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Abstract

Background: In Aedes and Anopheles mosquitoes, ribosomal protein RPS6 has an unusual C-
terminal extension that resembles histone H| proteins. To explore homology between a mosquito
HI histone and the RPS6 tail, we took advantage of the Anopheles gambiae genome database to
clone a histone HI gene from an Anopheles stephensi mosquito cell line.

Results: We designed specific primers based on RPS6 and histone HI alignments to recover an
Anopheles stephensi histone HI corresponding to a conceptual An. gambiae protein, with 92%
identity. Southern blots suggested that Anopheles stephensi histone HI gene has multiple variants,
as is also the case for histone HI proteins in Chironomid flies.

Conclusions: Histone HI proteins from Anopheles stephensi and Anopheles gambiae mosquitoes
share 92% identity to each other, but only 50% identity to a Drosophila homolog. In a phylogenetic
analysis, Anopheles, Chironomus and Drosophila histone HI proteins cluster separately from the
histone H1-like, C-terminal tails on RPS6 in Aedes and Anopheles mosquitoes. These observations
suggest that the resemblance between histone HI and the C-terminal extensions on mosquito
RPS6 has been maintained by convergent evolution.

Background In Aedes aegypti and Aedes albopictus mosquitoes, the RPS6

Ribosomal protein (RP) S6 is a phosphorylated protein
that resides on the small subunit of eukaryotic ribosomes.
Phosphorylation occurs on a cluster of five serine residues
near the C-terminal end of the protein. Although details
remain unclear, the phosphorylation state of RPS6 is
believed to influence translational efficiency of some
mRNAs [1], possibly mediated by direct contact between
RPS6 and the 28S rRNA in the large subunit. RPS6 has also
been implicated in ribosome biogenesis, and is thought to
play a conserved role in the initiation of protein synthesis

[2].

protein is ~17 kDa larger than its Drosophila homolog, and
on polyacrylamide gels, it migrates as the largest protein
from the small ribosomal subunit. Ae. aegypti and Ae.
albopictus RPS6 cDNAs encode an approximately 100
amino acid extension at the C-terminal end of the protein.
The extension is particularly rich in lysine, alanine and
glutamic acid, and most closely resembles the sequence of
histone H1 proteins from diverse sources [3].

Because RPS6 is thought to have regulatory function(s) in
a variety of cell signaling pathways [2], we were surprised
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to uncover this difference between mosquito and Dro-
sophila RPS6 proteins. We have recently shown that RPS6
protein isolated from ribosomal subunits retains its his-
tone H1-like tail [4]. Thus, unlike the case with the ubiq-
uitinated ribosomal protein S27a in the rat [5], the
histone tail is not removed from the mosquito ribosomal
protein prior to ribosome assembly.

RpS6 cDNA from an Anopheles stephensi cell line encodes
an approximately 170 amino acid histone H1-like C-ter-
minal extension, and in silico analysis reveals a similar
modification encoded by the rpS6 gene in Anopheles gam-
biae. In both Aedes and Anopheles mosquitoes, the C-termi-
nal extension was completely encoded in Exon 3, directly
contiguous with upstream open reading frame encoding
the series of serines that may be phosphorylated [4].
Anopheline mosquitoes are believed to be ancestral to the
Culicidae, which includes the genera Aedes and Culex [6].
Thus, to a first approximation, we infer that the longer tail
in Anopheles mosquitoes represents the ancestral state, and
that the RPS6 tail has been lost in the higher Diptera,
which include D. melanogaster.

Although mosquito RPS6 tails in general resemble histone
H1 proteins, their divergence between Aedes and Anopheles
mosquitoes was high, relative to the conventional portion
of the RPS6 coding sequence. Because histone H1 is the
most variable of the histone proteins, and functions as a
linker, rather than as a component of the histone octamer,
we set out to clone a cDNA encoding a bona fide histone
H1 protein from an An. stephensi cell line. In a phyloge-
netic comparison, the An. stephensi histone H1 protein
clusters with homologs from Drosophila and Chironomus,
rather than with RPS6 histone H1-like tails from mosqui-
toes. These results indicate that the histone H1-like tails
on mosquito RPS6 proteins are evolving independently of
conspecific histone H1 proteins.

Results

Design of PCR primers

The gene encoding Drosophila melanogaster histone H1
spans 1204 nucleotides, and encodes a 256 amino acid
protein in a single exon [7]. There is a single recorded His1
allele in Drosophila [8], while multiple histone H1 variants
have been described in Chironomid flies [9-11]. When the
deduced sequence of the Drosophila histone H1 protein
(Accession NM_058232) was compared to the Anopheles
gambiae genome using the program BLAST [12] on the
NCBI website (National Center for Biotechnology Infor-
mation; http://www.ncbi.nlm.nih.gov/), we obtained 5
accessions with E values ranging from 3e-35 to 8e-43, dis-
tributed on mosquito chromosomes 2 and 3. Upon fur-
ther examination, we noted that XP_314184 and
XP_314186 (chromosome 2) corresponded to the same
protein. Two additional histone H1 candidates
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(XP_311486 and XP_309451) were encoded on chromo-
some 3. These three conceptual Anopheles proteins shared
70-80% identity to one another, and about 50% identity
to the Drosophila H1 protein sequence. In the EST-other
database, we found a single uninformative match to an
unidentified An. gambiae entry (dbEST id = 11236311),
with the relatively modest E value of 0.055. Histone H1
sequences from Aedes mosquitoes are not yet in existing
databases.

The 50% identity between Drosophila and Anopheles his-
tone H1 proteins was relatively low, compared to approx-
imately 80% amino acid identity between Drosophila and
Anopheles RPS6, exclusive of the histone-H1-like tail in the
mosquito protein. The Drosophila H1 histone was also
~50% identical to that from Chironomus thummi, a fly
closely related to mosquitoes in the infraorder/super-
family Culicomorpha [13].

To design primers that would amplify a histone H1 gene,
and not the histone H1-like tail in mosquito mpS6, we
aligned one of the An. gambiae H1 candidate proteins
(XP_311486) to a histone H1 protein from C. thummi,
and examined the alignment for precise matches (Fig. 1A)
that did not match well in a separate alignment of the An.
gambiae histone H1 protein with the An. gambiae RPS6 tail
(Fig. 1B). The forward primer (F1) corresponded to amino
acids PKKPKKP in An. gambiae, and a reverse primer (R1)
corresponded to residues AAKKPKA (Fig. 2).

Recovery of An. stephensi histone HI gene

We used F1 and R1 primers with HindIll-digested
genomic DNA from An. stephensi cells to obtain an
approximately 450 bp PCR product, which was sequenced
and verified to encode a histone H1 protein. The 5-end of
the gene, which extended 81 nucleotides upstream of the
ATG start codon, was obtained using primer R1 with the
GeneRacer kit (Invitrogen, Carlsbad, CA), with total RNA
as the template. The absence of a poly(A) tail on histone
mRNAs required an unconventional strategy to obtain the
3'-end of the coding sequence. First, we used HindllII-
digested genomic DNA template, with a primer based
entirely on the 3'-UTR of An. gambiae XP_314184, without
success. When we designed a second primer (R2, in Fig. 2)
extending from the 3'-UTR through the TAA stop codon
and into the coding region, we obtained the 3'-end of the
coding sequence. Finally, primers F2 and R2 (Fig. 2) were
used to verify the complete nucleotide sequence.

Southern blots with An. stephensi genomic DNA

The likelihood that the mosquito genome contains multi-
ple histone H1 gene variants is consistent with the multi-
ple H1 variants that have been described in Chironomus [9-
11] and eight histone H1 subtypes that have been
described in mammals [14,15]. When we used the An.
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Primer design. To design primers, we aligned an An. gambiae putative histone HI candidate XP_311486 (Panel A, top) with a

histone HI| protein (Q07134; Panel A, bottom) from C. thummi. Boxed residues were chosen for design of primers, according
to the An. gambiae nucleotide sequence. Panel B shows these primer residues aligned between the An. stephensi RPS6 tail (top),
and the putative Anopheles gambiae histone HI (bottom). Vertical bars designate identities.
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F1

TGTGTCAGTG

GEEEGCCGAT

CAGCAACCGT

TGTGAGTGAC

ACCGCAGCAA
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>
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AGCTCCCGCC

AGGCAGCCGC

Sequence of An. stephensi histone HI gene. The positions of internal primers FI and RI, and primers F2 and R2 are designated
by arrows. The ATG start codon and TAA stop codon are boxed.

stephensi cDNA to probe Southern blots of genomic DNA
digested with various restriction enzymes with 6 bp recog-
nition sites, most enzymes gave multiple bands, with the
notable exception of BamHI, which hybridized to a single

band longer than 10 kb (Fig. 3). Based on the observation
that D. melanogaster H1, H2A, H2B, H3 and H4 histone
genes are organized in approximately one hundred 5 kb
repeats per haploid genome [16], the large BamHI frag-
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Southern blot of An. stephensi genomic DNA hybridized to
the An. stephensi histone HI probe. DNA was digested with
BamHI (B), EcoRlI (E), Hindlll (H) and Pvul (P). Positions of size
markers are shown at right.

ment from An. stephensi may be a starting point for recov-
ery of a complete cluster of the An. stephensi histone gene
family.

The An. stephensi nucleotide sequence (GenBank acces-
sion # AY672907) matched An. gambiae histone H1 can-
didates on chromosomes 2 and 3 with an E value of 0.0.
In addition, 6 unmapped sites also had E values of 0.0. A
final two sites had E values of 4e-170 and 3e-127. The
deduced An. stephensi protein sequence was 92% identical
to An. gambiae protein XP_314184 on chromosome 2
(Fig. 4A). A similar level of identity was obtained with An.
gambiae XP_309451 on chromosome 3, but the alignment
required introduction of a 58 amino acid gap in the
shorter (190 residue) deduced Anopheles gambiae protein
(not shown). Identity with An. gambiae XP-311486 was
79%. Based on these criteria, we have cloned the An.
stephensi homolog of An. gambiae XP_314184.

Comparisons of histone H| proteins with mosquito RPSé
C-terminal extensions

The identity between Drosophila and Anopheles (or Dro-
sophila and Chironomus) histone H1 proteins was only

http://www.biomedcentral.com/1471-2164/6/8

50%. This divergence undoubtedly reflects the ~250 mil-
lion years [6] separating Nematoceran from Cyclor-
rhaphan diptera. In this study, we were interested in
comparing mosquito histone H1 proteins to the histone
H1-like tails of mosquito RPS6. Fig. 4B shows a neighbor-
joining analysis in which we compared protein sequences
from Aedes and Anopheles RPS6 histone H1-like tails,
exclusive of the conventional RPS6 protein sequence, with
histone H1 proteins from the nematode Caenorhabditis
elegans (AAM44399), the closely-related flies Chironomus
thummi (Q07134) and Chironomus tentans (AAB62239),
Drosophila, and the Anopheles gambiae and Anopheles
stephensi homologs (Fig. 4A). With the C. elegans sequence
designated as the outgroup, the phylogram shows that the
RPS6 tails cluster into a distinct group relative to the Dip-
teran histone H1 proteins. Circled values indicate boot-
strap values based on 1000 replicates. When the analysis
was repeated with the optimality criterion set to parsi-
mony, we obtained a tree with the same topology, with
the 77% value shown in Fig. 4B reduced to 59%, and the
97% value reduced to 94%. The 100% values remained
unchanged.

In an alignment of mosquito RPS6 tails with the Anopheles
H1 histones (Fig. 5), we note that while some degree of
identity covers the entire histone H1 protein, the C-termi-
nal half of the H1 histone has a higher proportion of iden-
tities to the RPS6 tail, as indicated by the distribution of
consensus residues. Within the RPS6 tails, however, the
boxed motifs:VAKK(D/E)A, KKEVKK, AAPA, KKEAP-
KRKPE, KG(D/E)ASAAK(E/D) are shared by all four mos-
quitoes. In contrast, the additional amino acids in the
Anopheles RPS6 tails, which are represented by gaps in the
Aedes sequences (Fig. 5), did not show regions of homol-
ogy with Anopheles histone H1.

Discussion

An important rationale for cloning an An. stephensi his-
tone H1 was to compare its sequence to the histone H1-
like tails on mosquito RPS6 ribosomal proteins. Our
choice of an Anopheles histone H1 was based on the exist-
ing database for An. gambiae, the observation that the tail
in Anopheles RPS6 is nearly twice as long as that in Aedes
RPS6 proteins [4], and evidence that the genus Anopheles
is ancestral to Aedes [6]. Because putative homologies to
Drosophila histone H1 protein could be recovered as con-
ceptual translation products from the An. gambiae data-
base, we used these sequences to design primers that
would discriminate between an An. stephensi histone H1
gene, and the histone H1-like extension in An. stephensi
RPS6. Because the Drosophila gene was encoded in a single
exon, and the histone message was unlikely to be polya-
denylated [14], we used genomic DNA from An. stephensi
as a template for our PCR reaction.
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Figure 4

Comparison of mosquito histone HI proteins and RPS6 histone H-like tails. Panel A shows the alignment of the experimen-
tally-determined An. stephensi histone HI amino acid sequence, compared to An. gambiae conceptual protein XP_314184. Panel
B shows a phylogram produced in PAUP* by neighbor joining, with the nematode C. elegans histone H1-like protein 2
(AAM44399) designated as the outgroup. The alignment includes histone HI proteins from various Diptera, and the known
histone H1-like tails on mosquito RPS6. Values on the horizontal lines indicate branch lengths, defined as the fraction of substi-
tutions between the nodes that define the branch. Bootstrap values based on 1000 replicates are shown within circles. A single
tree with identical topology was obtained with the optimality criterion set to parsimony.
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RE 2 * %
Figure 5

Alignment of mosquito RPS6 tails with mosquito histone HI proteins. Angam (CAD89874), An. gambiae; Anstep (AY237124),
An. stephensi; Aealbo (Q9U762), Ae. albopictus; Aeaegy (Q9U761), Ae. aegypti. The alignment was produced with ClustalX (ver-
sion 1.83), using default settings. Indicators of consensus residues are shown below the alignment. Boxes in the top four entries
indicate identities (aside from D, E substitutions) shared by the mosquito RPS6 tails.

The gene we recovered had more than 90% identity to
XP_314184 in An. gambiae. The proteins differed in length
by a single amino acid residue, and showed 92 % identity.
When we analyzed RPS6 tails and histone H1 genes, we
found that the Dipteran histone H1 proteins and the RPS6
tails each fell into distinct groups, suggesting that in
present-day mosquitoes, these proteins are evolving inde-
pendently. Although these data are consistent with the
possibility that present-day histone H1 proteins and the
histone H1-like tails on mosquito RPS6 protein share a
common ancestral gene, the histone tails seem to be

evolving independently in the two mosquito genera, and
have changed more rapidly than the conventional portion
of mosquito RPS6 proteins.

Because RPS6 is considered an important functional com-
ponent of the ribosome, it seems surprising that a histone
H1-like tail occurs at the C-terminal end of this particular
protein. However, histone H1-like tails have been
reported at the N-terminus of Drosophila melanogaster
ribosomal proteins L22 and L23a [17]. The An. gambiae
homolog of D. melanogaster 1.23a also contains an N-ter-
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minal histone-like extension. The N-terminal tails of Dro-
sophila 122 and L23a were found in an effort to identify
proteins that interact with poly (ADP-ribose) polymerase
(PARP). In future studies, we plan to explore whether the
histone H1-like tail undergoes posttranslational modifi-
cation, and whether it plays a functional role in ribosome
biogenesis, perhaps through the activity of PARP.

Experimental procedures

Mosquito cells and culture conditions

We used the ASE-IV Anopheles stephensi mosquito cell line
[18], which was adapted to Eagle's minimal medium, sup-
plemented with non-essential amino acids, glutamine
and 5% heat-inactivated fetal bovine serum [19]. This for-
mulation is called E-5 medium.

Genomic DNA preparation

Cells grown as suspended vesicles for 4 to 5 days in twenty
60 mm plates were collected by centrifugation, and the
cell pellet was washed twice with phosphate-buffered
saline (PBS; [20]). The cell pellet was resuspended in 20
ml lysis buffer (10 mM Tris-HCI, pH 7.5, 10 mM EDTA,
200 pg/ml proteinase K), and SDS was added to a final
concentration of 0.5%. The lysate was incubated at 37°C
overnight. NaCl was added to a final concentration of 0.4
M, and the DNA was extracted once with 20 ml phenol,
twice with an equal volume of phenol:chloroform (1:1),
and twice with an equal volume of chloroform. Two vol-
umes of ethanol were added, and DNA was spooled onto
a clean glass rod. The DNA was dried, and dissolved in 10
ml of TE (10 mM Tris-HCI, pH 8.0, containing 1 mM
EDTA) at 37°C. RNase A was added to a final concentra-
tion of 200 pg/ml and incubated at 37°C for 4 hours.
DNA was phenol extracted, ethanol precipitated and dis-
solved in TE as described above.

DNA amplification by PCR

Genomic DNA (0.4 mg) was digested with HindIIl
(Promega) at 37°C overnight. Enzyme was removed by
phenol:choloroform extraction, and the DNA was recov-
ered by precipitation with ethanol and dissolved in TE.
Digested DNA (100 ng) was used as template for the PCR
reaction, which contained 1X PCR buffer, 1.5 mM MgCl,,
0.2 mM of each of the four dNTPs, 0.4 uM of primer F1
(5'CCG AAG AAG CCG AAG AAG CCC) and R1 (5'TGC
TTT CGG CIT CIT GGC AGC) and 2.5 units of Taqg DNA
polymerase (Promega, Madison, WI). PCR was performed
with an initial denaturation at 94°C for 2 minutes. The
next 35 cycles included 94°C denaturation for 45 sec,
55°C annealing for 1 minute, and 72°C extension for 1
minute. The reaction was terminated by a final elongation
cycle at 72°C for 2 minutes. The PCR product was recov-
ered from a 0.9% agarose gel, purified using Ultra-Clean
15 (MO Bio Laboratories Inc., Solana Beach, CA) and
cloned into PGEM T-Easy vector (Promega). The 3'-end of
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the gene was obtained in a similar manner, using primers
R2 (Fig. 2) and F1.

Amplifying the 5-end of the cDNA

Total RNA was recovered from ASE-1V cells by guanidine
isothiocyanate extraction and cesium chloride centrifuga-
tion as described by Davis et al. [21]. The final RNA pellet
was dissolved in DEPC-treated water and stored at -70°C.
RNA (1 pg) was used with the GeneRacer kit (Invitrogen)
to obtain the 5' end of the mRNA, using primer R1 as the
reverse primer.

Programs and accession numbers

The analysis in Fig. 4A was produced using the Genetics
Computer Group (GCG; Madison, WI) program "gap".
The tree in Fig. 4B and the alignment in Fig. 5 were pro-
duced by an alignment of amino acid residues using
default parameters of Clustal X (version 1.83) [22]. The
tree was created in PAUP* [23], with the C. elegans H1
protein designated as an outgroup. The An. stephensi his-
tone H1 sequence has GenBank accession # AY672907.
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