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Abstract
Background: Protein-protein interaction (PPI) maps are useful tools for investigating the cellular
functions of genes. Thus far, large-scale PPI mapping projects have not been implemented for the
rice blast fungus Magnaporthe grisea, which is responsible for the most severe rice disease. Inspired
by recent advances in PPI prediction, we constructed a PPI map of this important fungus.

Results: Using a well-recognized interolog approach, we have predicted 11,674 interactions
among 3,017 M. grisea proteins. Although the scale of the constructed map covers approximately
only one-fourth of the M. grisea's proteome, it is the first PPI map for this crucial organism and will
therefore provide new insights into the functional genomics of the rice blast fungus. Focusing on
the network topology of proteins encoded by known pathogenicity genes, we have found that
pathogenicity proteins tend to interact with higher numbers of proteins. The pathogenicity proteins
and their interacting partners in the entire network were then used to construct a subnet called a
pathogenicity network. These data may provide further clues for the study of these pathogenicity
proteins. Finally, it has been established that secreted proteins in M. grisea interact with fewer
proteins. These secreted proteins and their interacting partners were also compiled into a network
of secreted proteins, which may be helpful in constructing an interactome between the rice blast
fungus and rice.

Conclusion: We predicted the PPIs of M. grisea and compiled them into a database server called
MPID. It is hoped that MPID will provide new hints as to the functional genomics of this fungus.
MPID is available at http://bioinformatics.cau.edu.cn/zzd_lab/MPID.html.

Background
Magnaporthe grisea is the causal agent of rice blast disease,
which occurs as outbreaks in all rice-growing regions. It is
estimated that 10–30% of the annual rice harvest is lost
due to this disease, which is enough to feed 60 million
people [1,2]. Therefore, it is extremely important for us to
better understand this fungus and to find an effective way

to control it. M. grisea has become the principal model
organism for studying the molecular basis of fungal dis-
eases in plants because of the genetic and molecular trac-
tability of both the fungus and rice [3].

One of the basic characteristics of biological organization
is that everything in an organism can be regarded as part
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of a complex network [4,5]. Traditional researches rely on
a single gene or protein alone and therefore do not pro-
vide a complete understanding of the biological proc-
esses. As in vivo elementary molecular components,
proteins perform their functional roles through their
interactions with one another. Thus, developing a pro-
tein-protein interaction (PPI) network can lead to a more
comprehensive understanding of the cellular processes
[6]. In the past few years, high-throughput methods have
been implemented to identify PPIs [7-11]. Using these
experimental methods, such as yeast two-hybrid screens,
PPI networks for a series of model organisms were deter-
mined that allow us to understand the function of pro-
teins at the level of systems biology. Unfortunately, none
of these high-throughput methods has been applied to
the rice blast fungus, despite its importance [12]. The
genome sequence of M. grisea was released in 2005 [2],
offering the first instance of the gene inventory required
by a pathogenic fungus to cause plant disease. Compared
with the available genomic information, the PPI data for
M. grisea are limited. Therefore, a PPI network of M. grisea
is urgently required to direct our further investigation of
this fungus.

In parallel with the large-scale experimental determina-
tion of PPI, many PPI prediction methods were also devel-
oped. These methods are based on diverse attributes,
concepts, or data types, such as interolog [13], gene
expression profiles [14], gene ontology (GO) annotations
[15], domain interactions [16], co-evolution [17], and
structural information [18]. Some machine learning
methods, such as support vector machines (SVMs), have
also been used to predict PPIs [19,20].

Among the above-mentioned computational methods,
the interolog approach has been widely implemented
[21] and has proved to be reliable for predicting PPI from
model organisms [22]. The core idea of the interolog
approach is that many PPIs are conserved in different
organisms [23]. Based on this approach, the first draft of
a human PPI map was generated [24]. Continuously accu-
mulated PPI data from model organisms as well as
advances in detecting orthologous proteins in different
organisms [25] have made the interolog method an
increasingly powerful tool for constructing PPI maps for
entire proteomes.

Using the interolog method, 11,674 PPIs among 3,017 M.
grisea proteins were inferred from the experimental PPI
data in different organisms. Although the predicted PPI
network covers approximately only one-fourth of the M.
grisea proteome and may still contain many false-posi-
tives, it is the first PPI network for this pathogen and will
provide a framework for the future study of rice blast fun-
gus biology.

Results and discussion
Generation of a M. grisea PPI map
With the assistance of the InParanoid algorithm [25] in
identifying true orthologs between M. grisea and other
organisms, the combined PPI data from E. coli, S. cerevisae,
C. elegans, D. melanogaster, and H. sapiens were used to
infer the PPI network of M. grisea. In this work, 11,674
interactions among 3,017 M. grisea proteins were
obtained (see Additional file 1 for the full list of predicted
PPIs). Approximately two-thirds of the interactions can be
directly inferred from the PPI data of yeast (Table 1).

Since the false-positive rate of the current large-scale
experimental PPI data is quite high [26], the PPIs based
on the interolog method will inevitably contain a large
proportion of false-positives. Two strategies were utilized
to increase the confidence level of the predicted data. First,
we used a stringent algorithm (i.e., InParanoid) to distin-
guish true orthologs from out-paralogs [25]. Second, we
used only the PPI data collected in the DIP [27] and
HPRD [28] databases, which are manually curated and
hence are of higher quality than other databases available
to the community.

Network validation
Due to the absence of large-scale experimental PPI data in
M. grisea, we had no direct method of assessing the overall
quality of the predicted network. Using the GO annota-
tions, the domain interaction database (i.e., the iPfam
database [29]), and the gene expression profiles, three
computational analyses were carried out to evaluate the
global quality of the predicted PPIs indirectly. The proce-
dures involved, including the preparation of datasets and
the construction of randomized networks, are detailed in
the Methods section.

The reliability of the entire network was first assessed by a
method used in a previous study [24]. The main idea of
this method is that two interacting proteins would be
expected to have similar or related functions. Therefore,
PPI datasets with high confidence should predict a greater
proportion of interactions between functionally related

Table 1: The predicted protein-protein interactions

Organism Predicted PPI

S. cerevisae 7,904
C. elegans 242

D. melanogaster 1,080
H. sapiens 2,177

E. coli 916

Totala 11,674

a Considering some PPIs can be inferred from two or more 
organisms, the total number of predicted PPIs is 11,674.
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proteins than those with low confidence. Recently, the M.
grisea genome annotation team at North Carolina State
University released the GO annotation dataset of M. gri-
sea, which is based on experimental data and stringent
computational approaches. The GO annotations of 7,279
proteins in M. grisea are available, covering 2,876 proteins
and 10,288 non-self interactions in our predicted PPI net-
work. Since a pair of interacting proteins generally have
related but not identical functions, they should have some
but not all of their GO annotations in common. To eval-
uate the network, we compared the proportion of the
interactions that shared at least one GO term in any of the
three GO categories in the predicted and 1,000 rand-
omized networks. Since the GO annotations offer a hier-
archical description of gene functions, in which deeper
GO terms indicate more precise functions, comparisons
were performed at different levels of the GO hierarchy
(i.e., GO annotations at depths of 3 to 8 and more than
8). It was found that the percentage of PPI pairs sharing
GO terms in the predicted PPI network was consistently
higher than the largest percentage in the 1,000 rand-
omized networks (Figure 1), suggesting that the predicted
PPI network preferentially connects proteins sharing GO
terms at any level of the GO hierarchy (empirical p-value
< 0.001).

The second validation method relies on the assistance of
the iPfam database. By collecting binary interacting Pfam
domain pairs generated through protein three-dimen-
sional structural data, the iPfam database is independent
of the large-scale PPI data in model organisms. The iPfam

database has previously been employed to predict PPIs
[30], but it was used here as a reference database to vali-
date our predicted network. The central idea for such a val-
idation is that high-confidence PPI networks should
contain a greater proportion of interactions associated
with Pfam domain interacting pairs. The corresponding
Pfam domains for 2,677 proteins in the predicted network
were annotated, and there are 9,836 predicted PPIs
among these 2,677 proteins. Of these 9,836 PPIs, 848 are
associated with Pfam interacting domain pairs; however,
in the 1,000 randomized networks, the average number of
PPIs associated with Pfam interacting domain pairs is 42
± 6.33. The largest number of PPIs associated with Pfam
interacting domain pairs is only 62, which is significantly
smaller than that of our predicted network (empirical p-
value < 0.001).

The third method was applied to further complement the
validation of the predicted PPI data. Because interacting
proteins tend to have correlated gene expression profiles
[31,32], this property has also been used to predict or val-
idate protein-protein interactions [22,33]. In our pre-
dicted network, 2,874 proteins have the corresponding
gene expression profiles deposited in the M. grisea micro-
array dataset from the GEO database [34]. Actually,
10,007 non-self PPIs were predicted among these 2,874
proteins. The average absolute value of the Pearson Corre-
lation Coefficients (PCC) between the expression data of
any interacting pair was 0.440. All the average absolute
PCC values among the 1,000 randomized networks
(0.409 ± 0.0001) are smaller than that of the predicted
PPI network, which means that the predicted interacting
pairs prefer to connect genes with correlated expression
profiles (empirical p-value < 0.001).

It is important to note that the three validation methods
above are somewhat indirect ways to evaluate the pre-
dicted PPIs and may still contain some drawbacks. For
instance, because more than half of the GO annotations
of M. grisea were transferred from model organisms, a cer-
tain bias inevitably exists in the first validation method.
Even so, these three methods together provide convincing
evidence that the confidence of the predicted PPI network
is significantly higher than that of randomized networks.
Therefore, we argue that the overall quality of the pre-
dicted PPIs is good.

Validation of each predicted interaction
While the above analysis has shown the overall quality of
the predicted interactions, it is also very important to eval-
uate the reliability for each predicted PPI. In this work two
p-values based on GO terms and the expression correla-
tion for each predicted interaction were proposed to
assess the reliability of each predicted interaction. The
underlying null model is that of randomized networks. In

Validation of the predicted PPI network based on shared GO annotationsFigure 1
Validation of the predicted PPI network based on 
shared GO annotations. The percentage of interactions 
sharing GO terms at various depths in the GO hierarchy is 
compared with randomly generated networks of the same 
group of proteins. For instance, 80.8% (8,310/10,288) of the 
predicted PPIs share at least one GO term at depth three in 
the GO hierarchy, while the largest proportion in the 1,000 
randomized networks is 74.6% (7,676/10,288).
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the randomized networks, the number of shared GO
terms and the expression correlation coefficient (i.e.,
PCC) for each predicted interaction were calculated.
Based on such null distributions of GO terms and expres-
sion correlation, two nominal p-values can be determined
for each predicted interaction. More details about the cal-
culation of p-values are available in the Methods section.

The calculated p-values allow us to determine which of the
predicted PPIs are likely to be products of random proc-
esses and which are more likely to be reliable. Generally,
predicted PPIs with lower p-values should have higher
reliability. Of the 11,674 predicted PPIs, 1,757 interac-
tions were found to have GO terms-based p-values ≤ 0.05,
while 955 interactions were found to have expression cor-
relation-based p-values ≤ 0.05. Since proteins sharing sim-
ilar functions and proteins with almost identical
expression profiles do not necessarily interact with each
other, the GO terms and expression correlation are not
really gold standards for evaluating the reliability of pre-
dicted interactions. In other words, a nominal p-value of
0.05 may not indicate that the predicted PPI should have
a false-positive rate of 0.05.

In addition to the above two p-values, a prediction score S
was assigned for each predicted interaction. Based on the
Inparanoid score, the score S mainly reflects the ortholo-
gous relationship between the predicted interacting pro-
teins and their corresponding experimentally validated
interacting proteins (i.e., interologs) in model organisms.
More details about the definition of S are addressed in the
Methods section. Generally, a prediction with a higher S
tends to be more reliable. Although we are not able to
quantify the level of the score S that enables us to consider
an interaction reliable, the score S can be used as a com-
plementary measure to evaluate the reliability of a pre-
dicted interaction. In Additional file 1, we list the two
nominal p-values and the prediction score S for each pre-
dicted interaction. We also annotate each interaction with
its Pfam interacting domain pair (if available) and indi-
cate from which organisms the inference came. Taken
together, these measures provide an overall impression on
the reliability of each predicted interaction.

Network properties
The network properties are presented in Table 2. In our
network, 55 of the 3,017 proteins have degrees higher
than 40; these proteins are called hubs in the network.
Some of these hubs may be the proteins encoded by
essential genes in M. grisea. Yeast orthologs for 28 of the
55 hub proteins were reported to be essential genes (see
Table S1 in Additional file 2). Since these 55 hub proteins
usually perform important cellular functions, they can be
a valuable resource for studying this pathogen. For
instance, some of them may be selected as anti-fungus

drug targets. Compared with the established PPI networks
in some other organisms, our network generally has a
larger diameter and a smaller clustering coefficient [33],
implying that our network is somewhat loosely con-
nected; however, compared with 1,000 randomized PPI
networks with the same degree distribution (Table 2), our
network has a larger clustering coefficient, which means
local cohesiveness exists in the predicted PPI network, and
clusters representing biological complexes or pathways
may be detected [35]. Considering that the current net-
work is far from complete, these parameters reflect only
the limited PPI data in our network. As the availability of
experimental PPI data increases in the future, the detailed
parameters of these network properties will be changed.
Even so, the so-called 'scale-free' topology can be more or
less observed in our network (Figure 2). Scale-free net-

Table 2: Topological properties of the PPI network in M. grisea

Predicted network Randomized network a

Average Degree 7.74 7.74
Diameter 9.00 6.00. ± 0.032

Average Distance 4.03 3.66. ± 0.003
Clustering Coefficient 0.11 0.01. ± 0.001

a The randomized network was generated by keeping the degree 
distribution constant and randomizing the number of edges of the 
predicted network. Briefly, we first randomly allocated the number of 
edges for each node according to the degree distribution of the 
predicted network. Subsequently, we randomly picked a pair of nodes 
to make an edge, then decrease the degree for both nodes by one 
until the expected edges has been assigned to each node (i.e., the 
remained degree for each node decreases to 0). This process was 
repeated 1,000 times, and the average values and standard deviations 
of the corresponding network properties are shown.

Scale-free topology of the predicted networkFigure 2
Scale-free topology of the predicted network. Distri-
bution of the number of connections of nodes in the PPI net-
work of M. grisea with both axes plotted on logarithmic 
scales.
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works typically have many nodes with few links and only
a few highly connected ones, which have been frequently
observed in the PPI networks of other organisms. In con-
trast to a random network, in which the connectivity dis-
tribution obeys a Poisson distribution, in a scale-free
network the probability P(k) of nodes having k edges
decays as a power law, P(k) ≈ k-γ. We plotted the connec-
tivity distribution on a double logarithmic scale to iden-
tify the most reliable linear fit for the data, characteristic
of a scale-free topology (Figure 2). The established net-
work in M. grisea is approximately characterized by a
power law, where P(k) ≈ k-1.79 (R2 = 0.90).

Pathogenicity genes in the network
Pathogenicity genes play key roles during the fungal infec-
tion process. A fungus will lose all or part of its patho-
genicity when a pathogenicity gene is knocked out.
Previous work has demonstrated that the diverse func-
tions of pathogenicity genes have no preferential enrich-
ment in any GO category, in comparison with the analysis
of all genes in M. grisea [36]. Of the 100 pathogenicity
genes collected from the PHI-base website and the
recently published work of Lee and co-workers [36,37],
only 32 pathogenicity proteins can be found in the estab-
lished network (see Additional file 2 for more details).
The average degree of these 32 pathogenicity proteins is
10.25, which is higher than that of the whole network
(7.74, p-value = 0.150). The pathogenicity genes uncov-
ered by Lee and co-workers were based on a high-through-
put phenotype screening, and they may need further
experimental validation. For comparison, the pathogenic-
ity genes deposited in the PHI-base were verified by indi-
vidual experiments and share a higher confidence level.
Considering only the pathogenicity proteins from the
PHI-base, the average degree is 11.74, which is much
higher than that of the whole network (p-value = 0.077).
Therefore, it seems that the pathogenicity proteins tend to
have higher degrees.

In the interolog method, the number of interacting part-
ners predicted for a M. grisea protein is related to the
number of orthologs this protein has in the five model
organisms. We analyzed the number of orthologs of all
3,017 proteins in the predicted network and found that
the average number of orthologs of the 32 pathogenicity
proteins is 4.06, which is higher than that of all 3,017 pro-
teins (3.59, p-value = 0.305). We further observed that the
average number of orthologs of pathogenicity proteins
from the PHI-base is 4.47, which is higher than the aver-
age number of all 3,017 proteins (p-value = 0.141).
Although neither of these facts is statistically significant,
we are unable to fully rule out the argument that the
higher connectivity of pathogenicity proteins may be a
result of the larger number of orthologs they have in the
five model organisms.

Researchers investigating an interactome have frequently
used the number of interacting partners of a protein as an
important parameter reflecting the protein's cellular func-
tion. For instance, there is increasing evidence for a corre-
lation between the evolutionary conservation of a protein
and the number of its interacting partners [38,39]. It is
well accepted that proteins that participate in more inter-
actions are phenotypically more important for the organ-
ism [35]. It has also been observed that the toxicity-
modulating proteins in S. cerevisiae are involved in a larger
number of interactions [40]. Additionally, human cancer
proteins have been reported to have far more interacting
partners than other human proteins [41]. It is shown here
that the increased connectivity of pathogenicity proteins
may indicate their special biological roles in the patho-
gen.

In order to understand the cellular function of a protein
on a systems level, it is increasingly important to study the
network or functional module involved. It has been
proved that clustering methods are good at identifying
PPIs that take place within the same pathways or com-
plexes [42,43]. Using identified clusters (also called func-
tional modules) in a network, we can predict the
functions of proteins within the clusters [44,45]. Using
the k-clique clustering method [46], we detected some
clusters with pathogenicity genes (Figure 3 and Additional
file 3). Recent studies have shown that human disease
genes can be predicted based on the human PPI data,
because mutations in different members of a protein com-
plex can often lead to similar diseases [47,48]. Likewise,
mutations in different members of a protein complex may
lead to similar pathogenicity phenotypes. Therefore, new
pathogenicity genes are likely to be found within these
clusters.

The identified clusters in Figure 3 allow us a glimpse of the
functional diversity of pathogenicity genes. The GO
enrichments in these identified clusters include ion trans-
port, chromatin silencing, RNA processing, and phospho-
rus metabolic processes (Figure 3). The potential
biological impact of these clusters is exemplified in one
cluster with a GO enrichment of phosphorus metabolic
processes. Interestingly, in this cluster two pathogenicity
proteins, PMK1(MGG_09565) and OSM1(MGG_01822),
were predicted to have an interaction and were also found
to be tightly connected with PBS2(MGG_10268) and
MST11(MGG_12855). All four of these proteins are pro-
tein kinases. It has been established that the MST11-
MST7-PMK1 cascade regulates the appressorium forma-
tion and infectious growth of M. grisea, and this pathway
might have crosstalk with the other two MAPK cascades
(MPS1 and OSM1 cascades) [49]. Unfortunately, the
molecular mechanisms involved in the interactions
among the three pathways are not yet clear. The cluster
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presented here may provide some hints on the crosstalk
between the MST11-MST7-PMK1 and OSM1 cascades.

The pathogenicity of M. grisea is complicated, and it is
necessary to consider it a network [50]. Furthermore, the
pathogenicity proteins in the network together with their
interacting partners are compiled into a subnet in which
most of the pathogenicity proteins are connected into one
major component (see Additional file 4). This so-called
pathogenicity protein network may provide a clue to
understanding the pathogenicity of the rice blast fungus at
a systems level. Taken together, the clusters identified
above and the pathogenicity protein network will be help-
ful for the study of fungal pathogenesis and the identifica-
tion of new pathogenicity genes in the rice blast fungus.

Secreted proteins in the network
The secreted proteome is a crucial component reflecting
the ability of fungi to perceive and respond to the environ-
ment. The genome of M. grisea contains a large number of
secreted proteins, which play important roles in the
attachment to and the colonization within plant tissues
[2]. Of the 1,452 secreted proteins predicted by the Sig-
nalP program [51], 105 are included in our network
(Table S3 in Additional file 2). All of the secreted proteins
have degrees less than 40 and the average degree is only
4.81, which is significantly smaller than that of the whole
network (p-value = 3.30 × 10-5). As secreted proteins are
secreted out of cells, it is reasonable to expect them to
have low connectivity in the network.

Clusters or communities containing pathogenicity genes (proteins)Figure 3
Clusters or communities containing pathogenicity genes (proteins). Those nodes represented by red triangles are 
pathogenicity genes. The description alongside each cluster is the enriched GO term identified by the Fisher exact test fol-
lowed by the FDR correction, and the corresponding corrected p-value is also listed. The clusters were drawn using 
Cytoscape2.5.1 [57]. A larger version of this figure is available in Additional file 3.
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Some of these secreted proteins may be secreted into the
rice tissue and interact with rice proteins [50]. It can be
hypothesized that this group of secreted proteins have a
much lower degree in the M. grisea protein network. We
further analyzed the 105 predicted secreted proteins using
WoLFPSORT [52] and found that 28 proteins were not
predicted to be located outside of the cell of M. grisea. In
other words, these 28 proteins may be secreted into host
cells and interact with host proteins (see Table S4 in Addi-
tional File 2 for more detailed information). The average
degree of these 28 proteins in the established network is
only 4.07, in accordance with our hypothesis (p-value =
5.22 × 10-5). Furthermore, these 105 secreted proteins,
together with their interacting partners, were compiled
into a subnet of secreted proteins in M. grisea (see Addi-
tional file 5) to facilitate further study of the host-patho-
gen interactions between M. grisea and rice.

The secreted proteins' orthologs in the five model organ-
isms were also counted. The average number of orthologs
of the 105 secreted proteins in our network was observed
to be 2.85, which is smaller than that of all the proteins in
the predicted network (p-value = 1.49 × 10-4). Further-
more, we found that the average number of orthologs of
the 28 secreted proteins that may interact with rice pro-
teins is 3.29, which is also slightly smaller than that of all
the proteins in the predicted network (p-value = 0.545).
Therefore, we cannot fully rule out the argument that the
lower connectivity of secreted proteins may be a result of
the generally smaller number of orthologs they have in
the five model organisms.

Utility
The predicted data can be accessed on the MPID website
http://bioinformatics.cau.edu.cn/zzd_lab/MPID.html.
Users can input a protein's BROAD accession number,
and a table listing the predicted interacting partners of the
query protein is returned (Figure 4A and 4B). This table
provides the nominal p-values, the prediction scores, the
corresponding GO annotations, and the Swiss-Prot
homologs for interacting proteins. Users can also view an
image generated by Graphviz http://www.graphviz.org/ of
the interaction subnet around the input protein. MPID
also allows users to input a group of proteins to ascertain
the interactions among them.

Conclusion
Using a well-recognized interolog approach, we compiled
a draft map of the PPI network in M. grisea, which can be
characterized as a "scale-free" network. The reliability of
our network has been clearly demonstrated by the results
of three validation methods. For each predicted interac-
tion within the network, two nominal p-values based on
GO terms and the expression correlation were proposed
to assess its reliability. Although the established network

is far from complete and certainly contains many false
positives, we hope it can provide new insights into the rice
blast fungus.

We have found that the pathogenicity proteins encoded
by the pathogenicity genes tend to have a higher average
degree than that of the whole network, reflecting their spe-
cial biological roles in the organism. We also observed
that secreted proteins interact with fewer proteins.
Recently, a high-throughput analysis of the rice blast fun-
gus genome was initiated, an indication that fungal
genomics goes industrial [53]. In this context, the availa-
bility of this network will be helpful for future high-
throughput PPI mapping projects. For instance, it may
play an important role in choosing bait and prey in yeast
two-hybrid experiments.

Methods
Building a protein-protein interaction network for M. 
grisea
The protein sequences of M. grisea were obtained from the
M. grisea database (release 5) maintained by the BROAD
institute [2], which contains a total of 12,832 sequences.
The experimentally identified PPI maps from five model
organisms (E. coli, S. cerevisae, C. elegans, D. melanogaster,
and H. sapiens) were used to infer the PPI network of M.
grisea. The corresponding PPI data were downloaded from
DIP and HPRD (see Additional file 6 for more details
about the data used in this paper).

The orthologs of M. grisea proteins in E. coli, S. cerevisae,
C. elegans, D. melanogaster, and H. sapiens were identified
using InParanoid with the default settings. To find
orthologs for a query sequence, InParanoid first identified
all the potential orthologs in the target organism by pair-
wise similarity searching and then clustered these poten-
tial orthologs into groups of likely co-orthologs. Here, we
selected only the main orthologs to construct the PPI net-
work. For any two proteins in M. grisea, an interaction was
predicted if their orthologs in five different model organ-
isms have at least one experimentally verified interaction.
For example, if A and B are two proteins in M. grisea
whose corresponding orthologous proteins in S. cerevisae
(A' and B') were reported to have one interaction, then we
predicted that A may interact with B.

Moreover, we assigned a prediction score S for each PPI by
using a strategy similar to that proposed by Jonsson and
Bates [41]. Given a predicted interaction pair A and B, the
prediction score S is defined as

S IS A A IS B Bi i

i

N

= ′ × ′
=
∑ log[ ( , ) ( , )]

1

(1)
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The snapshot of the MPID websiteFigure 4
The snapshot of the MPID website. (A) The homepage of MPID. (B) The search result provided by MPID.
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where  and  are the corresponding orthologs of A

and B that were reported to have an interaction in one

model organism (i.e., the protein pair  and  is called

an interolog of protein pair A and B); IS( , A) is the

InParanoid score between  and A, while IS( , B) is the

InParanoid score between  and B; N is the total number

of interologs of protein pair A and B identified in the five
model organisms.

Network validation
Three computational experiments were designed to vali-
date the quality of our predicted PPI network. In the first
computational experiment, the recently released GO
annotations of M. grisea were downloaded from the GO
website [54]. 7,279 proteins in the M. grisea proteome can
be annotated by specific GO terms, of which 2,876 are
included in our predicted PPI network. There are 10,288
predicted non-self interactions among the 2,876 proteins.
For comparison, 1,000 randomized PPI networks were
constructed. In each randomized network, 10,288 non-
self pairs were randomly selected from the 2,876 proteins.
We then compared the proportion of PPIs sharing at least
one GO term in the predicted and randomized networks.
We calculated the proportion of PPIs sharing a GO term at
depths of 3 to 8 and more than 8 in the GO hierarchy to
avoid this result just applied to quite general GO terms.
Note that the GO terms from three categories were taken
into account in this analysis. For the GO terms with more
than one path to the GO root, we defined the depth of the
corresponding GO terms as the shortest path length.

In the second validation method, the Pfam domain anno-
tations for the proteins in our predicted PPI network were
generated by employing the locally installed Hmmer-
2.3.2 and Pfam database (Pfam_ls, release 22.0) [55]. For
each query protein in the predicted PPI network, a Pfam
search was performed with the default settings. Using a
0.01 E-value cut-off, we were able to assign Pfam domain
annotations for 2,677 proteins, covering 9,836 predicted
PPIs. Moreover, we counted the number of PPIs associ-
ated with Pfam domain interacting pairs in the current
iPfam database (version 21.0) [29]. To facilitate compari-
son, 1,000 randomized PPI networks were also con-
structed, in each of which 9,836 protein pairs were
randomly selected from the 2,677 proteins. We then
counted how many randomly generated pairs could be
associated with Pfam interacting domain pairs in each
randomized network. Finally, the proportion of PPIs asso-
ciated with Pfam domain interacting pairs in the predicted
and randomized networks was used to assess the quality
of our predicted network.

To perform the third validation, we first downloaded a set
of M. grisea microarray data from the GEO database
(Accession: GSE1945) [34], which detected differential
gene expression during the germination and appresso-
rium formation of the rice blast fungus. 2,874 proteins in
our predicted network were found to have the available
gene expression profiles in the microarray data. We then
computed the average absolute value of PCC between the
expression data of any interacting pairs in these 2,874 pro-
teins. A total of 10,007 non-self PPIs were predicted
among these 2,874 proteins. For comparison, 1,000 rand-
omized networks were generated, in each of which 10,007
non-self interacting pairs were selected among these 2,874
proteins. To assess the quality of our predicted PPI net-
work, the average absolute value of PCCs in our predicted
network and the 1,000 randomized networks were com-
pared.

Validation of each predicted interaction
Two p-values based on GO terms and the expression cor-
relation were proposed to assess the reliability of each pre-
dicted interaction, by comparing it with the set of
interactions within randomized networks. Using the 1000
randomized networks we generated for the GO annota-
tions-based network validation, we calculated the number
of shared GO terms for each pair of nodes. Here only GO
terms at depths ≥ 3 were taken into account. We then cre-
ated a histogram of the corresponding enrichment of the
number of shared GO terms. This null distribution of the
number of shared GO terms was used to estimate a nom-
inal p-value for each predicted interaction. For instance, if
a predicted PPI shares m GO terms, the corresponding per-
centage of PPIs sharing m or more GO terms in the null
distribution is defined to be the GO terms-based p-value
of the predicted interaction. The nominal p-value based
on expression correlation can likewise be estimated.
Using the 1,000 randomized networks we generated for
the expression correlation-based network validation, we
also obtained the null distribution of the absolute PCC
values, which was used to estimate the nominal p-value
for each predicted PPI. For instance, if a predicted PPI has
an absolute PCC of α, the corresponding percentage of
PPIs with absolute PCC values ≥ α in the null distribution
is assigned as the expression correlation-based p-value of
the predicted PPI.

Network analysis
The average degree, clustering coefficient, characteristic
path length, and diameter were calculated to characterize
this newly established PPI network. The degree (i.e., con-
nectivity) of a node is the number of nodes that are
directly linked to it. The average degree is the average of
the degrees of all the nodes. The clustering coefficient of a
node is the ratio between the number of existing links
between its neighbors and the maximum possible

′Ai ′Bi

′Ai ′Bi

′Ai

′Ai ′Bi

′Bi
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number of links between them. The clustering coefficient
of a network, which can be used to investigate its local
cohesiveness, is the average of the clustering coefficients
of all the nodes. The characteristic path length is the aver-
age minimum distance between any two nodes, indicating
how closely nodes are connected within the network. The
diameter of a network is the longest graph-theoretical dis-
tance between any two nodes in the network.

Clustering of network
Some proteins in the PPI network appear as clusters, in
which the nodes are more highly connected to one
another compared to the rest of the network [35,56]. To
identify meaningful clusters of the established network,
the CFinder program [46] was employed. This method
first located maximal complete subgraphs (k-cliques) in
the network. "Communities" were then detected by carry-
ing out standard component analysis of the clique-clique
overlap. The clustering method can be applied at different
k-values, with higher k-values generating protein commu-
nities with higher degrees of interconnection. In this
study, a k-value of 4 was selected. In each identified clus-
ter, the GO enrichment in the GO category of the biolog-
ical process was determined by using the Fisher exact test
followed by the False Discovery Rate (FDR) correction.
The corrected p-value was calculated for each GO term at
a depth of 4 in the GO hierarchy. The most significantly
over-represented GO term was assigned to each cluster.

Proteins encoded by pathogenicity genes of M. grisea
The pathogenicity genes were queried from the PHI-base
(Version 2.3.1) [37] and a recent publication of Lee et al.
[36]. There are currently 42 pathogenicity genes of M. gri-
sea in the PHI-base website. Among the 202 new patho-
genicity loci uncovered by Lee and co-workers, we used
only 61 loci, which are exactly located on open reading
frames. Considering that there are three overlapping genes
in the above resources, a total of 100 pathogenicity genes
were obtained for further analysis.

Prediction of secreted proteins in M. grisea
The secreted proteins in the M. grisea proteome were pre-
dicted by SignalP3.0[51], which detects the presence and
location of signal peptide cleavage sites in protein
sequences based on Neural Network and Hidden Markov
Model algorithms. To perform a prediction, only the first
70 residues in the N-terminal of a query protein were
processed and the other default parameters of SignalP3.0
were used. We considered as secreted proteins only those
that were consistently predicted by both algorithms.
Moreover, WoLFPSORT[52], a predictor based on known
sorting signal motifs and some sequence features, such as
amino acid composition, was employed to identify the
subcellular location of the secreted proteins.
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