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Abstract
Background: Formation of alternative structures in mRNA in response to external stimuli, either
direct or mediated by proteins or other RNAs, is a major mechanism of regulation of gene
expression in bacteria. This mechanism has been studied in detail using experimental and
computational approaches in proteobacteria and Firmicutes, but not in other groups of bacteria.

Results: Comparative analysis of amino acid biosynthesis operons in Actinobacteria resulted in
identification of conserved regions upstream of several operons. Classical attenuators were
predicted upstream of trp operons in Corynebacterium spp. and Streptomyces spp., and trpS and leuS
genes in some Streptomyces spp. Candidate leader peptides with terminators were observed
upstream of ilvB genes in Corynebacterium spp., Mycobacterium spp. and Streptomyces spp. Candidate
leader peptides without obvious terminators were found upstream of cys operons in Mycobacterium
spp. and several other species. A conserved pseudoknot (named LEU element) was identified
upstream of leuA operons in most Actinobacteria. Finally, T-boxes likely involved in the regulation
of translation initiation were observed upstream of ileS genes from several Actinobacteria.

Conclusion: The metabolism of tryptophan, cysteine and leucine in Actinobacteria seems to be
regulated on the RNA level. In some cases the mechanism is classical attenuation, but in many cases
some components of attenuators are missing. The most interesting case seems to be the leuA
operon preceded by the LEU element that may fold into a conserved pseudoknot or an alternative
structure. A LEU element has been observed in a transposase gene from Bifidobacterium longum, but
it is not conserved in genes encoding closely related transposases despite a very high level of
protein similarity. One possibility is that the regulatory region of the leuA has been co-opted from
some element involved in transposition. Analysis of phylogenetic patterns allowed for identification
of ML1624 of M. leprae and its orthologs as the candidate regulatory proteins that may bind to the
LEU element. T-boxes upstream of the ileS genes are unusual, as their regulatory mechanism seems
to be inhibition of translation initiation via a hairpin sequestering the Shine-Dalgarno box.
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Background
Formation of alternative structures in 5'-leader regions of
mRNAs is emerging as a major mechanism of gene regula-
tion. There exist several possible variants of this mecha-
nism whose common feature is the competition between
two structures, one of which represses gene expression via
premature termination of transcription or inhibition of
translation initiation (reviewed in [1-6]). The energeti-
cally or kinetically more favourable structure forms by
default, whereas the other one is stabilized by binding of
a regulatory protein, tRNA, or a small cofactor, or is
formed co-transcriptionally, as in classical attenuators.

RNA regulatory elements have been studied mainly in
gamma-proteobacteria (Escherichia coli) and firmicutes
(Bacillus subtilis). Computational analysis also has been
mainly restricted to proteobacteria [7,8] and firmicutes [9-
12]. Recently a new class of regulatory elements, ribos-
witches, has been described. These elements are highly
conserved and were found in all major taxa of bacteria, as
well as in some eukaryotes and archaea [13,14]. Compar-
ative genomic analysis has played a major role in the dis-
covery and analysis of T-boxes [9,15] and most
riboswitches (reviewed in [4,5]). Several groups per-
formed large-scale search for new RNA regulatory struc-
tures [16,17]. Analysis of RNA-based regulation often
leads to non-trivial functional assignments for hypotheti-
cal genes and filling gaps in metabolic reconstruction (e.g.
[11,14,18,19]).

Here we performed comparative analysis of candidate
RNA regulatory elements in genomes of Actinobacteria.
There are few known attenuators in these genomes. Those
that have been experimentally studied are attenuators of
the trp operons in Corynebacterium glutamicum [20] and
Streptomyces venezuelae [21]. Studies of attenuator-like
structures upstream of the ilvB and leuA genes of Strepto-
myces coelicolor produced somewhat ambivalent results.
Indeed, although candidate leader peptides and alterna-
tive RNA structures were found upstream of the ilvB and
leuA genes, reminiscent of the classical attenuators, the
mutation analysis demonstrated that the regulatory mech-
anism is not attenuation in the strict sense: mutations in
candidate regulatory codons in the leader peptide of the
ilvB gene had no effect on regulation, and, although muta-
tions in the leader peptide of leuA had some effect, it was
not consistent with classical attenuation [22]. Computa-
tional analysis identified several types of riboswitches:
THI-elements [14], RFN-elements [18], B12-elements
[19], all of them regulating genes of cofactor metabolism
by sequestering the Shine-Dalgarno box and start codon,
and interfering with initiation of translation.

Results and discussion
Following an approach described previously [8], we sys-
tematically analysed the upstream regions of amino acid
biosynthesis and aminoacyl-tRNA synthetase operons.
Candidate regulatory structures were found upstream of
genes involved in tryptophan, cysteine, and leucine
metabolism. Candidate T-boxes were observed upstream
of isoleucyl-tRNA synthetase genes. No conserved struc-
tures were observed upstream of genes from other amino
acid biosynthesis pathways.

Tryptophan
The trp operons are preceded by classical candidate atten-
uators in all considered genomes of Corynebacterium spp.
and Streptomyces spp. (Fig. 1). The leader peptides have
double or triple repeats of regulatory UGG codons. All ter-
minators are GC-rich and followed by poly-U-tracts. The
antiterminator and terminator hairpins in all genomes
contain complementary triples gGCC-rGCy-GGCC where
absolutely conserved positions are set in capitals. This is
analogous to the situation in proteobacteria, where the
patterns involved in multiple interactions within attenua-
tors are conserved at large evolutionary distances [8]. In C.
diphteriae, candidate attenuators were found upstream of
both biosynthetic operons trpB1EDGC and trpB2A. A can-
didate attenuator was found upstream of the tryptopha-
nyl-tRNA synthetase gene trpS2 in S. avermitilis.

Cysteine
The upstream regions of the cys operon in Mycobacterium
spp. and Propionibacterium acnes and the cbs gene of Bifido-
bacterium longum contain short open reading frames
encoding candidate leader peptides with runs of cysteine
codons near the stop codon (Fig. 2a). The upstream
regions of Mycobacterium spp. are very similar and can be
aligned (Fig. 2b). However, they do not contain any con-
served hairpins that could serve as terminators of tran-
scription. One possibility is that this region contains rho-
dependent terminators similar to the situation in the tryp-
tophanase operon tna of E. coli [23]. Indeed, Mycobacteium
spp. have few rho-independent terminators [24,25]. On
the other hand, all Mycobacterium genomes contain the
components of the rho-dependent termination mecha-
nism, rho, nusG, nusA, nusB. The region between the can-
didate leader peptide ORFs and the first genes in the cys
operons contain polyY motifs that could serve as Rho-
binding sites [26-28]. However, these motifs are not con-
served, and thus this prediction is rather weak.

The cysteine operons in M. avium and M. leprae contain
additional hypothetical genes, MAP2122 and ML0840
respectively, that are 62% identitical but have no other
reliable homologs.
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Leader peptides and candidate attenuators upstream the trp operons in Corynebacterium and Streptomyces sppFigure 1
Leader peptides and candidate attenuators upstream the trp operons in Corynebacterium and Streptomyces 
spp. a) Coordinates and protein identifiers of the first genes in the operons. b) Alignment of the leader peptides. The numbers 
denote genome positions of the aligned fragments. c) Alignment of the attenuators. Tryptophan and stop codons are shown in 
bold. The terminator hairpins are highlighted in grey, the antiterminator hairpins are underlined. The alignment contains frag-
ments between the tryptohan codons and the terminator hairpin followed by poly-U-tracts. The numbers denote genome 
positions of the aligned fragments.
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Leucine
The upstream regions of the ilvB genes (operons ilvBNC,
ilvBHC, ilvBserA1) in Corynebactecterium, Mycobacterium,
Streptomyces species contain short ORFs with runs of iso-
leucine, valine and leucine codons overlapping the candi-

date terminator hairpins followed by polyU-runs (Fig. 3).
However, the exact mode of regulation is not clear, as
experimental substitution of possible regulatory codons
upstream of the ilvBNC operon in S. coelicolor had no
effect on regulation or expression of ilvB [23].

Leader peptides upstream the cys operons in Mycobacterium spp. and P. acnes and cbs operon in B. longumFigure 2
Leader peptides upstream the cys operons in Mycobacterium spp. and P. acnes and cbs operon in B. longum. a) 
Coordinates and protein identifiers of the first genes in the operons. b) Alignment of the leader peptides. The numbers denote 
genome positions of the aligned fragments. c) DNA alignment of the leader peptide genes. Start, cysteine and stop codons are 
shown in bold; candidate Rho-binding sites are shown in capitals.
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Classical candidate attenuators were found upstream of
leuS (leucyl-tRNA-synthetase) in S. avermitilis and S. coeli-
color. Each of them contains an ORFs encoding the leader
peptide, as well as the antiterminator and terminator hair-
pins (Fig. 4).

Sequences upstream of the isopropylmalate synthase
genes leuA contain a number of candidate regulatory
sequences, together named the LEU element (Fig. 5, 6).
Firstly, there is an upstream ORF encoding a candidate
leader peptide with a run of leucine codons (Fig. 7).

Candidate leader peptides and terminators upstream the ilv opreron in ActinobacteriaFigure 3
Candidate leader peptides and terminators upstream the ilv opreron in Actinobacteria. a) Coordinates and pro-
tein identifiers of the first genes in the operons. b) Alignment of the leader peptides. The numbers denote genome positions of 
the aligned fragments. c) Alignment of the terminators. The terminator hairpins are highlighted in grey.
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Secondly, this region may fold into a pseudoknot with an
additional stem at its base formed by pairing of the leu-
cine codon run with the Shine-Dalgarno box of the leuA
gene (Fig. 5, 8). Finally, the same region may form an
alternative hairpin with the same base stem (Fig. 6).

A similar pseudoknot was found in B. longum within a
gene encoding a transposase. The latter is homologous to
the IS1554 transposase of M. tuberculosis and M. bovis
(66% identity), a putative transposase in C. efficiens (40%
identity), putative IS256 family transposases of S. avermi-
tilis (31% identity), hypothetical protein MAP2274 of M.
avium (29% identity), and some other putative trans-
posases from B. longum, C. efficiens, M. tuberculosis, M.
bovis, R. xylanophilus, S. avermitilis, S. coelicolor (Fig. 9a).
However, only the B. longum transposase contains a frag-
ment that may fold into the pseudoknot (Fig. 9b),
whereas other transposases, although highly similar on
the protein level in the corresponding region, contain a
number of non-complementary mismatches in synony-
mous codon positions and thus have lost the pseudoknot
folding potential.

T-boxes
Candidate T-box structures were found upstream of the
ileS genes from several Actinobacteria. They are unusual,
as instead of terminators, they contain hairpins sequester-
ing the Shine-Dalgarno boxes of the ileS genes (Fig. 10).

Thus it is likely that the regulatory mechanism involves
inhibition of translation initiation. To our knowledge,
this is the first example of a T-box acting on the level of
translation.

Conclusion
Candidate regulatory elements were found upstream of
genes involved in the tryptophan, cysteine and branched
chain amino acids metabolism. No conserved RNA regu-
latory structures were observed upstream of histidine,
threonine, phenylalanine, tyrosine, arginine, lysine,
methionine operons, although orthologous genes
involved in the latter pathways are regulated on the RNA
level in other species: methionine and lysine by the S-box
and L-box riboswitches respectively [3-5], histidine,
threonine and phenylalanine by attenuators [7,8], tyro-
sine and arginine by T-boxes [12].

Attenuators of the classical type were observed upstream
of the aminoacyl-tRNA-synthetase genes trpS and leuS in
some Streptomyces genomes, similar to those observed in
gamma-proteobacteria, (e.g. the pheST operon) [7]. In
contrast, in Firmicutes, most aminoacyl-tRNA-synthetase
genes are regulated by tRNA-dependent antitermination
(T-boxes) and none by classical attenuation [2,9,15]. No
classical T-boxes were found in Actinobacteria, but unu-
sual T-boxes, possibly regulating initiation of translation,

Candidate attenuators upstream the leuS opreron in Streptomyces sppFigure 4
Candidate attenuators upstream the leuS opreron in Streptomyces spp. a) Coordinates and protein identifiers of the 
leuS genes. b) Alignment of the attenuators. Start, leucine and stop codons are shown in bold. The terminator hairpins are high-
lighted in grey, the antiterminator hairpins are underlined. The alignment contains fragments between the leader peptide ORFs 
and the terminator hairpin followed by poly-U-tracts.
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Alignment and RNA secondary structures of the leuA upstream regions (LEU elements)Figure 5
Alignment and RNA secondary structures of the leuA upstream regions (LEU elements). The stem at the base is 
highlighted in grey, helices forming the pseudoknot are underlined and double underlined, leucine and stop codons are set in 
bold, the candidate Shine-Dalgarno boxes of the leuA are set in capitals. The last sequence is that of the transposase from B. 
longum (see the text). Sequences for M. bovis (Mb) and M. tuberculosis spp. (Mt and Rv) coincide.
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Alternative RNA secondary structure in LEU elementsFigure 6
Alternative RNA secondary structure in LEU elements. The stem at the base is highlighted in grey, two internal helices 
are underlined and double underlined, other notation as in Fig 5.
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were observed upstream of the ileS genes in several
genomes.

Despite the presense of conserved leader peptides
upstream of some cysteine and leucine operons, the mode

of regulation is unknown, as other attenuator elements
are missing. One possible explanation is that attenuation
of the cys operons in Mycobacterium spp. and P. acnes and
the cbs operon in B. longum involves Rho-dependent ter-
mination, similar to the tna operon of E. coli [23,29].

Candidate leader peptides in the LEU elementsFigure 7
Candidate leader peptides in the LEU elements.
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The most interesting case seems to be that of the leuA
genes. The upstream regions of these genes contain several
conserved elements (referred to as the LEU element) that
can be interpreted in different ways. There are some archi-
tectural similarities with riboswitches, in particular, a
compact structure with a stem at the base [5,30,31]. The
latter is formed by interaction of a run of leucine codons
and the Shine-Dalgarno box. Indeed, Actinobacteria seem
to be the only taxonomic group where the base stems of
riboswitches directly overlap the translation initiation
site, without additional regulatory hairpins [5]. However,
the LEU element differs from all known riboswitches, as
the alignment of LEU elements does not contain con-
served unpaired nucleotides that would be involved in ter-
tiary interactions and form the ligand-binding pocket, as
in the purine riboswitches whose spatial structure has
been resolved [30,31] and in other riboswitches [5]. Thus
direct binding of a small molecule to LEU elements seems
unlikely. On the other hand, there is experimental evi-
dence that mutations in the leucine codons do not influ-
ence the regulation [22] and thus classical attenuation
involving translation of a leader peptide also is an
unlikely mechanism of regulation.

The above considerations make it likely that the LEU ele-
ment is a binding site of some regulatory protein. To test
for this possibility, we compared the pattern of phyloge-
netic distribution of LEU elements to phylogenetic distri-
butions of all actinobacterial genes. The closest
phylogenetic pattern was observed for orthologs of
ML1624 from M. leprae: homologs of this protein with E-
values <10-170 were found in all genomes containing LEU
elements, but not outside Actinobacteria. The only unex-
plained fact is the presence of a homolog with the E-value
~10-108 in P. acnes, which does not have a LEU element.
The structure of the ML1642 protein is consistent with an
RNA-binding regulatory role, as the protein contains an
N-terminal DEAD-box helicase domain (ProFam family
PF00270, E-value 3.6·10-6) that may be involved in
unwinding of nucleic acids.

An additional enigma is the presence of a LEU element-
like sequence within a transposase gene. On the other
hand, it may be a clue to the origin of LEU elements. One
possibility is that the B. longum transposase represents an
ancestral state where the LEU element was involved in
maintenance or regulation of transposition. Situations
when a regulatory site occurs within a regulatory and/or
regulated gene are not very common, but they happen in
mobile elements [32]. Other transposase genes may have
lost the ability to form this structure due to mutations;
notably, the protein sequence has not changed much (Fig.
9), as most mutations occurred in synonymous codon
positions. A plausible scenario is that the transposase gene
was inserted upstream of the leuA gene in the ancestral

Candidate RNA pseudoknot upstream of the leuA operon in M. bovisFigure 8
Candidate RNA pseudoknot upstream of the leuA 
operon in M. bovis. The corresponding alignment is given 
Fig. 5. Boldface: the candidate Shine-Dalgarno box.
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Multiple alignments of transposasesFigure 9
Multiple alignments of transposases. a) Coordinates and protein identifiers of putative transposases. b) Protein alignment. 
The fragment marked by the double line above corresponds to the B. longum fragment homologous to candidate pseudoknot 
and shown in the last line of Fig. 5. c) Nucleotide alignment of the region shown by the double line in (b).
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Multiple alignment of T-box structures upstream of the ileS genesFigure 10
Multiple alignment of T-box structures upstream of the ileS genes. a) Coordinates and protein identifiers of the ileS 
genes. b) Nucleotide alignment of the 5' untranslated regions. T-box hairpins are underlined and T-box sequences are set in 
capitals. The sequestor hairpin is shaded in grey. Candidate Shine-Dalgarno boxes are set on capitals. Anti-sequestor hairpins 
are set in bold.
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actinobacterial genome. The main fraction of the coding
sequence was subsequently deleted, whereas the structural
element was co-opted for regulation of the downstream
leuA gene.

Methods
Genomes of Actinobacteria Actinomyces naeslundii (An),
Bifidobacterium longum (Bl), Corynebacterium diphtheriae
(Cd), Corynebacterium efficiens (Ce), Corynebacterium
glutamicum (Cg), Kineococcus radiotolerans (Kr), Leifsonia
xyli (Lx), Mycobacterium avium (Ma), Mycobacterium bovis
(Mb), Mycobacterium leprae (Ml), Mycobacterium marinum
(Mm), Mycobacterium smegmatis (Ms), Mycobacterium
tuberculosis (Rv and Mt), Nocardia farcinica (Nf), Propioni-
bacterium acnes (Pa), Rubrobacter xylanophilus (Rx), Strepto-
myces avermitilis (Sa), Streptomyces coelicolor (Sc),
Thermobifida fusca (Tf), Tropheryma whipplei (Tw) were
downloaded from the NCBI web site. We also used
sequences of Streptomyces venezuelae (Sv) from [21].

Candidate operons were defined as chains of genes tran-
scribed in the same direction with intergenic regions not
exceeding 150 nucleotides. Multiple alignments of genes
were used to verify and, if necessary, revise annotated gene
starts [33]. The revisions included adding 105 nucleotides
(35 codons) to the leuA gene from C. efficiens, adding 27
nucleotides (9 codons) of the leuA gene from T. fusca, and
removing 147 nucleotides (49 codons) of the ileS gene
from C. efficiens.

RNA sequence and structure alignments were constructed
using MultAlign (A.A. Mironov, personal communica-
tion) and the program GL [34]. Search for RNA structural
patterns was performed using the PAT program (A.V.Seliv-
erstov, unpublished). Search for conserved sequence frag-
ments was done using the CLIQUE program [35].
Multiple protein sequence alignments were constructed
using MultAlign.
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