified a locus in Mycobacterium marinum, mel2, that plays a role during infection of macrophages.
The molecular mechanism of mel2 action is not well understood.

Results: To better understand the role of the M. marinum mel2 locus, we examined these genes
for conserved motifs in silico. Striking similarities were observed between the mel2 locus and loci
that encode bioluminescence in other bacterial species. Since bioluminescence systems can play a
role in resistance to oxidative stress, we postulated that the mel2 locus might be important for
mycobacterial resistance to ROS and RNS. We found that an M. marinum mutant in the first gene
in this putative operon, melF, confers increased susceptibility to both ROS and RNS. This mutant
is more susceptible to ROS and RNS together than either reactive species alone.

Conclusion: These observations support a role for the M. marinum mel2 locus in resistance to
oxidative stress and provide additional evidence that bioluminescence systems may have evolved
from oxidative defense mechanisms.

Background
Mycobacteria appear to have numerous molecular path-
ways responsible for their inherent resistance to reactive
oxygen species (ROS) [1-3]. In most bacteria, oxidative
stress induces a global regulator, OxyR, that induces
detoxifying enzymes such as alkyl hydroperoxide reduct-
ase (AhpC) and catalase/hydroperoxidase I (KatG) [4,5].
During normal aerobic metabolism bacteria produce
superoxide (O2 •-) that is converted to hydrogen peroxide
(H2O2) and oxygen (O2) by superoxide dismutase and

H2O2 is converted to water (H2O) and O2 by KatG [6] or
AhpC [7]. The two superoxide dismutase (SOD) genes
present in mycobacteria, sodA and sodC, have been sug-
gested to play a role in resistance to ROS. A sodC mutant
is more susceptible to ROS, including hydrogen peroxide
(H2O2), and displays a defect in growth within activated
macrophages [8,9]. The sodA gene has been down-regu-
lated by antisense methods, resulting in increased sensi-
tivity to H2O2 [10]. Mycobacteria also express a catalase,
KatG, that affects resistance to ROS produced by NADPH
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oxidase activity in activated macrophages [2]. Other path-
ways must play an important role in resistance of M. tuber-
culosis to oxidative stress because oxyR is inactive [11],
katG is absent or mutated in numerous human clinical
isolates [12-16] and ahpC is expressed at very low levels
[17,18].

Similar to ROS, there are several pathways involved in
mycobacterial resistance to reactive nitrogen species
(RNS), including noxR1, noxR3 [19,20], dlaT [21], msrA
[22,23], cysH [3], DNA repair, protein degradation in the
proteasome and flavin cofactor synthesis [24]. In addition
to its role in resistance to ROS, the mycobacterial ahpC is
also involved in resistance to the RNS peroxynitrite, but
not nitric oxide [25]. Peroxynitrite is produced by SOD in
the presence of H2O2 and nitric oxide, linking these two
important mechanisms of oxidative stress-mediated cell
death [26]. This observation may help to explain the
inherent resistance of M. tuberculosis to peroxynitrite as
compared to less pathogenic mycobacteria [27].

Bioluminescence systems can protect cells against ROS
[28-32] through a catalase-like reaction between the elec-
tron donating ROS and oxidized luciferase-bound flavin
mononucleotide, producing water and light [33]. The
similarity of luciferases to oxidases [34] suggests that bio-
luminescence systems could have evolved from oxygen
defense mechanisms [35]. During genetic analysis of fac-
tors that affect macrophage infection, we identified the M.
marinum mel2 locus, which displays similarity to lux genes
involved in bioluminescence [36]. In the current study,
more detailed analysis of the genes in the mel2 locus sug-
gests functional similarity between mel2 and biolumines-
cence systems. Based on this similarity, we asked whether
the M. marinum mel2 locus is involved in resistance of
mycobacteria to oxidative stress. We constructed an M.
marinum mutant that carries a transposon insertion in the
first gene in the mel2 locus, melF, by allelic exchange and
demonstrated that this mutant displays increased suscep-
tibility to both ROS and RNS. Since this mutation may
have polar effects on downstream genes, we comple-
mented this mutant with two constructs, one that carries
the melF gene alone and another with the entire mel2
locus. The melF mutant defect is partially complemented
by melF alone, but fully complemented by the entire mel2
locus. We recently found that the mel2 mutant displays a
defect for growth in activated macrophages that is allevi-
ated by the presence of either ROS scavengers or nitric
oxide synthase inhibitors [37], suggesting that the mel2
mutant is more susceptible to ROS and RNS than wild
type bacteria. The data obtained in the current study sup-
port and extend these observations through demonstra-
tion that the mel2 locus plays a role in susceptibility to
several different compounds that produce ROS and RNS
in laboratory media. Our results indicate that the M. mari-

num mel2 locus is the first of a newly identified class of
genes with similarity to bioluminescence genes involved
in resistance to both ROS and RNS.

Results
Similarity of the genes in the mel2 locus to 
bioluminescence genes
The initial analysis of the genes present in the mel2 locus
indicated that the melF, melG and melH genes display sim-
ilarity to luxA [38], luxG [39] and luxH [39] genes involved
in bioluminescence [36]. In order to obtain a better
understanding of these findings and explore the possibil-
ity of additional functional similarities, we conducted
detailed analysis of the conserved motifs present within
the melF-melK genes. We first conducted an NCBI Con-
served Domain (CD) Search with MelF. We obtained a
100% alignment (E = 1 × 10-28) for the 323 amino acid
(a.a.) bacterial luciferase-like monooxygenase motif
(pfam00296.11; Figure 1A). This motif is conserved in all
bacterial luciferase genes, including the luxA and luxB
genes from Vibrio harveyi, for which crystal structures have
been previously determined [40,41]. Many of the residues
responsible for catalytic activity and FMNH2 binding for
LuxA and LuxB are also present in MelF [42,43], suggest-
ing that these proteins have related activities. Analysis of
the relatedness of MelF to LuxA and LuxB places MelF on
an independent branch (Figure 1B), indicating it is nearly
equally related to both, with a slightly closer relationship
to LuxA than LuxB.

Analysis of conserved domains within melG-melK also
demonstrated striking similarity to genes involved in bio-
luminescence (Figure 2A). Functional domains that dis-
play similarity to LuxC (MelK), LuxD (MelH), LuxG
(MelG) and LuxH (MelJ) were identified. Although there
is no clear homologue of LuxE within the mel2 locus,
MelH carries domains with similarity to aminopeptidases
and lysophospholipases, suggesting that this protein
could serve in the role of both the transferase and syn-
thetase activities found in the lux pathway. Additional
putative functional domains were present within MelG,
MelH and MelI that were not present within the lux genes.
Some of these differences may be due to differences in
substrate specificity between these pathways and may
help to explain why mycobacteria are not luminescent.
With the differences and similarities between the mel2 and
lux proteins in mind, we constructed a working model for
the putative biochemical roles of the proteins encoded by
the mel2 locus (Figure 2B). Since mycobacteria face signif-
icant ROS during infections, we reasoned that a role in
protection against ROS could help to explain the presence
of conserved domains between the mel2 locus and biolu-
minescent systems.
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M. marinum mel2 mutant and complementing strains
An M. marinum mel2 mutant was constructed by in vitro
mutagenesis of the mel2 locus with mini-Mu and replace-
ment of the wild type gene by allelic exchange [36]. We
confirmed the presence of the appropriate insertion in the
melF gene (Figure 2A) by Southern analysis and PCR.
Since insertion mutations can have polar effects on down-
stream genes and the genes in the mel2 locus are very

closely juxtaposed to each other, we asked whether the
insertion in melF affects transcript levels for the melG-melK
genes. RT-PCR with primer pairs upstream of the melF
insertion mutation produces relatively similar levels of
product for the M. marinum melF mutant and wild type
strains, but RT-PCR with primer pairs within the down-
stream genes produce less product in the melF mutant
than the wild type strain (Figure 3). These observations

Similarity of MelF to the bioluminescence protein luciferaseFigure 1
Similarity of MelF to the bioluminescence protein luciferase. Alignment of MelF with LuxA and LuxB proteins from 
bioluminescent bacteria and the concensus (pfam00296) (A) and a dendogram (B) showing the relationship between them. 
Numbers to the left of the alignment indicate the position within each protein and above indicate the position within 
pfam00296. Residues that match the concensus are shown outlined by boxes. Asterixes above alignment indicate conserved 
regions thought to be involved in enzyme activity. Abbreviations for aligned proteins and their accession numbers are as fol-
lows: melF, M. marinum MelF (AAV32084); pfam00296, luciferase-like monooxygenases conserved domain; luxAPle, Photobacte-
rium leiognathi LuxA (P29238); luxAPlu, Photorhabdus luminescens LuxA (AAK98554); luxASha, Shewanella hanedai LuxA 
(BAB40796); luxAVfi, Vibrio fishcheri LuxA (AAD48477); luxAVha, Vibrio harveyi LuxA (CAA41597); luxBPle, Photobacterium lei-
ognathi LuxB (P09141); luxBPlu, Photorhabdus luminescens LuxB (AAK98555); luxBPph, Photobacterium phosphoreium LuxB 
(P12744); luxBSha, Shewanella hanedai LuxB (BAB40797); luxBVfi, Vibrio fishcheri LuxB (AAD48478); luxBVha, Vibrio harveyi LuxB 
(AAA88686). The dendogram was rendered from the alignment using MegAlign (DNASTAR). Tree length is shown to the left 
of the log scale ruler beneath the dendogram.
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suggest that the Mu insertion in melF has polar effects on
downstream genes and full complementation of this
mutation will most likely require the entire mel2 locus.
Since the luxA gene plays a pivotal role in biolumines-

cence and similar genes, including melF, are thought to be
oxidoreductases, it is possible that only the melF gene will
be required for the role of mel2 in resistance to ROS. In
order to differentiate between these possibilities we com-

Conserved motifs within the mel2 locus and our working modelFigure 2
Conserved motifs within the mel2 locus and our working model. Conserved domains found within the Vibrio fisheri lux 
loci and Mycobacterium marinum mel2 locus (A) and proposed biochemical roles (B). Position of the M. marinum mel2 mutant 
transposon insertion is shown as a triangle above the mel2 locus (melF::Tn) and the structures of the complementing con-
structs, pJDC79 and pJDC75, are below the mel2 locus. The luxC-luxG region is located from the V. fisheri chromosome II and 
the luxH gene is from chromosome I (A). Conserved domains were identified using the NCBI conserved domain search. The 
designation for each conserved domain(s) is shown above each gene with an abbreviation for its proposed biochemical function 
in parenthesis. Abbreviations for proposed biochemical functions are as follows with additional conserved domains not shown 
in the figure in parenthesis: lux, luciferase; fer2, 2Fe-2S iron-sulfur cluster binding domain (cd00207); NAD, flavodoxin oxidore-
ductases and oxidoreductase NAD-binding domain (pfam00175); FADred, FAD-dependent oxidoreductases; hyd, abhydrolase 
alpha/beta hydrolase fold (pfam00561); acylT, predicted acyltransferases; FMNred, flavin reductase like domain; DHBPs, 3,4-
dihydroxy-2-butanone 4-phosphate synthase; GTPcycII, GTP cyclohydrolase II; dehyd, dehydrogenase; acylS, acyl-protein syn-
thetase. We constructed a hypothetical model for how these proteins might interact to reduce reactive oxygen species (B). 
The resulting pathways for mel2 are similar to the lux pathways, but are better adapted to serve as a potential defense against 
oxidative stress through the presence of an epoxide hydrolase (melH), in addition to the reduction of fatty acid aldehydes 
observed with lux. R represents a number of potential fatty acid molecules that could be used as substrates for these reactions. 
The LuxCDE proteins function as a complex to produce the aldehydes used to reduce oxygen by LuxAB and we have depicted 
a similar situation for MelGHK.
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plemented the M. marinum melF mutant with both melF
alone (pJDC79) and the entire mel2 locus (pJDC75) (Fig-
ure 2).

The mycobacterial mel2 locus affects susceptibility to 
ROS
We first compared the ROS susceptibility of wild type M.
marinum with that of M. tuberculosis and the non-patho-
genic mycobacterial species M. smegmatis (Figure 4A). We
found that M. marinum displays similar levels of resistance

to H2O2 as M. tuberculosis at various concentrations and
times of treatment. In contrast, M. smegmatis is readily
killed, even at 1 mM H2O2 where the pathogenic strains
are nearly completely resistant (P < 0.001). Interestingly,
we found that a mel2 mutant that carries an insertion in
the melF gene is much more susceptible than wild type M.
marinum to H2O2 (Figure 4B–D; P < 0.01). This difference
is more pronounced at 5 mM (between 76–84% for wild
type vs. 4–10% survival for the mutant after 2 h) than at 1
mM (between 85–97% for wild type vs. 52–70% survival
for the mutant after 2 h). Resistance to H2O2 cannot be
restored to the mel2 mutant with the melF gene alone,
even expressed from a plasmid (pJDC79), but can be
restored by a single copy integrated plasmid carrying the
entire mel2 locus (pJDC75). In contrast, no difference in
the growth rate or survival of these mycobacterial strains
in standard laboratory medium without H2O2 is observed
(data not shown). These observations suggests that the
melF gene alone is not sufficient to confer resistance to
H2O2, and that the melF insertion mutation has polar
effects on downstream genes involved in H2O2 resistance.

We further probed the role of the mel2 locus in resistance
to ROS through the use of two additional ROS generating
compounds, cumene hydroperoxide and t-BOOH. Both
of these compounds are organic peroxides that produce
ROS inside the bacterial cell, but are more stable in aque-
ous solutions than H2O2. Organic peroxides decompose
to alkoxyl and peroxyl radicals in addition to H2O2
[44,45]. The mel2 mutant was more susceptible to both
cumene hydroperoxide and t-BOOH than wild type M.
marinum (Figure 5; P < 0.01). Interestingly, at the two-
hour time point partial complementation of the resistance
defect was observed, but once again, the entire mel2 locus
confers wild type resistance levels. These observations
indicate that the mel2 locus plays a role in resistance to
ROS, including the diverse radicals produced by organic
peroxides.

The mel2 locus affects susceptibility to RNS
Since the mel2 locus plays a role in resistance to ROS, it is
also possible that it will affect resistance to RNS. The ROS
and RNS pathways are linked in the reaction of nitric
oxide with superoxide to produce peroxynitrite [1,46,47].
Because of the importance of RNS in protection against
mycobacterial infections [48-51], pathways that affect sus-
ceptibility are likely to be important for pathogenesis. We
examined the susceptibility of the mel2 mutant to acidi-
fied NaNO2, which is a source of nitric oxide [24,48], and
SNAP, which releases nitric oxide under neutral pH in the
presence of trace metals [52,53]. Similar to ROS, the mel2
mutant displays greater susceptibility than wild type M.
marinum to RNS (P < 0.01) and this phenotype can be
complemented partially by the melF gene alone and com-
pletely by the entire mel2 locus (Figure 6).

Examination of the polar effects due to the melF insertion mutationFigure 3
Examination of the polar effects due to the melF 
insertion mutation. RT-PCR studies to evaluate the effects 
of the Mu insertion on mel2 transcription upstream (melFu) 
and downstream of the insertion site (melFd, melH, melI, melJ, 
melK). Equivalent amounts of RNA from M. marinum wild 
type and the M. marinum melF mutant were reverse tran-
scribed and subjected to PCR with specific oligonucleotides 
within each gene. Equal amounts of each PCR product were 
loaded on 0.8% agarose gels and compared to the 16S rRNA 
control RT-PCR reaction for each strain (16S rRNA) carried 
out on the same samples. Data shown are representative of 
two independent experiments.
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The mel2 locus affects susceptibility to the combination of 
ROS and RNS
Since these observations suggest that the mel2 locus is
involved in resistance of mycobacteria to both ROS and
RNS, we examined whether the presence of both ROS and
RNS simultaneously would have a more dramatic effect
upon this mutant. Interestingly, the mel2 mutant is much
more susceptible to treatment with both H2O2 and SNAP
together than either compound alone (Figure 7; P < 0.01).
These observations suggest that the mel2 mutant plays a
role in susceptibility to both ROS and RNS, whether

treated with them together, as most likely occurs in vivo,
or separately.

Discussion
The molecular mechanisms of mycobacterial resistance to
ROS and RNS have been an area of intense investigation
and suggest that there are multiple pathways involved in
resistance [1]. In the current study, we identified a novel
set of genes in the mel2 locus that play a role in resistance
to both ROS and RNS. As shown in our previous studies,
this locus is also important for survival in activated mac-
rophages and virulence in the mouse footpad model of

Susceptibility of mycobacterial species and the mel2 mutant to H2O2Figure 4
Susceptibility of mycobacterial species and the mel2 mutant to H2O2. Susceptibility of M. smegmatis, M. marinum and 
M. tuberculosis to different concentrations of H2O2 for 2 or 6 h (A). The data points are absent for M. tuberculosis at 5 mM H2O2 
because these bacteria were only tested at 1 and 10 mM concentrations. Susceptibility of M. marinum wild type as compared to 
the mel2 mutant that carries an insertion in melF (melF), the mutant carrying a plasmid expressing melF alone (melF::pJDC79) 
and an integrated single copy plasmid expressing the entire mel2 locus (melF::pJDC75) to 1 mM (B), 5 mM (C) and 10 mM (D) 
H2O2. The % survival = (CFU Tx/CFU initial) × 100. Data are the means and standard deviations of assays done in triplicate, 
representative of three experiments.
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Susceptibility of the mel2 mutant to reactive oxygen speciesFigure 5
Susceptibility of the mel2 mutant to reactive oxygen species. Susceptibility of M. marinum wild type as compared to 
the mel2 mutant that carries an insertion in melF (melF), the mutant carrying a plasmid expressing melF alone (melF::pJDC79) 
and an integrated single copy plasmid expressing the entire mel2 locus (melF::pJDC75) to 10 mM tert-butyl hydroperoxide (t-
BOOH, A) or 100 mM cumene hydroperoxide (Cumene, B). The % survival = (CFU Tx/CFU initial) × 100. Data are the means 
and standard deviations of assays done in triplicate, representative of three experiments.
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infection [37]. To the best of our knowledge, this is the
first description of a mycobacterial pathway that impacts
susceptibility to both of these reactive species. Since RNS
and ROS are linked through the production of peroxyni-
trite from nitric oxide and superoxide [1,46,47], the mel2
system may be specifically involved in resistance to this
reactive species. The presence of the mel2 locus in the
tuberculosis complex and M. marinum [36] and absence
in avirulent mycobacteria that are more susceptible to per-
oxynitrite [27] supports this concept.

The similarity of the mel2 locus to bioluminescence sys-
tems at the amino acid level and the presence of conserved
domains between them are intriguing observations. These
data are particularly interesting in light of the recent
observations that bioluminescent systems can protect
cells against oxidative stress [28-32]. In search of a biolog-
ical role for bioluminescence in bacteria that would
explain how such an energy-consuming system could
have developed evolutionarily, it has been proposed that
these pathways protect against ROS generated in an aero-

Susceptibility of the mel2 mutant to reactive nitrogen speciesFigure 6
Susceptibility of the mel2 mutant to reactive nitrogen species. Susceptibility of M. marinum wild type as compared to 
the mel2 mutant that carries an insertion in melF (melF), the mutant carrying a plasmid expressing melF alone (melF::pJDC79) 
and an integrated single copy plasmid expressing the entire mel2 locus (melF::pJDC75) to 1 mM (A) or 5 mM (B) sodium nitrite 
(NaNO2) and 10 μM (C) or 100 μM (D) S-nitroso-N-acetyl penicillamine (SNAP). The % survival = (CFU Tx/CFU initial) × 100. 
Data are the means and standard deviations of assays done in triplicate, representative of three experiments.
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bic atmosphere [35,54]. Interestingly, it has been
observed that ROS play a pivotal role in host-symbiont
interactions with bioluminescent bacteria [55]. At
present, our model for the biochemical function of mel2
(Figure 2B) is purely hypothetical and is in need of more
experimental support, but the large number of conserved
functional domain similarities between the lux and mel2
loci suggests that they may have related functions. How-
ever, it seems unlikely that this function is biolumines-
cence, since mycobacteria are not normally
bioluminescent and we did not observe any biolumines-
cence associated with our mutant or complemented
strains (data not shown). Our observation that the mel2
locus plays a role in resistance to ROS helps to explain the

presence of loci similar to bioluminescence genes in non-
luminescent bacterial pathogens.

The inherent resistance of M. marinum to ROS is impacted
by a mutation in the mel2 locus. This observation suggests
that mel2 has an important role in either directly scaveng-
ing oxygen radicals or repairing damage caused by them.
Since the mel2 mutant affects susceptibility to H2O2 and
the organic peroxides cumene hydroperoxide and t-
BOOH, which generate alkoxyl radicals, peroxyl radicals
and H2O2 [44,45], it is unclear whether mel2 is specific to
a particular type of ROS. The apparent absence of specifi-
city could be the result of this pathway utilizing an
unknown oxidizable substrate that is recycled, similar to

Susceptibility to reactive nitrogen and oxygen species togetherFigure 7
Susceptibility to reactive nitrogen and oxygen species together. Susceptibility of M. marinum wild type as compared 
to the mel2 mutant that carries an insertion in melF (melF), the mutant carrying a plasmid expressing melF alone (melF::pJDC79) 
and an integrated single copy plasmid expressing the entire mel2 locus (melF::pJDC75) to H2O2 plus S-nitroso-N-acetyl peni-
cillamine (SNAP). The % survival = (CFU Tx/CFU initial) × 100. Data are the means and standard deviations of assays done in 
triplicate, representative of three experiments.
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luciferin in bioluminescent systems [35], direct scaveng-
ing of H2O2, which all three compounds produce, or
repair of damaged DNA, proteins or lipids [6]. Interest-
ingly, luciferase can produce light using H2O2 alone, in
the absence of luciferin, suggesting that luciferase can
scavenge H2O2, superoxide and hydroxyl radicals [33].
Overall, these data suggest that MelF functions as a FMN-
dependent non-heme catalase. The presence of the mel2
locus in pathogenic mycobacteria may at least partially
explain why the catalase (katG) gene can be mutated dur-
ing acquisition of isoniazid resistance [56], yet katG nega-
tive M. tuberculosis are responsible for numerous clinical
infections in humans [12-16]. Since oxidative stress
increases susceptibility of mycobacteria to isoniazid [57],
it is possible that in some cases there is a relationship
between isoniazid susceptibility and the mel2 locus. This
possibility can be tested by comparing the effects of a dou-
ble and single katG and mel2 mutants on virulence and
isoniazid resistance.

The role of bioluminescence systems from other bacteria
in resistance to RNS has not been examined, but our
observations with mel2 suggest that this possibility is
worth investigating. Since susceptibility to both SNAP and
acidified NaNO2 are impacted by the mel2 mutation, this
phenotype is not the result of greater susceptibility to the
acidic pH used with NaNO2. The fact that the mel2 mutant
displays an obvious defect when exposed to a combina-

tion of both ROS and RNS would imply that this locus is
important for growth in environments where both of
these reactive species are present, such as during infection
of mammals. We found that the M. marinum luxA homo-
logue, melF, may play an important role in resistance to
both RNS and ROS, since this gene alone can partially
complement what may be a polar mutation. Alternatively,
this observation could be the result of low levels of expres-
sion of the remainder of genes within mel2, as a result of
the polar mutation. This polar mutation would allow only
low levels of the putative Mel2 protein complex to be
formed and provide partial complementation once a
functional melF gene is expressed. A better understanding
of the biochemical roles of each of the mel2 genes and
their importance in susceptibility to ROS and RNS will
require analysis of each gene individually as well as in the
presence or absence of each of the different Mel2 compo-
nents.

Conclusion
In this study, we confirmed that the mel2 locus plays a role
in the susceptibility of M. marinum to ROS and RNS.
Although this locus displays similarity to bioluminescent
systems in other bacterial species, further biochemical
studies are necessary to demonstrate the functional signif-
icance of the conserved domains that are present. These
observations suggest that mel2 represents a previously
unrecognized pathway for resistance of bacterial patho-

Table 1: Oligonucleotides

Namea Targetb Sequence (5' -> 3')

MelFuF melFu CAGAAGACGCGATCACGGCG
MelFuR GGGTCGGCGAACACTTCACC
MelFdF melFd CCTGCTGCCCTATCATCACC
MelFdR CCTCCAAAGCCCGAAGCCGC
MelFtnF melFtn CAGAAGACGCGATCACGGCG
MelFtnR CCTGCTGCCCTATCATCACC
MelGF melG GCGAGAAGGGCACCGCCATG
MelGR CTCAGATCACCCACGGTCAC
MelHF melH GTGACCGTGGGTGATCTGAG
MelHR GAAGGCGCAACTCACTGCCG
MelIF melI CGGCAGTGAGTTGCGCCTTC
MelIR CATCCAGGCTCCGTTGCGGG
MelJF melJ CCCGCAACGGAGCCTGGATG
MelJR GCCGCGAGTGGCGTGTCTGC
MelKF melK GCAGACACGCCACTCGCGGC
MelKR GACGCTCACCACAGTGCGGC
rRNAF rRNA AGAGTTTGATCCTGGCTCAG
rRNAR CACGCTCACAGTTAAGCTGT

aDesignation for each oligonucleotide used in this study for RT-PCR analyses. F indicates a forward primer and R indicates a reverse primer.
bTarget gene mRNA transcript for RT-PCR analyses. Oligonucleotides are listed as primer pairs. The reverse primers were used for cDNA 
synthesis and the forward and reverse used together for RT-PCR. The melFu target is the region of the mel2 locus transcript upstream of the 
transposon insertion in the melF mutant but down stream of the start codon, melFd target is the region downstream of the transposon insertion but 
still within melF and melFtn is across the transposon insertion in melF.
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gens to ROS and RNS and support the concept that biolu-
minescence systems may have evolved from oxidative
stress defense mechanisms.

Methods
Strains and growth conditions
M. marinum strain M, a clinical isolate obtained from the
skin of a patient [58], was used in these studies. M. mari-
num strains were grown at 33°C in 7H9 broth (Difco,
Detroit, Mich.) supplemented with 0.5% glycerol, 10%
albumin-dextrose complex (ADC) and 0.25% Tween 80
(M-ADC-TW) for 5 days. M. smegmatis strain mc2155 [59]
cultures were grown in M-ADC-TW for 3 days at 37°C and
M. tuberculosis strain Erdman (ATCC35801) cultures were
grown in M-ADC-TW for 10 days at 37°C. The number of
viable bacteria was determined for each assay using the
LIVE/DEAD assay (Molecular Probes, Eugene, OR.) and
by plating dilutions for colony forming units (cfu) on
7H9 (M-ADC) agar (Difco, Detroit, Mich.). All inocula
used were > 99% viable. E. coli strains were grown in
Luria-Bertani (LB, Difco) media at 37°C. Where appropri-
ate, kanamycin was added at a concentration of 25 μg/ml
(E. coli) or 10 μg/ml (M. marinum).

Construction of M. marinum mel2 mutant and 
complementing strains
The M. marinum mel2 mutant carries a mini-Mu transpo-
son insertion near the amino terminus of the melF gene as
described previously [36]. Our previous studies have
found no functional differences between the M. tuberculo-
sis and M. marinum mel2 loci, both confer wild type host
cell infection and growth in macrophages to the M. mari-
num melF insertion mutant [36,37], so either can be used
for complementation studies. The M. marinum
melF::pJDC79 strain is the melF mutant that carries the
plasmid pMV262 [60] expressing the melF gene from M.
tuberculosis that has been previously shown to comple-
ment the macrophage infection defect of the M. marinum
mel2 mutant [36]. The M. marinum melF::pJDC75 strain is
the melF mutant that carries the single-copy integrating
plasmid pYUB178 [61] with the entire M. tuberculosis mel2
locus cloned into its single NheI site. Construction of all
strains was confirmed by Southern analyses and PCR as
described previously [36].

RT-PCR analyses
RT-PCR for the mel2 transcripts was performed using the
ThermoScript RT-PCR System (Invitrogen) according to
the manufacturer's instructions. Basically, 300–500 ng of
DNase treated, total bacterial RNA was mixed with gene
specific reverse primers, dNTP mix and 40U of RNaseOUT
and incubated at 65°C for 5 min and then placed on ice
prior to use. The annealed primers were extended with 15
U of Thermoscript RT at 55°C for 60 min followed by heat
inactivation of the enzyme at 85°C for 5 min. The resid-

ual, non-transcribed RNA were removed with 2U of E. coli
RNaseH at 37°C for 20 min. 2 μl of the cDNA was used in
PCR amplification with 1 mM appropriate forward and
reverse primers and 5U of Thermopol enzyme (NEB) in a
total volume of 50 ul. All primers used for RT-PCR reac-
tions are shown in Table 1. The concentrations of RNA in
wild type and mutant strains were normalized against the
respective 16s rRNA. 150 ng of M. marinum total genomic
DNA of was used as positive control for the PCR reaction
and RT-PCR reactions without reverse transcriptase was
included in all experiments as negative control. The
amplified products were analyzed by 0.8% agarose gel
electrophoresis and the products measured by densitome-
try semiquantitatively using an Alpha Imager (Alpha
Innotech) and Alpha Ease FC software.

In silico analysis of the melF-melK genes
Detailed analysis of the amino acid sequence of MelF-
MelK was carried out initially using protein-protein
National Center for Biotechnology Information (NCBI)
BLAST [62] and Conserved Domain Search [63] as
described previously [36]. Once motifs of interest were
identified, they were compared to the appropriate biolu-
minescence genes and the mel2 gene and homologues
were aligned and dendograms constructed using MegA-
lign (DNASTAR). Domain scores were considered signifi-
cant if greater than 150 and the expectation values were
less than 1 × 10-10.

Susceptibility to reactive oxygen species
Mycobacterial strains were exposed to ROS generated by
H2O2, cumene hydroperoxide and tert-butyl hydroperox-
ide (t-BOOH). The susceptibility of mycobacteria to these
compounds was determined by treatment for various peri-
ods of time at the appropriate growth temperature for the
mycobacterial strain used and plating dilutions on M-
ADC agar to determine CFU at each time point as com-
pared to the original inoculum (To), i.e. percent survival
= (CFU Tx/CFU To) × 100. Dimethyl sulfoxide (DMSO)
was used as a solvent for t-BOOH and was tested for
effects on viability of all mycobacterial strains and no sol-
vent affected mycobacterial viability during the time peri-
ods examined or at the final concentrations used.

Susceptibility to reactive nitrogen species
Mycobacterial strains were exposed to RNS generated by
S-nitroso-N-acetyl penicillamine (SNAP) and acidifica-
tion of sodium nitrite (NaNO2) to pH 5.2 for various peri-
ods of time. Susceptibility was determined in the same
manner as that described for ROS. DMSO was used as a
solvent for SNAP and had no effects on viability of myco-
bacteria at the concentrations and time periods used.
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Statistical analyses
All experiments were carried out in triplicate and repeated
at least three times. The significance of the results was
determined using the Student t-test. P values of < 0.05
were considered significant.
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