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Abstract
Background: Fetal alcohol syndrome (FAS)  is a serious global health problem and is observed at
high frequencies in certain South African communities. Although in utero alcohol exposure is the
primary trigger, there is evidence for genetic- and other susceptibility factors in FAS development.
No genome-wide association or linkage studies have been performed for FAS, making
computational selection and -prioritization of candidate disease genes an attractive approach.

Results: 10174 Candidate genes were initially selected from the whole genome using a previously
described method, which selects candidate genes according to their expression in disease-affected
tissues. Hereafter candidates were prioritized for experimental investigation by investigating
criteria pertinent to FAS and binary filtering. 29 Criteria were assessed by mining various database
sources to populate criteria-specific gene lists. Candidate genes were then prioritized for
experimental investigation using a binary system that assessed the criteria gene lists against the
candidate list, and candidate genes were scored accordingly. A group of 87 genes was prioritized
as candidates and for future experimental validation. The validity of the binary prioritization
method was assessed by investigating the protein-protein interactions, functional enrichment and
common promoter element binding sites of the top-ranked genes.

Conclusion: This analysis highlighted a list of strong candidate genes from the TGF-β, MAPK and
Hedgehog signalling pathways, which are all integral to fetal development and potential targets for
alcohol's teratogenic effect. We conclude that this novel bioinformatics approach effectively
prioritizes credible candidate genes for further experimental analysis.

Background
Case Study Disease: Fetal Alcohol Syndrome
Fetal alcohol syndrome (FAS) is the most common pre-
ventable cause of mental retardation globally, and is a
serious public health problem in South Africa [1]. The

range of prevalence rates reported in two different primary
school cohorts from this community were 65.2–74.2 per
1 000 [2] and 68.0–89.2 per 1000 [1] respectively. This
rate is alarmingly higher than the average observed for the
developed world of 0.97 per 1000 live births [3].
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The teratogenic effect of alcohol is well established and
exposure to alcohol in utero is known to result in a widely
variable phenotype. Fetal alcohol spectrum disorder
(FASD) is an umbrella term used to describe the irreversi-
ble array of anomalies associated with in utero alcohol
exposure [4]. These anomalies include prenatal and post-
natal growth retardation, central nervous system (CNS)
dysfunction, characteristic craniofacial malformation and
other organ abnormalities [5-7]. The term FAS is a clinical
description for children at the most severe end of the
FASD spectrum, who display the full phenotype associ-
ated with in utero alcohol exposure.

Although alcohol consumption during pregnancy is the
primary trigger for the presentation of FAS, the exact
mechanisms for alcohol-induced teratogenic effects have
not been elucidated. Research has shown that secondary
factors, like genetic, epigenetic and environmental factors
influence the outcome and severity of the disorder. Fur-
thermore, a dose- and time-dependant relationship has
been observed, where exposure to higher concentrations
of alcohol at critical developmental stages resulted in
more severe anomalies [8]. An association between a var-
iable genetic background and FAS development is prima-
rily supported by the observation that FAS does not occur
in all children exposed to alcohol during the prenatal
period [9]. This observation suggests that certain individ-
uals may have a genetic predisposition to infliction of
more severe damage by gestational alcohol consumption;
and the varied phenotype observed in FASD may be a
reflection of the varied susceptibility quotients in the
genetic background of the individual. Streissguth and
Dehaene [10] studied twin pairs with alcoholic mothers,
and found the rate of concordance for FASD to be 100%
for monozygotic twins, whereas digygotic twins showed
only 64% concordance. Further support for the role of
genetics in FAS development is obtained from animal
model studies [11]. Several studies in different mouse
strains have shown variation in the extent and pattern of
alcohol-induced malformation, as well as behavioural
outcome [12-15]. FAS can therefore be considered to be a
multi-factorial or complex disease, suggesting that there
are multiple genetic factors underlying susceptibility to
FAS and the interactions between these factors as well as
other factors are likely to be intricate.

Disease gene identification for FAS
To date, no FAS family linkage studies or genome wide
association studies have been performed. Linkage studies
require large family samples and this poses a significant
challenge. Countries with the highest FAS rates are mostly
resource-poor, possibly contributing to the reason why
such studies have not yet been performed. Furthermore,
linkage studies have not proven to be particularly success-
ful in discovering the genetic causes of complex diseases,

the critical factor being the generally weak genotype-phe-
notype association in multi-factorial disorders [16].

Few candidate gene association studies investigating the
effect of specific genetic polymorphisms on the risk of FAS
development have been published. These studies have
generally focused on the alcohol dehydrogenase enzyme
family members and conflicting results have been
obtained. Stoler et al. [17] observed that the absence of the
ADH1B*3 allele was protective for fetal outcome, in con-
flict with two other studies showing the presence of this
allele to be protective [18,19]. The ADH1B*2 allele has
been proposed to play a possible protective role, or to be
a marker for protection in the South African mixed-ances-
try population [20]. However, the sample size for this
association study was small, and results have not yet been
replicated in other populations. Many other genes are
likely to contribute towards the development of FAS and
further investigation is required.

Candidate gene association studies remain the most prac-
tical and frequently employed approach in disease gene
investigation for complex disorders. However, the main
challenge when using this approach is to select suitable
genes to test, especially for diseases with poorly under-
stood aetiology. Recently, many computational candidate
gene selection and -prioritization methods have been
developed [21-31]. These tools aim to identify and prior-
itize putative disease genes by modelling specific charac-
teristics of known disease genes, or by focusing on known
disease features (such as gene expression profiles or phe-
notype). However, there is a vast quantity of information
and data sources available currently, and it is expected
that a tool with the flexibility to include a large array of
data sources would positively aid disease gene discovery.
The freely accessible tool Endeavour offers such an appli-
cation [22]. This tool is based on the premise of ranking
unknown candidate genes according to their similarity
with a known set of training genes. In the absence of a
linked genetic region (which is the case with FAS), all
genes in the genome must be included as a starting point
for candidate gene selection, which is not feasible when
using this approach.

Convergent Functional Genomics (CFG) is an approach
used to identify and prioritize candidate genes, which
relies on the cross-matching of animal model gene expres-
sion data with human genetic linkage data, as well as
human tissue data and biological roles data [32,33] This
approach has many parallels to the approach described in
this paper, as it prescribes a Bayesian-like methodology of
reducing uncertainty through the combination of multi-
ple independent lines of evidence, each by itself lacking
sufficient power to confirm that a gene is a putative candi-
date gene, to produce a short list of high probability can-
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didate genes [32]. The approach of CFG relies principally
on two lines of evidence – animal model data and human
genetic linkage data. The approach we describe in this
paper has the added advantage of allowing the inclusion
of additional lines of evidence in the presence of limited
expression studies in an animal model and the absence of
FAS linkage studies.

Tiffin et al. [34] recently surveyed some of the methods for
computational disease gene identification and concluded
that using the methods in concert was more successful in
prioritizing candidate genes for disease, than when each
was used alone. This review additionally showed that
using existing computational methods in concert high-
lighted potential candidates that are selected by a subset
of methods and are missed by the other methods, depend-
ing on the type of data examined. This observation gives
further evidence that the inclusion of more data sources
may positively aid disease gene discovery.

In light of the current burden of FAS in many resource-
poor communities and the inconclusive search for suscep-
tibility genes, computational identification offers a novel
and efficient approach to the identification of disease-
causing genes. Initially we used the candidate gene selec-
tion method described by Tiffin et al. [31], but in the
absence of a candidate genetic region, this method
resulted in a large candidate gene list, as it relies on the
selection of candidate disease genes only according to
their expression profiles. This prompted us to devise a

new prioritization method to rank genes from the candi-
date gene list for empirical investigation. The prioritiza-
tion method described here is based on a simulation of a
researcher's approach to selecting candidate disease genes.
In this process, a variety of relevant database sources are
mined for candidate genes that exhibit characteristics rel-
evant to disease phenotype. Genes were prioritized based
on binary evaluation, where genes were assessed using cri-
teria pertinent to FAS to mine various database sources
and to create criteria-specific gene lists. The validity of the
binary prioritization method was assessed by investigat-
ing the protein-protein interactions, functional enrich-
ment and common promoter element binding sites of the
top-ranked genes.

Results
Integrated literature- and data mining for candidate gene 
selection
According to the method described by Tiffin et al. [31],
Dragon Disease Explorer (DDE) was used to extract eVOC
anatomical terms from the body of literature, where after
they were used to extract candidate genes from the
Ensembl database. This method extracted a list of 10174
genes, a reduction of 70.3% from the original 34294
genes in the Ensembl database.

Binary filtering and prioritization of candidate genes
In order to select the most likely candidates from the ini-
tial candidate gene list, these genes were ranked according
to the number of additional criteria (Table 1) they

Table 1: Summary of criteria used to create a binary grid

CATEGORIES

Cell type Biological Process Animal model homology Phenotype simile Imprinted genes

Glial cell Apoptosis Phenotype Mental Retardation All known human
Neuron Development Growth Microcephaly imprinted genes
Fibroblast Brain Development Behaviour/Neurological Craniofacial
Neuroepithelium Transport Craniofacial Hyperactivity

Signal Transduction Nervous Growth Retardation
Embryogenesis

Timing
Pre-Embryonic
Embryonic
Fetal

Anatomy
TS18–9 Ectoderm
TS10–13 Neural Ectoderm
TS14–26 CNS
TS28 CNS
TS12–26 Head
TS20–26 Cranium

1TS – Theiller stage: A term used to denote the stage of development of a mouse as described by Theiler in "The House Mouse: Atlas of Mouse 
Development" (Springer-Verlag, New York, 1989)
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matched. The top-ranked genes (in ranked order) are
shown in Table 2. FGFR1 was the top-ranked gene, present
in 17 of the 29 criteria gene lists, followed by MSX1,
present in 16 of the 29 criteria lists. FGFR2, FOXG1B and
HOXA1 were present in 15 of the 29 criteria lists, followed
by a group of 4, 17, 14 and 47 genes present in 14, 13, 12
and 11 criteria lists, respectively. This group of 87 genes
was used as the prioritized candidate gene list for further
analyses (see Additional file 1). This cut off (present in 11
of the 29 criteria lists) was used to select an appropriately-
sized group of top-ranked genes.

Genes from the candidate gene lists that matched one or
none of the criteria were considered to be unlikely candi-
dates. Based on this premise, these 5055 genes (50%)
from the candidate gene list were ranked as weak candi-
dates. 87 Genes of the subset matching to no criteria were
randomly selected for further analysis as a negative con-
trol set to assess the validity of the ranking method.

Evaluation of biological significance of prioritized genes
Protein-protein interactions
The list of most likely candidate genes (top-ranked 87
genes), and unlikely candidates (randomly selected low-
ranking 87 genes) were submitted to the STRING database
(Search tool for the retrieval of interacting genes/proteins)
[35] to assess known protein-protein interactions.
Although the STRING database has information related to
known and predicted protein-protein interactions, only

known interactions were selected for this analysis, for
accuracy. Figure 1 shows the STRING network of interac-
tions for the top-ranked genes. The network view summa-
rizes the associations for the group of gene products. The
network edges represent the predicted functional associa-
tions and each colour represents a different line of evi-
dence. For the genes that were found to be linked through
protein-protein interaction, the source of evidence for the
interactions and confidence scores are summarized in
Table 3. Significantly fewer protein-protein interactions
were observed within the low-ranked gene list.

Functional enrichment analysis using DAVID
DAVID (Database for annotation, visualization and inte-
grated discovery) [36] was used to assess functional
enrichment within the top-ranked candidate gene list.
Firstly, the analysis focusing on pathway maps high-
lighted a number of pathways significantly represented
within the gene list, with the transforming growth factor
(TGF-β) signalling pathway being most over-represented
within the list (Table 4). This enrichment was not
observed on the low-ranked gene list (data not shown).
Furthermore, significant enrichment of Gene Ontology
(GO) terms was observed in the top-ranked list for all
three of the GO – categories. The GO terms found to be
significantly enriched for the top-ranked gene list are
shown in Additional file 2.

Table 2: Selected top-ranked candidate genes for FAS identified using binary matrix filtering

Rank Criteria matched HGNC ID Description Location Function

1 17/29 FGFR11 Fibroblast growth factor 
receptor 1

8p11.2 Involved in limb induction, play a role in bone elongation 
modulation

2 16/29 MSX12 Msh homeobox homolog 
1 gene

4p16.3-p16.1 Potential repressor function in cell cycle progression, 
transcription repressor

3 15/29 FGFR21 Fibroblast growth factor 
receptor 2

10q26 Involved in vertebral development, important regulator of 
bone formation and osteoblast activity

4 15/29 FOXG1B Forkhead box G1B 14q13 Embryonic transcriptional regulator, playing a critical role 
in brain development

5 15/29 HOXA1 Homeobox A1 7p15.3 Involved in the placement of hindbrain segments in the 
proper location along the anterior-posterior axis during 
development

6 14/29 BMP42,3 Bone morphogenetic 
protein 4

14q22-q23 Regulating myogenesis through dosage-dependent PAX3 
expression in pre-myogenic cells, inducing apoptosis and 
chondrogenesis in the chick limb bud

7 14/29 FGFR31 Fibroblast growth factor 
receptor 3

4p16.3 Negative regulator of bone growth promotion, inhibition 
of chondrocyte proliferation and differentiation depending 
on devlopmental time

8 14/29 GNAS2 Gnas complex locus 20q13.2-q13.3 Involved as modulators or transducers in various 
transmembrane signaling systems primarily mediating the 
differential effects of parathyroid hormone

9 14/29 PAX6 Paired box gene 6 11p13 Key regulator of eye, pancreas, central nervous system 
development and regulator of glial precursors in the 
ventral neural tube

1 Members of/linked to the MAPK signalling pathway
2 Members of/linked to the TGF-β signalling pathway
3Members of/linked to the Hedgehog signalling pathway
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Promoter element binding site analysis
As shown in Tables 5 and 6, the promoter analysis
detected 15 transcription factors (TF) that appear in pro-
moter elements (PE) or pairs of PE that are significantly
statistically enriched in the target promoter set as opposed
to the background set. The conditions for selection PE of
Tables 5 and 6 were that PE (or their combination) has to
appear in at least 5% of promoters in the target set and to
have over-representation index (ORI) (see Bajic et al. [37])
of at least 2. These are AP-2, C/EBP, E2F, ETF, LEF1, MAZ,
MAZR, MZF1, Pax-4, Sp1, Spz1, TATA, TFII-I, VDR, ZF5. In
Tables 5 and 6, PE or their combinations that have been
found in significantly enriched proportions relative to the
background promoter set, are denoted by a + sign in the
column of the over-representation index (ORI). Further
analysis suggests that TF that potentially bind these tran-
scription factor binding sites (TFBS), are part of the group
of TF that are dominant transcriptional regulators of our
promoter target set (Tables 5 and 6). Results from the pro-
moter element binding site analysis are shown in Addi-
tional file 3.

Discussion
Our challenge was to select a highly likely group of candi-
date genes for susceptibility to FAS, in the absence of
genetic linkage evidence. In this paper a computational
approach to candidate disease gene identification is pro-
posed as an effective first line of candidate gene identifica-
tion for a complex disease such as FAS. Mining of gene
expression data was used to generate an extensive list of
candidate genes which were compared to filtered criteria
specific gene lists using 29 criteria to select the most likely
candidate genes. The prioritization method described
here is based on a computational model of a researcher's
approach to selecting candidate genes, i.e. based on pub-
lished information; but may also select non-intuitive can-
didate genes. In summary, various relevant database
sources are accessed to establish whether a candidate gene
and its product exhibit the biological characteristics con-
sistent with that particular disease.

Candidate gene selection and -prioritization
A method that employs an integrative literature- and data
mining approach to select candidate genes was used to

The STRING network of known protein-protein interaction among the 78 top-ranked candidate genes for FASFigure 1
The STRING network of known protein-protein interaction among the 78 top-ranked candidate genes for 
FAS. The network edges represent the predicted functional associations. Each different colour represents a different line of 
evidence: pink = experimental data, light blue = homology analysis and turquoise = functional association.
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select candidate genes for FAS [31]. This method extracted
a gene list of 10174 genes. This list is relatively unspecific,
and is likely to have a high false-positive rate. The most
plausible explanation for the selection of such a large,
ambiguous list is a lack of detailed information about the
source of cDNA libraries, with the result that more general
terms from higher up the ontology hierarchy are often
used for annotation of the gene. This prompted us to
devise a prioritization method to rank genes from the can-
didate gene list using many different data sources for lab-
oratory investigation of individual candidate genes. A
binary evaluation method was used to rank the candidate
genes in the list, facilitating the selection of 87 top-ranked
genes as the most likely candidate genes for further inves-
tigation.

Further analysis with available online tools such as
DAVID and STRING highlighted protein-protein interac-
tion, functional enrichment and probable biological sig-
nificance among the top-ranked genes. STRING was used
to investigate protein-protein interaction among the pri-
oritized candidate genes, and highlighted a group of genes
that interact (Figure 1 and Table 3). The candidate gene
selection method described here focuses on gene annota-
tion, and it is therefore possible that the top ranking genes
are better annotated than low-ranked genes. Therefore the
absence of protein-protein interaction among the low-
ranked genes is not necessarily a reflection on level of
interaction but may be related to the level of understand-
ing of the gene and its function. It is accepted that the
genes underlying complex disease (such as FAS) will be
plentiful and the interactions between these factors are
likely to be intricate. For this reason, STRING is a useful
tool to highlight genes within the top-ranked gene list that
interact and that may have a cooperative effect on disease
outcome.

DAVID elucidates functional enrichment and biological
significance within the top-ranked gene list, and high-
lighted the TGF-β and Mitogen-Activated Protein Kinase
(MAPK) signalling pathways as primary candidate path-
ways for FAS development.

As a way of further assessing the list of 87 prioritized FAS
candidate genes they were cross-matched against candi-
date genes for alcoholism, obtained using Convergent
Functional Genomics [32]. Although the two phenotypes
are very different, one would expect some overlap in pri-
oritized candidate genes since many of the mothers of FAS
children suffer from alcoholism. The two prioritized can-
didate gene lists (87 genes for FAS and 65 for alcoholism)
had only two high priority candidate genes in common –
GNAS complex locus (GNAS) and high mobility group
protein B1 (HMGB1). The remaining 63 candidate genes
for alcoholism were also present in the initially selected

Table 4: Biological pathways significantly over-represented 
among the top-ranked candidate genes

Pathway Gene
Count

P-value1 P-value2

TGF-b signaling pathway 9 0.0000067 0.00001
Hedgehog signaling pathway 7 0.000038 0.000036
MAPK signaling pathway 13 0.000078 0.0006
Adherens junction 7 0.00035 0.00051
Cell cycle 8 0.00036 0.0012
Neurodegenerative disorders 5 0.00075 0.0023
Regulation of actin cytoskeletan 9 0.0035 0.014
Focal adhesion 9 0.004 0.022
Gap junction 6 0.0059 0.0079
Cytokine-cytokine receptor 
interaction

9 0.011 0.0017

Epithelial cell signaling in H. 
Pylori infection

4 0.018 0.029

The gene count indicates how many genes from a particular pathway 
were present in the candidate gene list of 87 genes. Note that varying 
P-values were obtained depending on the background list used
1P-value obtained using the Homo sapiens gene list as a background 
list to the top-ranked candidate genes
2P-value obtained using the original candidate gene list as a 
background list to the top-ranked candidate genes

Table 3: Known protein-protein interaction for the prioritized 
candidate genes obtained using STRING

Confidence Scores Combined
confidence

score
Gene 1 Gene 2 Experimental Knowledge

TGFB11,2 DCN2 0.747 0.8 0.949
BRCA1 TP531 0.935 0 0.935
CTNNB1 CREBBP2 0.912 0.9 0.991
MADH22 CREBBP2 0.937 0 0.937
BCL2L1 TP531 0.935 0 0.935
CTNNB1 PITX22 0 0.9 0.9
PPARBP TP531 0.935 0 0.935
CASP31 RB1 0.747 0.9 0.974
BMI1 PHC2 0.997 0 0.997
HMGB1 TP531 0.935 0 0.935
LDB1 LMO4 0.938 0 0.938
MADH22 TGFB21.2 0 0.9 0.9
EGFR1 MAPK31,2 0 0.9 0.9
BRCA1 RB1 0.935 0 0.935
PITX22 LDB1 0 0.9 0.9
RXRA CREBBP2 0.03 0.9 0.903
TP531 CREBBP2 0.983 0.9 0.998
CTNNB1 GJA1 0 0.9 0.9
PITX22 CREBBP2 0 0.9 0.9
VEGF ARNT 0 0.9 0.9

The available evidence for the most significant interactions as well as 
the confidence score assigned for the interactions are shown
1 Members of/linked to the MAPK signalling pathway
2 Members of/linked to the TGF-β signalling pathway
3Members of/linked to the Hedgehog signalling pathway
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list of 10174 genes, but were ranked below the arbitrary
cut-off of 11/29 criteria used to select the highly priori-
tized candidate list for FAS.

Incorporating the set of alcoholism genes as a selection
criterion into the binary evaluation method only added
two more genes to the prioritized list. These were G1/S-
specific cyclin-D1 (CCND1) and insulin-like growth fac-
tor I receptor (IGF1R). Both gene products contribute to
cell proliferation and differentiation, and exhibit charac-
teristics that also make them likely candidate genes for
FAS. However, neither directly interacts in the two main
prioritized pathways (TGF-β or MAPK signalling path-
way). This comparison shows that these two related dis-
eases (due to the involvement of alcohol in both) have
potentially common genetic factors, but that they also
exhibit diversity in terms of genetic susceptibility. This
gene list was therefore not included in the final binary fil-
tering analysis.

Prioritized pathways – relevance to FAS development
TGF-β signalling pathway
FAS is a complex disease, suggesting that the genetic fac-
tors underlying susceptibility to FAS may be plentiful and
the interactions between these factors, as well as environ-
mental factors are likely to be intricate. The computa-
tional approach described here highlights genes that are
important players in various signalling pathways, in par-
ticular the TGF-β and MAPK pathways. These genes play
pivotal roles during embryogenesis and development
(Table 2) and have a potential role in the distinct charac-
teristics associated with FAS, i.e. CNS dysfunction, cranio-
facial abnormalities and growth retardation. CNS
dysfunction is the most severe and permanent conse-
quence of in utero alcohol exposure and the only feature
present in all other disorders in FASD. These observations
make the TGF-β signalling pathway an interesting focus
point, as it is essential in both fetal development and also
CNS development [38].

TGF-β signalling controls a diverse array of cellular proc-
esses, including cell proliferation and apoptosis, cell dif-

Table 6: Pairs of promoter elements found to be enriched in the target promoter set relative to the background promoter set

Pairs of promoter 
elements

ORI TAR 
(%)

BCG 
(%)

Probability of finding
PE in target set

Probability of finding
PE in background set

TAR 
(n)

BCG 
(n)

TAR 
Total

BCG 
Total

P-value

-1 MZF1/+1 E2F 17.1036 6.62 1.47 0.00007 0.00002 36 151 544 10255 0.000003
-1 LEF1/-1 Pax-4 14.6726 6.62 1.77 0.00007 0.00002 36 182 544 10255 0.000254
-1 C/EBP/+1 VDR 10.1454 6.43 1.85 0.00006 0.00002 35 190 544 10255 0.002385
+1 C/EBP/+1 VDR 9.1022 6.99 2.42 0.00009 0.00003 38 248 544 10255 0.041880
-1 MAZ/-1 VDR 9.0220 9.19 2.89 0.00015 0.00005 50 296 544 10255 0.000012
-1 MZF1/-1 MZF1 8.4560 5.51 1.6 0.00007 0.00003 30 164 544 10255 0.039710
-1 ETF/-1 VDR 7.6725 7.54 2.68 0.00011 0.00004 41 275 544 10255 0.023710
-1 AP-2/-1 ETF 6.8853 12.87 5.11 0.00023 0.00009 70 524 544 10255 0.000015
-1 MAZ/+1 Sp1 6.4534 9.56 2.63 0.00012 0.00007 52 270 544 10255 0.000000
-1 Spz1/-1 Spz1 6.0515 14.34 5.57 0.00021 0.00009 78 571 544 10255 <0.00001
-1 VDR/-1 Spz1 5.4345 14.34 6.54 0.00024 0.00010 78 671 544 10255 0.000429
-1 ETF/-1 E2F 5.4001 11.76 5.22 0.00020 0.00009 64 535 544 10255 0.007227
-1 Spz1/-1 VDR 5.2463 13.6 6.58 0.00025 0.00010 74 675 544 10255 0.013100
-1 VDR/+1 ZF5 4.4308 14.15 6.59 0.00018 0.00009 77 676 544 10255 0.001322

The criteria for selecting pairs of PE as enriched was that it has to appear in at least 5% of the target promoter sequences and to have over-
representation index (ORI) of at least 2. PE that appear in statistically significant proportion in the target set are denoted by + in the ORI column.

Table 5: Promoter elements found to be enriched in the target promoter set relative to the background promoter set

Promoter 
elements

ORI TAR 
(%)

BCG 
(%)

Probability of finding
PE in target set

Probability of finding
PE in background set

TAR 
(n)

BCG 
(n)

TAR 
Total

BCG 
Total

P-value

-1 MAZR 11.5685 5.7 2.07 0.00009 0.00002 31 212 544 10255 0.002
+1 MAZR 5.6322 5.15 2.08 0.00005 0.00002 28 213 544 10255 0.033
-1 TATA 2.9231 16.36 9.76 0.00017 0.00010 89 1001 544 10255 0.002
-1 TFII-I 2.8865 18.2 10 0.00017 0.00011 99 1025 544 10255 <0.001
-1 MAZ 2.6342 29.96 20.03 0.00040 0.00022 163 2054 544 10255 <0.001

The criteria for selecting PE as enriched was that it has to appear in at least 5% of the target promoter sequences and to have over-representation 
index (ORI) of at least 2. PE that appear in statistically significant proportion in the target set are denoted by + in the ORI column.
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ferentiation and specification of cellular phenotypes and
developmental fate [39]. TGF-β is also important in neu-
ronal migration and axonal growth, and regulates the for-
mation of various craniofacial structures [40,41].

Early exposure to ethanol inhibits such TGF-β regulated
processes as cortical cell proliferation and neuronal
migration, disrupts axonal growth and up-regulates cell
adhesion molecule expression [40]. It can therefore be
suggested that members of the TGF-β signalling pathway
interact with ethanol, and/or its metabolic breakdown
products, and that ethanol may have a detrimental effect
on the efficiency of this developmentally essential path-
way. Investigating the role of TGF-β components present
among the top-ranked genes may clarify part of the
genetic component contributing to susceptibility for FAS
development.

The hypothesis that TGF-β signalling pathway genes may
be involved in FAS susceptibility is even more compelling
when considering the major role of this pathway in neu-
ronal apoptosis. Several studies have shown that alcohol
suppresses neuronal activity, resulting in a pro-apoptotic
environment in the developing brain [42-44]. Alcohol-
induced neural apoptosis has been observed throughout
the developing CNS, including all levels of the spinal
cord, brain stem, cerebellum, midbrain and forebrain.
Furthermore, alcohol has been observed to diminish neu-
rons from various parts of the developing visual-, audi-
tory- and memory systems of the developing brain [43].
This pro-apoptotic effect of alcohol provides a probable
explanation for the long-term CNS dysfunction and
diminished brain size associated with FAS, and could be
mediated by the TGF-β pathway. Alcohol has an array of
molecular pathway targets and modes of inducing apop-
tosis and the candidate disease genes selected using this
method have a strong role to play in apoptosis.

Genetic mutations in members of the TGF-β signal path-
way, generally result in tumorigenesis, and have been
repeatedly linked to human cancer [46-49] TGF-β dys-
function is also causal for hereditary hemorrhagic tel-
angiectasia [50], corneal dystrophy [51], Camurati-
Engelmann Disease of bone [52] glomerulonephritis [53],
scar formation [54], keloids [55], pulmonary fibrosis [56],
and liver cirrhosis [57]. Recent studies also propose a role
for TGF-β signalling in Alzheimer's disease pathology
[58,59]. However, no such link has to date been proposed
between genetic susceptibility to FAS development and
disruption of the TGF-β pathway. Given the above-men-
tioned experimental evidence, the TGF-β pathway, and
specifically its components that were top-ranked using
this computational approach, is an attractive focus for a
genetic association study.

MAPK signalling pathway
The MAPK pathway transmits a large variety of external
signals, leading to a wide range of cellular responses,
including growth, differentiation, inflammation and
apoptosis [60]. This pathway is very complex and includes
many protein components. MAPK-pathway components
have been shown to be involved in both the initiation and
regulation of meiosis, mitosis, and post-mitotic functions,
and in cell differentiation by phosphorylating a number
of transcription factors [61].

The MAPK signalling pathway can be activated by a variety
of stimuli, including growth factors, cytokines and differ-
entiation factors [60] as well as external stress factors, such
as alcohol [62]. Recent studies have investigated the effect
of controlling second-messenger signalling on neuronal
migration in a mouse model of FAS [63]. It was shown
that experimental manipulation of these second-messen-
ger pathways, through stimulating calcium- and cGMP
signalling or inhibiting cAMP signalling, completely
reversed the action of ethanol on neuronal migration in
vitro as well as in vivo. Each investigated second messenger
had multiple but distinct downstream targets, including
MAPK.

Hedgehog signalling pathway
The hedgehog signalling pathway also received a highly
significant ranking among the pathways identified to be
enriched within the candidate list. The hedgehog signal-
ling pathway is a key regulator of embryonic development
and is highly conserved. Knock-out mouse models lacking
components of this pathway have been observed to
develop malformations in the CNS, musculoskeletal sys-
tem, gastrointestinal tract and lungs [64].

FAS animal models portray a strikingly similar craniofa-
cial phenotype to mouse models treated with antibodies
that block Hedgehog signalling components, specifically
the sonic hedgehog (Shh) molecule [65-67] Further stud-
ies to expose the role of Shh in fetal alcohol syndrome,
showed that alcohol resulted in a significant decrease in
Shh levels in the developing embryo, as well as a decrease
in the level of other transcripts involved in Shh signalling.
Furthermore it was observed that the addition of Shh after
ethanol treatment led to fewer apoptotic cranial neural
crest cells, resulting in a significant decrease in craniofa-
cial anomalies [68]. These results give compelling support
that the components of the Hedgehog signalling pathway
may also be important in the genetics of FAS.

Transcriptional regulators of the prioritised genes
All TFBS that are found to be statistically significant for
FAS are known to be involved in gene expression and reg-
ulation in the CNS, endocrine system or development.
The AP-2 family of TF is crucial for neural gene expression
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and neuronal development [69]; C/EBP is involved in
neuronal signalling [70]; the E2F family of TF is one of the
key controllers of cell-cycle and has a known role in path-
ways controlling neuron death [71]; ETF, the epidermal
growth factor receptor-specific TF, is implicated in neu-
roblastoma [72]; LEF1 is expressed in the nerve system of
mammals [73]; MAZ is involved in Hodgkin's disease and
paraneoplastic cerebellar dysfunction [74] and during
neuronal differentiation [75]; MAZR is implicated in the
development of mouse limb buds [76]; MZF1 is involved
in development [77] and implicated in the control of the
BACE1 gene related to Alzheimer's disease [78]; Pax-4 is
involved in the endocrine system and development [79];
Sp1 has multiple roles, but, for example, controls expres-
sion of Na+,K+-ATPase in neuronal cells [80]; Spz1 is
involved in cell-proliferation [81]; TATA binding proteins
are implicated in various processes involved in brain [82];
the TFII-I transcription factor family is implicated in
craniofacial development of humans and mice [83]; VDR
is associated with increased risk of schizophrenia [84];
and ZF5 is implicated in neuroblastoma differentiation
[85]. These results support the prioritization of biologi-
cally relevant candidate disease genes.

Conclusion
The results obtained in this study suggest that making a
clinically-informed selection from the evidence obtained
from literature- and database-mining is an effective
approach for candidate disease gene selection and -prior-
itization. The main limitation of this approach is that it is
primarily based on gene annotation, and that it is there-
fore biased towards selecting better annotated genes. Fur-
thermore, some clinical understanding of the disease
aetiology is needed to aid the clinically-informed binary
evaluation, and this process could be partly subjective and
researcher-specific. The effectiveness of this approach crit-
ically depends on the disease under investigation being
clearly defined both molecularly and physiologically, in
order to avoid erroneous associations. A multitude of bio-
logical processes are affected by the insult of alcohol expo-
sure, particularly given a predisposing genetic
background. FAS as a developmental disorder represents
with a spectrum of structural, behavioral and neurocogni-
tive disabilities, which complicates this process of clearly
defining focus. This is evident when considering the
ambiguous results obtained when using the method that
only considers general anatomical terms to select candi-
date genes [31]. This encouraged the inclusion of the
binary prioritization technique to further enhance the
selection process.

A further limitation of employing this approach in select-
ing candidate genes for a developmental disorder lies in
the limited knowledge available regarding the mecha-
nisms involved in such a disorder. The developing organ-

ism undergoes many rounds of pattern formation,
generating complexity with each ensuing round of cell
division and with cell differentiation. Even though the
pathways identified using this technique are general fun-
damental role players in embryogenesis and develop-
ment, the technique allowed the focus to fall on specific
candidate genes within these pathways for investigation.

The computational approach described here has been
used to select and refine a 'most likely' candidate gene list
according to known characteristics of FAS. We have dem-
onstrated that we can identify likely candidates that are
biologically relevant to the disease, and therefore appro-
priate for gene association studies. By refining the candi-
date gene list for FAS using a binary evaluation approach,
we selected a subset of biologically relevant candidate
genes for experimental validation.

Methods
Literature search
Abstracts related to FAS were obtained from the PubMed
scientific literature database. In order to obtain all rele-
vant literature, PubMed's automatic term mapping search
of the literature might not be sufficient and a more robust
search option of using Medical Subject Heading (MeSH)
terms was implemented. Using this option also implies
that all equivalent synonyms or lexical variants in English
will be included in the search [86]. Literature related to
FAS was obtained using the following query: "(fetal alco-
hol syndrome [MH]) OR (fetal alcohol spectrum disor-
der* [tw])" Limits: only items with abstracts, English.

Literature mining
The online literature mining tool DDE [87] was used to
extract eVOC ontology terms from the body of literature.
The eVOC ontology is a controlled vocabulary used to
describe the sample source of cDNA and SAGE libraries
and labelled target cDNAs for microarray experiments.
eVOC contains four major orthogonal ontologies – ana-
tomical system, cell type, pathology and developmental
stage [88]. DDE provides summarized information from a
body of submitted PubMed abstracts about frequency of
occurrence of ontology terms within the text. This assists
biologists in uncovering possible functional associations
between disease and gene expression site. Following the
method of Tiffin et al. [31], only eVOC anatomy terms
were used to extract the initial candidate gene list. Cell
type terms were used to populate criteria lists for the
binary filtering approach (Table 1). Terms extracted
matching to the developmental- and pathology ontolo-
gies were uninformative in this case (terms such as pathol-
ogy or adult were extracted) and it was deemed that
populating criteria lists using these terms would not con-
tribute positively to the selectivity of the binary evaluation
system. Therefore these terms were not further included.
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Candidate gene selection
The method previously described by Tiffin et al. [31] was
used to extract candidate genes based on the information
obtained from the literature mining. Figure 2 illustrates
the process of literature- and data-mining used to select
candidate genes. Briefly, this method ranks the extracted
eVOC terms by calculating a ranking score for each associ-
ated eVOC term, according to the frequency of association
and the frequency of annotation of the eVOC term. The
four top-scoring eVOC terms were selected from the
ranked list, and compared with eVOC terms annotated to
genes within the Ensembl database (Ensembl v33, Sep-
tember 2005) to select candidates. The system allows for
one mismatch, such that candidates selected are those
annotated with at least three of the four top-scoring eVOC
terms. This approach was tested by the authors on a subset
of genes representative of those that might be selected by
a linkage analysis study, and not the full complement of
genes in the Ensembl database, as in the current study.

Binary filtering and prioritization of candidate genes
The integrated literature- and data-mining approach to
identify candidate genes focuses exclusively on anatomi-
cal sites related to the disease of interest, and results in a
large list of genes. In order to obtain a more focused
assessment of the most likely candidates from this gene
list, other criteria pertinent to FAS were investigated. Five
main categories of criteria were used – cell type, biological
process, homology, imprinted genes and phenotype sim-
ile. For each category there are multiple gene lists, each
specified by one criterion (Table 1). The criteria-specific
gene lists generated were compared to the candidate gene
list (obtained from the integrated data- and literature-
mining approach described above) to create a binary
matrix. The binary evaluation was performed as follows: A
gene in the candidate gene list was assigned a 1 when that
gene was also present in the gene list obtained by a spe-
cific criterion. If the gene was absent from that list it was
assigned a 0.

For each of the genes we calculated the final binary score,
simply by summing all binary scores for each of the crite-
ria used. Then we ranked all genes based on this score,
with those having higher scores being higher in the rank
list. Genes in the candidate list that were present in most
criteria lists (i.e. those genes that obtaining the most 1-
scores in the binary matrix) received the highest rank as
candidates. This follows the premise that genes most com-
monly selected from additional independent sources pos-
sess characteristics that make them more promising
candidates. Similarly, genes that were selected by only one
or none of the additional criteria have a lower rank and
are considered to be weak candidates.

A description of each category of criterion and the infor-
mation used to assess the criteria are given below:

Cell Type
DDE was used to extract all eVOC cell type terms from the
disease-related literature. Cell type ontology terms found
to be associated with FAS were compared with eVOC
terms annotated to genes within the Ensembl database to
select a list of genes.

Biological Process
Disease-related literature contains terms describing func-
tional aspects related to the disease. Dragon TF Associa-
tion Miner (DTFAM) is an online tool for text-mining of
PubMed abstracts to discover potential functional associ-
ation of GO-terms and diseases [89]. DTFAM was used to
extract all GO terms from the abstracts of disease-related
literature. Of the terms extracted, terms falling in the
molecular function (binding) and cellular component
(membrane, nucleus, chromosome and intracellular)
ontologies were not included in the analysis, as we con-

The method of integrated literature- and data mining to iden-tify an initial list of putative candidate genesFigure 2
The method of integrated literature- and data mining to iden-
tify an initial list of putative candidate genes.

PubMed Abstracts 
FAS-related literature 

Extract eVOC terms from 
literature using DDE 

Ranked disease-associated eVOC terms 
Score = [2 * f(association) + f(annotation)]/2 

 

Select top-four ranked terms 

CANDIDATE GENES 

Selected disease-
associated eVOC terms 

All annotated genes in 
Ensembl database 
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sidered these terms non-specific with regard to FAS and
non-specific in general. Terms from the biological process
ontology considered uninformative were also eliminated.
This includes terms such as pathogenesis or lactation that
would appear in the relevant literature due to subject mat-
ter described, and not because of relevance to disease.
Genes annotated with the selected GO terms extracted
from the literature were obtained from the Ensembl data-
base, and each individually used to populate a criteria list.

Animal model homology
Animal models offer major contributions to the under-
standing of human disease. Although many different ani-
mal models for FAS have been developed [90], the mouse
model seems to correlate best to the effects of prenatal
alcohol exposure observed in humans [91]. The Mouse
Genome Database (MGD) documents the mouse as a
model system for human biology and disease process
research [92]. MGD integrates genetic and genomic data
for the mouse, including sequence sets, mapping details,
GO annotations, allele descriptions and mutant pheno-
type characteristics. Furthermore MGD provides a curated
set of mammalian orthologues [93].

Human orthologues to the following categories of mouse
genes were selected:

▪ Genes associated with phenotypes affected by prenatal
alcohol exposure

▪ Genes expressed at different developmental stages

▪ Genes expressed in the developing brain

Phenotype simile
It is assumed that similar phenotypes may be influenced
by similar genotypes [94]. The main characteristics of FAS
are growth retardation, distinct craniofacial dysmorphol-
ogy and CNS dysfunction. The neurodevelopmental con-
sequences of CNS dysfunction due to prenatal alcohol
exposure include cognitive deficits (often mental retarda-
tion), executive functioning deficits, motor functioning
delays and problems with attention, hyperactivity and
social skills [95]. Terms describing key phenotypes associ-
ated with FAS (mental retardation, microcephaly, cranio-
facial, hyperactivity and growth retardation) were used to
search for genes in the Gene Cards catalogue [96]. Genes
linked to these phenotype terms were used to create the
criteria lists.

Imprinted Genes
Genomic imprinting refers to an epigenetic modification,
resulting in the control of gene expression as dictated by
parental inheritance [97]. One of the well-known features
of imprinted genes is differential allele-specific DNA

methylation, and is usually found in regions known as
differentially methylated regions. Differentially methyl-
ated regions include imprinting control regions, and it is
thought that all clusters of imprinted genes have imprint-
ing control regions, which are differentially methylated
[98]. The expression of many prokaryotic and eukaryotic
genes is regulated through the methylation of DNA [99].
Animal studies have shown that in utero ethanol exposure
inhibits fetal DNA methylation [100,101]. Since DNA
methylation and imprinting play an important role in the
regulation of gene expression during embryogenesis
[101,102]. and consequent development, ethanol-associ-
ated alterations in fetal DNA methylation may contribute
to the developmental abnormalities seen in FAS. One of
the criteria gene lists therefore contained all known
imprinted genes, obtained from the imprinted gene cata-
logue [103] and the imprinted gene database [104].

Evaluation of biological significance of prioritized genes
Protein-protein interactions, functional enrichment and
common promoter element binding sites were investi-
gated for the top-ranked genes (i.e. those with the highest
binary score) to assess their biological significance as can-
didates for FAS. In comparison, the lowest-ranked genes
were similarly evaluated to assess the validity of the rank-
ing system in selecting biologically relevant genes from
the original candidate gene list.

Protein-protein interactions
Understanding interactions between proteins involved in
common cellular functions may indicate how such inter-
actions can influence disease outcome. Protein-protein
interactions were analysed using data contained in the
STRING database [35]. The STRING database provides a
comprehensive source of protein-protein association evi-
dence under a common framework. STRING integrates
protein-protein interaction data from both experimental
evidence databases (such as BIND, DIP and MINT) as well
as inferred protein-protein interactions obtained by using
de novo prediction tools (such as Predictome), or func-
tional grouping databases (such as Reactome or KEGG).
The user can select which lines of evidence to use, and
each predicted association in the database is assigned a
confidence score, based on comparison to a common ref-
erence set of true associations. The top-ranked candidate
genes were used as input, and protein-protein interactions
based on experimental evidence, and functional group-
ings were selected as evidence. A high confidence score for
evidence was selected (90%).

Functional enrichment analysis using DAVID
DAVID is an online tool that integrates genomic func-
tional annotations to reveal biologically relevant enrich-
ment in a gene list [36]. DAVID promotes functional
discovery through exploration of biochemical pathway
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maps, functional classification using GO terms and con-
served protein domain architecture. Data from various
sources are integrated into DAVID, including GenBank,
UniGene, RefSeq, Locuslink, KEGG, OMIM and GO. The
top-ranked genes were submitted as a list, which was then
compared to a background gene list to assess functional
enrichment within the list. The background list can either
be all genes in the human genome, or a sub-set of genes.
Two analyses were performed – firstly with the original
candidate gene list of 10174 genes as background, and
secondly using the Homo sapiens default background list
from the DAVID website as background.

Promoter element binding site analysis
To investigate potential drivers of transcription initiation
of the top-ranked candidate genes and associate the prior-
itized genes better to the FAS phenotype, mammalian
TFBS were predicted. This was done using matrix models
in Transfac database v9.4 for the promoters of all priori-
tized genes. Thresholds that correspond to the minimum
number of false positive predictions as defined by minFP
profiles in Transfac were used. The same process was
applied to 10255 human promoters according to Bajic et
al.[105]. Using the methodology of contrasting target pro-
moter set with the background set of 10255 human pro-
moters [37], the most dominant promoter elements were
determined. A promoter element is defined as a TFBS and
the strand where it is predicted, or as a pair of these if they
are at the maximum distance of 50 nucleotides.
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