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Abstract

The growing body of DNA microarray data has the potential to advance our understanding of the
molecular basis of disease. However annotating microarray datasets with clinically useful
information is not always possible, as this often requires access to detailed patient records. In this
study we introduce GLAD, a new Semi-Supervised Learning (SSL) method for combining
independent annotated datasets and unannotated datasets with the aim of identifying more robust
sample classifiers.

In our method, independent models are developed using subsets of genes for the annotated and
unannotated datasets. These models are evaluated according to a scoring function that
incorporates terms for classification accuracy on annotated data, and relative cluster separation in
unannotated data. Improved models are iteratively generated using a genetic algorithm feature
selection technique.

Our results show that the addition of unannotated data into training, significantly improves classifier
robustness.

Background drug. The cost of producing adequately annotated datasets

The introduction of DNA microarray technology in 1995
[1] has likely resulted in a huge volume of as yet undiscov-
ered and potentially medically useful knowledge within
gene expression profiles. This new bank of information
has motivated researchers to develop new techniques for
extracting this knowledge, and relating it to externally
obtained sample information. For experiments aimed at
answering a clinical question, such information might
include patient disease stage, or response to a particular

has been a barrier to the widespread application of micro-
array technology in medicine.

Based on the nature of the datasets, a variety of machine
learning techniques, including supervised learning algo-
rithms such as classification, and unsupervised learning
algorithms such as clustering, have been applied. Cluster-
ing techniques [2] are applied to the datasets for assigning
samples to their corresponding group solely based on
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similar expression levels. Supervised algorithms on the
other hand classify [3] samples according to their exter-
nally determined class.

None of the standard supervised and unsupervised tech-
niques are appropriate for datasets with some unlabeled
samples; Semi-supervised algorithms can address these
situations.

Related work

Blum and Mitchell [4] introduced the co-training algo-
rithm for improving the sample classification perform-
ance when there are few labeled samples and many
unlabeled samples. The co-training algorithm assumes
that there are two independent sets of features available,
such that each feature set is good enough to train a good
classifier. The algorithm incorporates an iterative classifi-
cation of samples from the unlabeled data using two naive
Bayes classifiers designed from the independent features
sets. In a demonstration of their technique aimed at web
page classification, the addition of unlabeled samples
decreased classification error relative to classification
using only labeled data.

In a subsequent study, Nigam and Ghani [5] further
examined the performance of the co-training algorithm
and specifically its sensitivity to the independence of the
feature sets. Their results confirm that when there is natu-
ral split of the features sets, co-training outperforms the
other approaches such as expectation-maximization

Table |I: Dataset details

http://www.biomedcentral.com/1471-2164/9/S2/S7

(EM). In the situation that such a split is not available, a
random assignment of features into two sets still performs
better than using only one feature set. They also intro-
duced the co-EM algorithm, a hybrid that iteratively
updates the unlabeled data labels using EM. Li et al. [6]
proposed a Semi-Supervised Learning (SSL) algorithm for
heterogeneous datasets having both labeled and unla-
beled samples. Their example data were comprised of
DNA microarray expressions and phylogenic reconstruc-
tions, with class labels corresponding to gene function.
Their work may be considered a form of co-training in
that two distinct datasets from a common set of samples
(genes) is equivalent to a single dataset with two distinct
sets of features. As with the above approaches, independ-
ent models are developed for each dataset. They show that
minimizing the disagreement in predictions between
these models leads to improved accuracy, and introduced
a co-updating technique for iteratively improving predic-
tion concordance.

Recently, Qi et al. [7] introduced a Bayesian Semi-Super-
vised approach termed BGEN (Bayesian GENeralization).
The BGEN method trains a kernel classifier using both
labeled and unlabeled data. Their example data consisted
of expression profiles of wild type and mutant C. elegant
embryos and identified enriched genes, with a small sub-
set of genes labeled according to involvement in develop-
ment of cell lineage. BGEN predictions were more
accurate than predictions from either K-means clustering
or SVM classification.

Dataset Genes before mapping Genes after mapping Samples
AML - ALL
Labeled AML-ALL | [3] 7129 6002 Train: 1-ALL (27) 2-AML (11)
Test: 1-ALL (20) 2-AML (14)
Unlabeled ~ AML-ALL 2 [8] 12582 6002 I-ALL (24)
2-AML (28)
3-MLL (20: deleted)
CML
Labeled CML | [9] 22283 22283 I-no cytogenetic response to imatinib (15)
2-cytogenetic response to imatinib (30)
Unlabeled CML2[10] 22283 22283 I-Aggressive (10)
2-indolent (9)
DLBCL
Labeled DLBCL I [I1] 7129 117 I-DLBCL (32: cured, 26: fatal or refractory)
2-FL (19: deleted)
Unlabeled DLBCL 2 [12] 44928 117 I-DLBCL (176)

2-MLBCL (34: deleted)
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In this paper we propose the Genetic Learning Across
Datasets concept (GLAD), and demonstrate an imple-
mentation that enables feature selection across unlabeled
and labeled datasets. GLAD algorithms are distinct from
previous approaches of semi-supervised learning in that
the datasets analyzed may have very different statistical
distributions, such as would arise in datasets collected
independently by labs using different measurement tech-
nology. Additionally, a subset of labeled examples is not
required for each dataset. As many available datasets will
not have the desired annotation for any samples, this
method extends the usability of the limited number of
adequately annotated microarray datasets.

Methods

Datasets

We conducted three experiments, each addressing a differ-
ent cancer diagnostic problem: ALL/AML differential diag-
nosis, prediction of response to imatinib in CML, and
prediction of outcome in DLBCL. In each experimental
group, two microarray gene expression datasets were
selected. If available, labels were removed from one of the
component datasets, thus creating a combined dataset
with both labeled and unlabeled subsets.

All datasets were produced using Affymetrix GeneChips,
and in two cases the labeled and unlabeled datasets were
collected with different Affymetrix GeneChips. This
required mapping of features between the chips in order
to identify a common set of features between the chips.
GenBank Gene Accession Numbers were used to generate
the common features. Table 1 provides additional details
on these datasets.

Demonstrations

For this study we implemented a GLAD algorithm as a
wrapper technique for feature selection. A Genetic Algo-
rithm (GA) is used for generating a population of relevant
feature subsets. For a given subset, a model is computed
from the labeled data and separately for the unlabeled
data. Linear Discriminant Analysis (LDA) and K-means (K
= 2) cluster algorithms were used for these two data types.
A unique two-term scoring function was derived to inde-
pendently score the labeled and unlabeled data models.
An overall score is computed as a weighted average of the
two terms as shown below.

Score = w x Scoreppoeqt (1-W) x Score,iapeied
We defined the labeled data model score as the standard
leave-one-out-cross-validation accuracy for the labeled
training samples.

The unlabeled data model score consists of two terms: A
cluster separation term and a consistent proportion term.

http://www.biomedcentral.com/1471-2164/9/S2/S7
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C; = centroid of cluster i

7;= proportion of data in cluster i

= expected proportion in cluster i
ﬂﬁXPi

= number of datapoints in cluster i
N¢.

i

n.= number of clusters

The cluster separation term is given by a modified ratio of
the inter-cluster distance to the mean cluster size. The con-
sistent proportion term, is defined as the RMS difference
between the sorted actual and expected class priors. The
class priors may be estimated from the labeled data, or
may be available externally.

For each experiment, we did the following:
1. Iterate GLAD algorithm on labeled training data only.

2. Iterate GLAD algorithm on labeled and unlabeled train-
ing data.

3. Compare model accuracy on test data across generated
populations of models.

In these experiments, GLAD was run for 100 iterations
with a population size of 5000, and a subset size of 3 fea-
tures.

Results and discussion

In the first evaluation of GLAD performance, test data
classification accuracy was compared between models
identified using only labeled data and models using both
labeled and unlabeled data. Figure 1 shows the results for
three cancer groups. The top 5% of the model populations
were used to generate these histograms. For each cancer
set, the two histograms can be compared graphically. As is
evident in figure 1, adding unlabeled samples increased
the mean accuracy of the models significantly.

Figure 2 displays the improvements of the classification
accuracies for the population of unique classifiers in each
cancer group. The output of GLAD has 5000 models, each
comprised of 3 genes, with some duplication of classifiers
expected. For testing the classification accuracy on the
independent set, only unique classifiers were used. Figure
2 compares the performance of the unique classifiers on
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1.f. using labeled plus unlabeled DLBCL, top 119 classifiers

(top 5%)

This figures shows the improvement of the classification by adding unlabeled samples into the experiments.
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Figure 2
Comparing the performance of the entire unique classifiers on the testing set for two approaches: | — using only labeled sam-

ples 2 — using labeled plus unlabeled samples.
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Table 2: Improvements by adding unlabeled samples for AML-
ALL

Dataset: AML-ALL Unique Min Max Average
Classifiers

only labeled 4504 32.35% 100.00% 73.46%

labeled + unlabeled 3336 35.29% 100.00% 75.14%

http://www.biomedcentral.com/1471-2164/9/S2/S7

Table 4: Improvements by adding unlabeled samples for DLBCL

Dataset: Unique Min Max Average
DLBCL classifiers

only labeled 2344 18.18% 90.91%  49.67%
labeled + 2377 18.18% 100.00% 55.79%
unlabeled

the testing set for two approaches: 1 - using only labeled
samples 2 - using labeled plus unlabeled samples. The
results of the all three cancer groups are improved by add-
ing unlabeled samples to the training sets. Tables 2, 3, 4
show the improvements in more detail. In the AML-ALL
group, for the top 1000 classifiers, the accuracy range
using only labeled samples is ~40% to 100%. The addi-
tion of unlabeled samples increases the range from 70%
to 100%. In CML experiments, adding unlabeled samples
increases the minimum accuracy from 0% to 11.11%.
Combining labeled and unlabeled sample for DLBCL
increases the maximum accuracy from 90% to 100%.

Conclusion

In this study we proposed a new technique for concur-
rently mining labeled and unlabeled datasets. This
method supplements standard supervised learning with
clustering of data lacking clinical annotation to estimate
the predictive power of gene subsets. The performance of
our algorithm was evaluated in comparison with super-
vised learning only on microarray data from three differ-
ent cancer types. Our results show that adding unlabeled
samples can increase the accuracy of classification signifi-
cantly.
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