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Abstract

Background: A co-ordinated tissue-independent gene expression profile associated with growth is present in
rodent models and this is hypothesised to extend to all mammals. Growth in humans has similarities to other
mammals but the return to active long bone growth in the pubertal growth spurt is a distinctly human growth
event. The aim of this study was to describe gene expression and biological pathways associated with stages of
growth in children and to assess tissue-independent expression patterns in relation to human growth.

Results: We conducted gene expression analysis on a library of datasets from normal children with age annotation,
collated from the NCBI Gene Expression Omnibus (GEO) and EBI Arrayexpress databases. A primary data set was
generated using cells of lymphoid origin from normal children; the expression of 688 genes (ANOVA false discovery
rate modified p-value, q < 0.1) was associated with age, and subsets of these genes formed clusters that correlated
with the phases of growth - infancy, childhood, puberty and final height. Network analysis on these clusters
identified evolutionarily conserved growth pathways (NOTCH, VEGF, TGFB, WNT and glucocorticoid receptor —
Hyper-geometric test, g < 0.05). The greatest degree of network ‘connectivity’ and hence functional significance was
present in infancy (Wilcoxon test, p < 0.05), which then decreased through to adulthood. These observations were
confirmed in a separate validation data set from lymphoid tissue. Similar biological pathways were observed to be
associated with development-related gene expression in other tissues (conjunctival epithelia, temporal lobe brain
tissue and bone marrow) suggesting the existence of a tissue-independent genetic program for human growth
and maturation.

Conclusions: Similar evolutionarily conserved pathways have been associated with gene expression and child
growth in multiple tissues. These expression profiles associate with the developmental phases of growth including
the return to active long bone growth in puberty, a distinctly human event. These observations also have direct
medical relevance to pathological changes that induce disease in children. Taking into account development-
dependent gene expression profiles for normal children will be key to the appropriate selection of genes and
pathways as potential biomarkers of disease or as drug targets.
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Background

Height growth in humans is distinctly different from
growth in other mammals and is characterised in infancy
by rapid but decelerating growth, a prolonged childhood
phase of slow growth and a pubertal growth “spurt”
before final height is reached — termed the Infancy/
Childhood/Puberty (ICP) growth model [1]. Growth in
rodents along with most other animals follows a very dif-
ferent path with maximum growth rate occurring in the
early postnatal period, rapid growth to sexual maturity
and much slower growth thereafter [2,3].

Variation in the timing or rate of developmental events
is recognised as a mechanism for evolutionary change.
This phenomenon can be observed in the origin of the
elongated childhood (juvenile) growth phase in humans,
which can also be seen in social mammals and is associ-
ated with the learning of complex behaviours required
for survival [2,4]. In puberty primates show some associ-
ated body-weight gains but no evidence of a return to
the long-bone elongation seen in humans, suggesting
that the growth spurt associated with human puberty is
specific to Homo sapiens as supported by both compara-
tive auxological studies [2] and the fact that human
height growth can only be defined by complex mathem-
atical modelling in comparison to simpler models for
other primates [2,5].

As yet no study has examined the changes in gene ex-
pression that accompany development in children and
correlated them with biological pathways at different
ages and stages of development. Some insight into the
genetic program that accompanies growth in mammals
has been gained from the study of rodent models where
tissue-independent gene expression has been shown in a
range of cell types [6]. This work provided mechanistic
insight into the existence of a multi-organ genetic pro-
gram to suppress growth [6,7] which was associated with
human imprinted genes some of which are involved with
the etiology of rhabdomyosarcoma [8]. It is likely that a
genetic program could exist to underpin human height
growth, but it would need to relate not only to growth
deceleration, but also acceleration as seen in puberty.

The use of lymphoid tissue as a tool to study human
growth response has been established [9,10]. Gene ex-
pression profiles between multiple types of human tissue
is marked by their similarity (>30%) with only a limited
fraction of gene expression being truly tissue specific
(<15%) [11-13]. It is recognised that the control of gene
expression between tissues is highly independent in rela-
tion to specific functions [14] but redundancy does exist
in relation to “maintenance” (“house-keeping”) func-
tions, including growth related genes [13,14].

In this analysis, we have used transcriptomic data from
cells of lymphoid origin to describe gene expression
clusters that correlate with the phase of childhood
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growth. We have then used network analysis to examine
gene expression clusters in relation to a map of all
known human protein and genetic interactions (the
Interactome). To understand the biological pathways as-
sociated with human development/height growth and
age, we have used derived sets of the most highly com-
municating proteins, i.e. those with high “connectivity”
[15] and therefore the greatest functional relevance [16].
Finally, we have compared development-related gene ex-
pression in a number of different human tissues to high-
light candidate pathways associated with a multi-organ
genetic program of growth.

Results

Development-related gene expression correlates with the
phases of human growth

We conducted a gene expression analysis on a library of
datasets from normal children with age annotation, col-
lated from the NCBI Gene Expression Omnibus (GEO)
and EBI Arrayexpress (Additional file 1: Table S1). These
four data sets were then combined to form a study
group of 87 individuals ranging from 0.2 to 29.3 years
of age (yrs) (average 7.7+/-7.0 yrs) (Additional file 1:
Table S1 & Additional file 2: Figure S1). There were 927
gene expression probes significantly associated with age
representing 688 distinct genes (false discovery rate ad-
justed p-value, q <0.1), 477/688 of these age-related genes
were associated with growth ontology (p<3.4 x 107).
The 688 age-related genes found formed three distinct
clusters of higher gene expression: 1) <6 yrs [infancy, early
childhood] (408 probes representing 276 genes); 2) >6
to <17 vyrs [late childhood, puberty] (252 probes
representing 207 genes) and 3) >17 yrs [adulthood, final
height] (267 probes representing 205 genes) (Figure 1 &
Additional file 1: Table S2). These gene clusters demon-
strated age-related differences in associated gene ontol-
ogy and canonical pathways (Additional file 2: Figures
S2 & S3, Additional file 1: Table S3) and for predicted
transcription factor (TF) recruitment to promoter ele-
ments in these genes (Additional file 2: Figure S4).
Transcription factors included Early B Cell Factor 1
(EBF1) and PAX5 (Additional file 2: Figure S4) that have
been associated with both the proliferation of B cells
and also the regulation of bone development [17].

Of the genes associated with age, 175 had been previ-
ously identified in human genome wide association stud-
ies (GWAS) on a variety of different conditions [20];
including 11 genes associated with human height (p <
0.007), one of which was the top age-associated gene in
our study IGF2BP3 (q<1.19 x 10'®) (Additional file 1:
Table S4). These genes are therefore both associated with
the phases of human growth as well as final adult height.
In addition a further 9 genes were associated with dia-
betes (p < 0.006), including BACH2 (q< 1.5 x 10719, the
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Figure 1 Differential age-associated gene expression. A. Heat map of age-associated changes in gene expression in 87 individuals (0.2 to
29.3 years of age - average 7.74+/—7.0 yrs). 927 gene expression probes were significantly associated with age (ANOVA, false discovery rate (FDR)
corrected p-value, g < 0.1, with both gender and study used as co-variates. Supervised hierarchical clustering using Kendell's dissimilarity and
Ward’s method identified three main clusters of gene expression probes: <6 years of age [infancy, early childhood group (408 probes)]; >6
to <17 years of age [late childhood, puberty group (252 probes)]; and >17 to <30 years of age [adulthood (267 probes)]. Gene expression is
shown between +2.5 fold and —2.5 fold, red = increase in gene expression, green = decrease in gene expression. Human growth curve data from
normal controls [18,19] shown in relation to the heat map, age groups coloured by upper limit of group bins (years). B. Multi-dimensional scaling
(MDS) of the 927 development-related gene expression probes shows distinct development-related clustering; ellipsoids represent 2 standard
deviations of normalised gene expression, colour coded by age. Axes represent proportion of variation as defined by MDS (%).
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second most significantly age-associated gene in this
study.

Recently age-dependent changes have been observed
in the methylation of human genes in peripheral blood
mononuclear cells (PBMCs) [21]. Of the genes in our
study identified as having age-dependent alterations in
gene expression, 12% (80/688) also have age-associated
methylation changes (p < 0.05) [21]. The age-related genes
were also mapped onto mouse genes identified as having
STATS5 bound upon activation by growth hormone (GH)
to examine putative GH regulation [22]; 18% (124/688)
were associated with STAT5 in this model (p <0.001). It
was also noted that of the five genes chosen as representa-
tive of multi-tissue age-regulated down-regulation and
used to define the rodent common program of growth de-
celeration [23], IGF2BP3, SOX4 and MEST were present
in the 688 age-related genes (Additional file 1: Table S2)
and PEG3 and IGF2 were not tested for in this study.

Connectivity of genes corresponds with growth-phase
related expression

The development-associated clusters of genes defined by
expression analysis were used to generate interactome
models based on all known protein:protein and protein:
genetic interactions (Biogrid Homo sapiens 3.1.87) [24].
Examination of the development-associated clusters of
genes within the human interactome demonstrated a
significant increase in their ‘connectivity’ (protein degree
score) compared to controls (p < 0.0005, Figure 2A).
Interactome connectivity is a marker of biological function
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and associated with “essential” biological mechanisms
[15,16]. The highest levels of protein connectivity were
shown to occur during infancy and to reduce as final
height is reached (Figure 2B).

Minimal essential networks derived from growth phase-
related gene expression are associated with

evolutionarily conserved growth pathways

Minimal essential networks (MEN) consist of the top
10% of interactome proteins scored for connectivity
and bottleneck network properties, and represent the
most functionally related regions of interactome models
[15,16] (Additional file 2: Figure S5). MEN were derived
from the interactome models generated from the differ-
ent gene expression clusters correlating with stage of
child development (Figure 1). We used MEN gene ex-
pression changes to detect growth related evolutionarily
conserved biological pathways (Additional file 2: Figure S5,
Figure 3 & Additional file 1: Table S5) including
NOTCH, VEGE TGFB and WNT pathways in both the
infancy/early childhood and late childhood/puberty
clusters of gene expression. The infancy phase of hu-
man growth is characterised by a rapid deceleration and
the gene expression identified in the infancy/early child-
hood associated cluster (Figure 1) demonstrated a simi-
lar deceleration of expression, for example DTXI in
the NOTCH signalling pathway, CAMK2D and LEFI in
the WNT signalling pathway and ID3 and E2F5 in the
TGFB signalling pathway (ANOVA q<0.1, Figure 4).
The puberty phase of human growth is characterised by
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Figure 2 Analysis of protein connectivity (degree) in the human interactome as a measure of protein function. Protein connectivity was
measured from a model of the human interactome (Biogrid build 3.1.87) and plotted against the frequency of proteins of specific degree; a right
shift indicates an increase in connectivity and implies increased functional relevance [15,16]. A) Comparison of proteins with age related
differences in expression [green marker n = 688] with genes associated with cancer (Cancer Gene Census database [25]) [red marker n =437],
“essential” genes derived from human orthologs of mouse lethal genes [26] [brown marker n=1741] and control genes [16] [blue marker n =
12655]. All data sets are significantly different p < 0.0001, Wilcoxon test. B) Comparison of the connectivity within the human interactome
proteins associated with gene expression changes during human growth; infancy, blue marker n = 272; Childhood/Puberty, orange marker n=
155; Adult/Final height, red marker n=108. All data sets are significantly different p < 0.0001, Wilcoxon test.
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Minimal Essential Network

Adult

# Nodes 91 - # Edges 489

PDGF Signaling 7.41E-06|
IVEGF Family Ligand-Receptor Interactions 7.63E-06)
(VEGF Signaling 7.69E-06)
IAngiopoietin Signaling 8.62E-06)
NGF Signaling 9.09E-06|
[Melanocyte Development and Pigmentation Signaling 9.35E-06)
|Renin-Angiotensin Signaling 9.71E-06|
NF-kB Signaling 1.28E-05
Notch Signaling 1.45E-05
|!GF-1Signaling 1.89E-05
Erythropoietin Signaling 2.13E-05
IChemokine Signaling 2.27E-05
\Wnt/B-catenin Signaling 3.45E-05
[TGF-B Signaling 3.70E-05
|BMP signaling pathway 5.56E-05
Neurotrophin/TRK Signaling 8.33E-05
Ephrin Receptor Signaling 1.20E-04
Growth Hormone Signaling 4.41E-03
[Axonal Guidance Signaling 1.24€-02

|IGF-1 Signaling 4.95E-06

IChemokine Signaling 5.24E-06
IActin Cytoskeleton Signaling 5.32E-06
[Axonal Guidance Signaling 5.68E-06
[Wnt/B-catenin Signaling 5.92E-06
[TGF-B Signaling 7.52E-06
Ephrin Receptor Signaling 8.13E-06
[VEGF Signaling 8.47E-06
[VEGF Family Ligand-Receptor Interactions 1.01E-05|
Renin-Angiotensin Signaling 1.27E-05|
NF-kB Signaling 4.17E-05|
Notch Signaling 4.76E-05

Ephrin Receptor Signaling 1.72E-05
Erythropoietin Signaling 2.08E-05
Wnt/pB-catenin Signaling 1.25E-04
Chemokine Signaling 1.87E-04
Actin Cytoskeleton Signaling 4.17E-04,
|Reelin Signaling in Neurons 4.15E-03,

Figure 3 Gene expression associated essential pathways correlated with phases of human growth. The genes from the three
development-related clusters; <6 yrs [Infancy, Early Childhood]; >6 to <17 yrs [Late Childhood, Puberty] and >17 yrs [Adult, Final Height] and
were used to generate inferred networks from the human interactome using the Biogrid Cytoscape plugin; the top 10% of “hubs” and
"bottlenecks” within the network were identified using the Cytohubba algorithm and used to generate minimal essential networks (shown).
Pathway associations were assigned using the Reactome database [27-29]. Growth factor and organismal growth signalling pathway ontology
defined from differential gene expression (Ingenuity Pathway Analysis) was correlated with the minimal essential networks and the resultant gene
expression associated essential pathways tabulated (hypergeometric test, Benjamini-Hochberg false discovery rate correction [FDRI).
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(See figure on previous page.)

Figure 4 Significant development-related changes in the NOTCH, VEGF, TGFB and WNT pathways as identified by the analysis of the
essential properties of gene networks. Exemplar genes from each of these pathways are presented (ANOVA, false discovery rate (FDR)
corrected p-value, q < 0.1). Box and whisker plot (whiskers =top and bottom 10%) of gene expression as Log2 normalised values (y-axis). The x-

axis is age-banded in years (upper limit of age group bin).

a return to growth and there were also distinct gene ex-
pression profiles in the late childhood/puberty associ-
ated cluster of gene expression (Figure 1) that showed
a corresponding rate of change including VEGFA and
CHP in the VEGF signalling pathway (positive correl-
ation), SKP1 in the WNT signalling pathway (negative
correlation) and TNF (positive correlations), DCN and
TFDPI (negative correlation) in the TGEB signalling path-
way. In the adult cluster of gene expression (Figure 1) the
genes showed unchanged gene expression throughout
childhood with a final rapid increase in gene expression
including LTBP1 in the TGFB pathway and KAT2B in the
NOTCH pathway (ANOVA q < 0.1, Figure 4).

Gene expression of glucocorticoid receptor interacting
proteins correlate with the phases of human growth
Analysis of human interactome associated canonical
pathways demonstrated the key involvement of gluco-
corticoid receptor (GR) mediated transcription in all age
groups. Glucocorticoid regulation has been shown to
modulate function in NOTCH, VEGF, TGFB and WNT
signalling [30]. The GR has well established interactions
with the GH pathway, mainly mediated by regulation of
IGF-1 but also by cross-talk with STAT3 and STATS5
[31]. Also glucocorticoid excess in childhood, either as
endogenous hypersecretion in Cushing’s syndrome or as

exogenous therapy, has a marked growth inhibitory ef-
fect. To further investigate whether GR modulation was
associated with age, we generated a list of current known
direct interacting proteins of the GR (338 interactions
defined from Ingenuity Knowledge Base) and examined
how the expression of these genes changed with age
(ANOVA, p <0.05). Three distinct clusters of increased
expression of GR interacting genes were observed cor-
relating with the infancy, early childhood group (15
probes), the late childhood, puberty group (12 probes)
and the adult group (8 probes) (Figure 5).

A minimal essential network derived from tissue-
independent development-related gene expression is
associated with evolutionarily conserved growth pathways
The presence of a set of evolutionarily conserved growth
pathways associated with the phases of human growth and
development in lymphoid tissue was validated by repli-
cation in an independent set of PBMC gene expression
data from age-grouped normal children (Additional file 1:
Tables S1 & S6). In this data set (n = 53) no adult controls
were available but infancy and late childhood/puberty clus-
ters of development-related gene expression were defined
including 549 genes (753 probe-sets, ANOVA, p<0.01).
Derived interactome models were associated with the same
biological pathways identified using the main data set

Age Associated Expression of Glucocorticoid Receptor Interacting Protein mRNA

¥ISEMEIE 5] |

Figure 5 Heat map of age-associated changes in the expression of genes for glucocorticoid receptor interacting proteins (n=338) in
87 individuals (0.2 to 29.3 years of age - average 7.7+/-7.0 yrs); 35 gene expression probes were significantly associated with age
(ANOVA, false discovery rate (FDR) corrected p-value, q < 0.2). Supervised hierarchical clustering using Kendell's dissimilarity and Ward's
method identified three main clusters of gene expression probes correlating with <6 years of age [infancy, early childhood group (15
probes)]; >6 to <17 years of age [late childhood, puberty group (12 probes)] and >17 to <30 years of age [adulthood (8 probes)]. Gene
expression is shown between +2.5 fold and —2.5 fold, red = increase in gene expression, green = decrease in gene expression.
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Figure 6 Analysis of the “overlap” of development-related gene expression between different tissues. A) Venn Diagram showing overlap
of development-related gene expression in five different human types of tissue (peripheral blood mononuclear cells, conjunctival epithelia,
temporal lobe brain, quadriceps muscle and bone marrow) [ANOVA, p < 0.05], overlap of three or more data sets shown as darker shade. B)
Interactome network (Biogrid 3.1.87) model inferred from overlapping genes with development-related expression in 23 out of 5 different types
of human tissue, protein connectivity (degree) is represented by colour gradation of nodes, dark red = high degree to blue = low degree, as
defined by the Cytohubba Cytoscape plugin (426 protein nodes, 447 connections). C) Tissue-independent minimal essential network (MEN)
derived from genes with development-dependent gene expression. The minimal essential network was constructed using genes within the top
10% score for “degree” and “bottleneck” derived from an interactome network (Biogrid 3.1.87) model inferred from overlapping genes with
development-related expression in >3 out of 5 different types of human tissue (peripheral blood mononuclear cells, conjunctival epithelia,
temporal lobe brain, quadriceps muscle and bone marrow). A minimal essential network is a marker of functionally relevant biological pathways
[15,16], modularity within the MEN was assessed using spectral partition based network clustering [37], the three modules identified are coloured
blue, green and pink. Network edges are as follows; "->" for activating/catalyzing, “-|" for inhibition, - -" for functional interactions extracted from
complexes or inputs, and “—" for predicted functional interactions. D) Evolutionarily conserved growth pathways identified in the main data set
also overlap with the minimal network constructed from the intersection of development-related gene expression in different human tissue.
Biological pathways were identified by network module with the Reactome Cytoscape plugin using the Hypergeometric test with false discovery

rate modified p-value (FDR).

J

(Additional file 1: Table S6); 16/19 identical biological path-
ways in infancy & 9/12 identical biological pathways in late
childhood/puberty (as identified by Ingenuity Pathway
Analysis [IPA]) (Additional file 1: Tables S5).

Examination of other human tissue for development-
related changes in gene expression was performed over
childhood (>0 to <18 years of age) in a variety of avail-
able tissue data sets (Additional file 1: Tables S1 & S7,
ANOVA, p<0.05); bone marrow (n=25, 2257 genes)
[32], skeletal muscle (n =14, 587 genes) [33], PBMCs
(n=53, 1450 genes)[34], conjunctival endothelium
(n=18, 469 genes) [35] and temporal lobe brain tis-
sue (n=18, 1211 genes) [36]. Infancy and late child-
hood/puberty clusters of altered gene expression were
observed in all tissue comparisons and overlap of gene ex-
pression (67 genes, Figure 6A & Additional file 1: Table S7)
was used to generate an interactome model of 426 protein
nodes and 447 connecting interactions (Figure 6B). A
tissue-independent development-related minimal es-
sential network derived from this interactome model
(Figure 6C) was associated with the same evolutionarily
conserved growth pathways identified in the main data
set (Figure 6D, Additional file 1: Table S7). The obser-
vations of interactome network connectivity changing
with age made in the main lymphoid data set were also
seen in brain tissue where adult samples were also
available (Additional file 2: Figure S6).

Discussion

This is the first study to examine the changes in gene
expression that accompany aging and development in
children. We have shown in normal children using cells
of lymphoid origin that the expression of 688 genes is
associated with age and subsets of these genes form clus-
ters that correlate with phases of growth — infancy/early
childhood, childhood/puberty and final height (Figure 1).
These clusters of gene expression were examined in rela-
tion to an interactome model and shown to include

evolutionarily conserved growth pathways (NOTCH,
VEGE, TGFB, WNT) (Figures 3 & 4) with high levels of
‘connectivity’ implying essential biological functions [16].
We were able to analyse network connectivity across all
age groups in both the main lymphoid data set and in
temporal lobe brain tissue; this was highest in infancy and
reduced to final height in both data sets (Figure 2 & Add-
itional file 2: Figure S6). It is also of note that a proportion
of genes with increased expression in adults also have a
similar pattern of expression in infancy (Figure 1); these
genes conversely have decreased gene expression over pu-
berty and are enriched for cell cycle related genes (p <2.58
x 107%).

This study had some limitations, primarily related to
age matching. It was established that each study used to
generate the main data set was evenly distributed over
childhood for age and gender; however, it was only pos-
sible to integrate adults via the lymphoid cells from bone
marrow (GSE11504) although the rest of this data set
was homogenous with the other sets used. Using tem-
poral lobe brain tissue as an independent data set, it was
also shown that the adult development-related gene ex-
pression cluster had similar interactome connectivity in
comparison to the adult cluster in the main data set, as
well as a similar relation to the infancy and late child-
hood/puberty clusters. Another potential issue is that
there is variation in the timing of entry to puberty
[38,39] which is not possible to assess in this study, al-
though we used gender as a co-variate.

There are obvious difficulties in obtaining different
tissue samples from healthy children. This issue was
reflected in the difficulties encountered in matching the
age categories for comparison of development-related
gene expression in the five different types of tissue avail-
able with appropriate annotation (Additional file 1:
Table S1, Figure 6). The tissue-independent development-
related gene expression observed in the mouse [6] would
imply that we would expect to see more overlap in
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children than we were able to define; this is likely to be
due to imperfect age matching between samples. How-
ever, the use of network analysis gives confidence to the
observations made using interactome models. This is
due to several features of this type of analysis; first bio-
logical networks exhibit what are termed “small world”
properties [40] implying that fluctuations of connectiv-
ity within the network form secondary structure (clus-
ters) associated with function [15,16]; second, as a
consequence of the small world feature, biological net-
works tend to exhibit a “scale free” nature so compari-
son of networks derived from different sized sets of
gene expression data is possible [41,42]; third biological
networks are highly robust and resistant to random
error [43] therefore tolerating the uncertainty inherent
in the comparison of data sets from studies designed for
different purposes. All these features of the network
analysis of biological systems gives confidence to the
observation that an interactome model generated from
the 67 genes we identified as “tissue-independent” was
associated with the same evolutionarily conserved
growth pathways as identified using the main data set
despite the small size of the overlap.

We have shown that the expression of clusters of genes
varies in a development-dependent manner in multiple
human tissues. Whilst the similarity in a development-
related gene expression between different tissues was lim-
ited (Additional file 1: Table S1, Figure 6A) interactome
analysis demonstrated that these changes were integrated
into similar evolutionarily conserved growth pathways
(Figure 6D). These observations suggest that a “re-wiring”
of highly connected interactome modules is a primary dif-
ference between tissues, as has been previously suggested
by Bossi & Lehner [44] and that growth occurs via similar
mechanisms.

Several of the pathways identified vary between infancy
and puberty in all tissues examined (TGFB, VEGE,
NOTCH, GH & IGF-I) (Figures 3 & 6). However both the
GR and WNT signalling pathways were clearly associated
with all three growth phase-related clusters; this may re-
flect the known association of these pathways with aspects
of the human aging process [45-49]. Also WNT signalling
was identified as part of the genetic program for growth
observed in the mouse with a temporal change in the
three tissues studied (heart, lung and kidney) [6].

The association of glucocorticoid receptor signalling
with development-related gene expression was un-
dertaken separately (Figure 5) by using known GR in-
teractions as markers of activity. The GR pathway is
modulated by the hypothalamic—pituitary—adrenal axis
and has organism wide effects on different tissue. The
primary mechanism of glucocorticoid signalling is gen-
omic (i.e. as a transcription factor) and not mediated by
cell surface receptors; tissue specificity is modulated
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by enzymatic conversion of the ligand to an inactive
form (cortisol to cortisone), tissue-specific expression
of co-regulators and/or epigenetic effects [50,51]. The
pleiotropic and organism-wide effects of GR signalling
indicate a specific niche in the integration of organismal
responses. The observation of glucocorticoid regulation
strongly associated with development-related pathways
is in alignment with this model of GR signalling, and
how multiple tissue and time-dependent events can be
regulated by GR [52,53].

We examined whether the development-related genes
identified in our study were also present in other in-
vestigations into mammalian height growth. Genome-
wide association studies by the Genetic Investigation of
ANthropometric Traits (GIANT) consortium have de-
fined a set of genes associated with adult height and
mapped these genetic differences to growth-related bio-
logical pathways including the NOTCH & TGEFB signal-
ling pathways, also identified by network analysis in our
work [54]. Development-dependent changes have been
observed in the methylation of human genes using
PBMCs although this work was not correlated with
phases of human growth [21]; 12% of the genes with
development-related gene expression also have age-
associated methylation changes indicating that epi-
genetic mechanisms are important in the transition of
human growth phases. In mouse embryonic fibroblasts
the whole genome response to growth hormone has
been investigated using STAT5 as a marker [22]. Of the
development-related genes defined in our study we iden-
tified 18% by orthology that also had been shown to bind
STATS5 in the mouse and therefore are potentially growth
hormone responsive.

The evolutionary origin of the growth pathways associ-
ated with the clusters of development-related gene ex-
pression defined in this study dates back to insects in
the case of the glucocorticoid receptor pathway [55] and
in most cases extends back to the origins of multi-
cellularity e.g. WNT, TGFB, VEGF and NOTCH path-
ways [56] (Figures 3 & 6). These data suggest that a
similar pathway signature should be present in multiple
types of human tissue and that a genetic program exists
to regulate the development of the phases of child
growth. The further definition of development-related
gene expression in longitudinal studies will allow more
detailed investigation of this event and provide insight
into the return to long bone growth in puberty as a spe-
cifically human event [2]; also it provides a framework
on which a “human growth program” could exist analo-
gous to that defined in rodents [6].

It is likely that development-related gene expression
within some biological pathways has implications for the
treatment and pathogenesis of disease. The possible as-
sociation of age and growth-related gene expression
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changes with childhood cancers has been highlighted for
rhabdomyosarcoma: imprinted growth genes (Igf2, Mest,
Plagll, Peg3 & DIkI), whose decreased expression is as-
sociated with growth deceleration in rodents [6], show
increased expression in human rhabdomyosarcoma cell
lines [8]. However it is likely that many other genes are
involved in human growth which is characterised not
only by periods of deceleration (infancy to childhood, as
seen in the rodent [2]) but also acceleration (minor in
adrenarche, major in puberty, the latter unique to
humans [2]). The key evolutionarily conserved growth
pathways associated with a development-related gene ex-
pression in this study are involved in the aetiology and
pathogenesis of childhood cancers e.g. TGEp signalling
in Wilms tumour [57] and Rhabdomyosarcoma [58].
Biomarkers in use from these pathways include FOXO1
within the VEGF pathway, as a prognostic marker in
rhabdomyosarcoma (as a fusion gene with PAX3 [59])
and also shown to be highly expressed in the infancy
cluster of increased gene expression (Additional file 1:
Table S2).

The mathematical properties of biological networks
(network topology) have been associated with biological
function using protein connectivity as a primary meas-
ure [16,60]. Proteins from genes with a development-
related gene expression changes have been shown to
have significant differences in “connectivity” within the
interactome, with greatest “connectivity” shown in in-
fancy and decreasing to final height in adults (Figure 2
& Additional file 2: Figure S6). Using analysis of the
interactome we have defined a “map” of normal growth.
Comparison of gene expression in childhood diseases/
conditions with this map in normal children will allow
the characterisation of potential abnormalities in the
timing and/or levels of expression in gene networks
therefore establishing whether there is a maturational as-
pect to the disease/condition and hence contribute to
understanding mechanism or the identification of targets
for diagnosis or prognosis.

Conclusions

These results imply the existence of a tissue-independent
genetic program that correlates with age and phase of hu-
man growth. Furthermore our work demonstrates the
first observations of gene expression changes within
evolutionarily ancient pathways associated with a dis-
tinctly human growth event, the pubertal growth spurt,
a recent and human-specific addition to mammalian
growth. These observations have direct medical rele-
vance as an abnormality in switching the program
from one phase to the next, e.g. failure to “turn off”
infancy genes, may lead to pathological changes that
induce disease. Taking into account development-
dependent gene expression profiles for normal
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children will be the key to the appropriate selection of
genes and pathways as potential biomarkers of disease
or as drug targets.

Methods

Gene expression datasets

The only tissue readily available for expression profil-
ing in children is peripheral blood mononuclear cells.
This model has been validated as suitable for analysis
of gene expression in a number of childhood condi-
tions [61-63], including both immune mediated disease
[64,65] and non-immune disease e.g. Diabetes [61].
Specifically there is precedent from many studies that
provide validation of the use of PBMCs to study re-
sponses to growth hormone (GH) therapy [9,66-68]
thus demonstrating the utility of using lymphoid cells
to study human development.

Gene expression analysis was conducted on a library
of gene expression datasets from normal children with
age annotation collated from the NCBI Gene expres-
sion Omnibus (GEO) and EBI Arrayexpress databases
(Additional file 1: Table S1.). Age and gender distribu-
tion over childhood were shown to overlap between the
different data sets used (Additional file 1: Table S1) and
the effects of data set variation distribution analysed by
multi-dimensional scaling. The original Affymetrix CEL
files from GSE9006 [61], GSE26440 [62], GSE11504
[32] and TABM666 [63] were downloaded and com-
bined into one group to form a main analysis data set
following published guidelines [69]. All original data
were screened for batch effects, different Affymetrix
probe-sets were matched (Netaffx [70]) and then the
data were combined.

A PBMC data set (GSE 20307) [34] was used to repli-
cate the observation of development-associated differen-
tial gene expression in children from the main lymphoid
tissue derived data set (Additional file 1: Table S7).
The presence of development-dependent gene expres-
sion in different tissues was investigated in five different
tissues using gene expression data from normal children
(GSE11504— bone marrow [32], GSE 6011 — muscle
(33], GSE 20307 — PBMCs [34], GSE20436 — Conjunc-
tival epithelium [35] and GSE37721 Temporal lobe brain
tissue [36]). Age and gender distribution over childhood
were assessed and shown to overlap between the differ-
ent data sets used (Additional file 1: Table S1).

Normalisation and quality control of gene expression
data

The four candidate datasets (three from PBMCs/whole
blood [61-63] and one from bone marrow [32]) were
combined to form a main data set following guidelines for
the conduct of microarray meta-analyses [69]. The raw
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CEL files from all data sets were downloaded from GEO
and for background correction the Robust Multichip
Average (RMA) was applied to the combined data, pre-
adjusted for GC content with quantile normalisation and
a mean probe set summarisation using Partek® Genomics
Suite™ software (version 6.12).

The data set generated was subject to rigorous quality
control to investigate the presence of outliers and fur-
ther confounding effects. Model formulation consisted
of three stages; first, dimensional scaling using Principal
Components Analysis (PCA) and Iso-map multidimen-
sional scaling (MDS) [71,72] was used to demonstrate
data homogeneity (Qlucore Omics Explorer 2.2) and
identify outliers using cross-validation (Additional file 2:
Figure S1 A&B); secondly, to assess the effects of differ-
ent distributions of age and gender in each separate data
set a sliding window multi-dimensional scaling approach
was used. In this method four separate age groups were
compared at one time across the entire data range with
no observable sub-clustering within the data (examples
in Additional file 2: Figure S1 C&D). Finally, overlap
of development-related response between the different
datasets was confirmed using analysis by ANOVA in
each separate dataset (Additional file 2: Figure S1 E-H &
Additional file 1: Table S1). The application of these
analyses established the suitability for combination of
the datasets as independent consistency of overall data
along with the absence of confounding effects were
demonstrated.

A final set of gene expression probe-sets ready for
further analysis was generated using a variance cut-off
relative to the variable with the largest variance (Opax)
to remove non-informative probes, set at 0.1 0/0ax
(Qlucore Omics Explorer 2.2) resulting in a final set of
24839 expression probes in the main data set.

Statistical analysis of gene expression data

Analysis of variance (ANOVA) with Benjamini—Hochberg
correction for false discovery rate was used to deter-
mine differential gene expression between groups,
with both gender and study used as co-variates in
the analysis. Supervised hierarchical clustering was
performed on the co-variant normalised data using
Kendell’s dissimilarity and Ward’s method on data
normalized to a mean of zero and a variance of one
(Partek® Genomics Suite™ software version 6.12). The
substitution of randomly selected genes was used to
assess the specificity of the clusters observed over ten
iterations (QlucoreOmics Explorer).

Gene ontolgy
The identification of enriched gene ontology (GO) of
biological pathways was performed within WebGestalt
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[73] using the Hypergeometric test with a Benjamini-
Hochberg correction for multiple testing and confirmed
using the BINGO plugin [74] for Cytsoscape 2.8.2 and
DAVID Bioinformatics Resources 6.7 [75]. Biological
pathway ontology was assessed using the Kyoto
Encyclopedia of Genes and Genomes database (Kegg
[76]). Enriched gene functions were also identified using
Partek® Genomics Suite™ software and Ingenuity Path-
ways Analysis (IPA) using Fisher’s exact test. Gene ontol-
ogy (GO) ANOVA was performed in Partek® Genomics
Suite™ software using an enrichment cut-off of q<0.2.
Overlap of gene ontology data was visualised by Venn
Diagrams generated using Biovenn [77] and the statis-
tical significance of overlap was assessed using a right-
sided Fisher’s exact test.

Gene ontology was also confirmed using functional
interaction networks derived from the development-
associated gene expression clusters analysed by the
Reactome Plugin [27-29] for Cytoscape and the web-
based ‘Search Tool for the Retrieval of Interacting
Genes/Proteins’ (STRING) [78,79].

Transcription factor analysis

Upstream regulator analysis of differentially expressed
gene clusters was performed using Ingenuity Pathway
Analysis software (IPA). This method is based on
expected causal effects between upstream regulators
and targets; the expected causal effects are derived
from the literature compiled in the Ingenuity Know-
ledge Base. A prediction of the activation state for
each transcription factor based on the direction of
change was calculated (z-score) using the gene ex-
pression patterns of the transcription factor and its
downstream genes. An absolute z-score of >|2| was
considered significant. A p-value was also calculated
by Fisher’s Exact Test indicating the statistical signifi-
cance of genes in the dataset that are downstream of
the transcription factor.

Network analysis

Network analysis was performed to increase confidence
in the observations of differentially expressed genes by
correlation with biological pathways. This process also
allowed the identification of putative key functional ele-
ments within the networks of differentially expressed
genes.

Three different software based methods were used to
generate and analyse biological networks, all of which
used algorithms to infer the relationship of differentially
expressed genes with known interactions in the litera-
ture or from databases. The Biogrid model of the human
Interactome (31.1.87) was used to generate networks as-
sociated with development-related genes. Results from
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these networks were confirmed and pathway ontology
was added using Ingenuity Pathway Analysis Software
and the Reactome FI (Functional Interaction) plugin for
Cytoscape.

1 Biogrid 2.0 Cytoscape 2.6.0 Plugin [24]. A filter was
created for the Biogrid human interactome model
(31.1.87) using the development-related gene
clusters. The resultant networks were visualised in
Cytoscape.

2 Ingenuity Pathways Analysis (IPA) software.
Differentially expressed genes serve as “seeds” for
generating networks and are combined into
networks that maximize their connectivity in
relation to specific biological functions. Networks
are scored based on the number of Network Eligible
Molecules in the network and its size, as well as the
total number of Network Eligible Molecules
analysed and the total number of molecules in the
Ingenuity Knowledge Base that could potentially be
included in networks [6]. The score is the —log of
the Fisher’s Exact test result. The score is not an
indication of the quality or biological relevance of
the network; it calculates the approximate “fit”
between each network and the differentially
expressed genes [80].

3 Reactome FI Cytoscape 2.8.2 Plugin [81,82]. This
plugin accesses the Reactome Functional
Interaction (FI) network [27,29], a manually
curated, peer-reviewed, pathway-based protein
functional interaction network covering close to
50% of human proteins, and allows the construction
of FI networks based on a set of genes. The FI
network is clustered to form highly-interacting
groups of genes (spectral partition based network
clustering) [37], perform gene ontology (GO)
functional enrichment analysis to annotate the
modules and expand the network by finding genes
related to the experimental data set [27,29,83].

Network properties and minimal essential networks
Network properties have been correlated with biological
function [16]. The Cytohubba Cytoscape Plugin was
used to provide topological analysis and allowed the def-
inition of a range of network properties including De-
gree (“Hubness”) and Bottleneck (BN). The top 10% of
PPI network nodes ranked for both “degree” and “Bottle-
neck” scores were used to evaluate node “essentiality”
[15,84] and to generate a minimal essential network
(MEN) (Additional file 2: Figure S5). A minimal essential
network represents the most functionally relevant elem-
ent of an interactome model and therefore was used to
assess biological function [15,16,66].
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Availability of supporting data
The data sets supporting the results of this article are
available in the Gene Expression Omnibus repository:

GSE9006 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE9006),

GSE26440  (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE26440),

GSE11504  (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE11504),

TABM666  (http://www.ebi.ac.uk/arrayexpress/experi-

ments/E-TABM-666),

GSE6011 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE6011),

GSE37721  (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE37721),

GSE20307  (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE20307),

GSE20436  (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE20436).

Additional files

Additional file 1: Table S1. Library of gene expression datasets from
normal children with age annotation collated from the NCBI Gene
expression Omnibus (GEO) and EBI Arrayexpress databases. Table S2.
Genes with age related expression in main data set. 927 Affymetrix
probesets identified by ANOVA (g < 0.1). Three groups defined by
hierarchical clustering, <6 years of age [infancy, early childhood group
(408 probes)]; >6 to <17 years of age [late childhood, puberty group (252
probes)]; and >17 to <30 years of age [adulthood (267 probes)]. Ranked
by q value. Table S3. Enriched KEGG pathways associated with age-
related gene expression controlled against the background of the human
genome. Table S4. Genes previously identified in genome wide
association studies (GWAS) that also have age-related expression in
humans. GWAS data from the Catalogue of Published Genome-Wide
Association Studies at the National Human Genome Institute (Hindorff

et al. 2009). Table S5. Gene expression associated essential biological
pathways defined by network analysis. Table S6. Replication of gene
expression associated essential biological pathways defined by network
analysis in peripheral blood mononuclear cell (PBMC) gene expression
data. Table S7. Overlap of gene expression associated essential biological
pathways defined by network analysis between different human tissues.
Age-related gene expression was identified in five different human
tissues, bone marrow, quadriceps muscle, peripheral blood mononuclear
cells, temporal lobe brain and conjunctival epithelia (ANOVA, p < 0.05).
Overlap of these gene sets was examined (Additional file 2: Figure S8)
and a set of genes where age related expression occurred in at least
three of the five tissues was identified (n = 68).

Additional file 2: Figure S1. Generation of the main data set. Figure S2.
Age related differences in gene ontology. Figure S3. Age related
differences in expression of genes within canonical pathways. Biological
pathways were associated with the three clusters of age related genes
as identified from the KEGG database (Webgestalt); <6 yrs [Infancy, Early
Childhood]; >6 to <17 yrs [Late Childhood, Puberty] and >17 yrs [Adult,
Final Height] (hypergeometric test, g < 0.2). Figure S4. Identification of
transcription factors that are expected to be activated or inhibited,
given the observed gene expression changes in the three clusters of age
related genes; <6 yrs [Infancy, Early Childhood]; >6 to <17 yrs [Late
Childhood, Puberty] and >17 yrs [Adult, Final Height]. Figure S5. Analysis of
network topology. Figure S6. Analysis of protein connectivity (degree) in
the human interactome as a measure of protein function within genes
within age-related expression clusters from temporal lobe human brain
tissue (GSE37721, Sterner et al. 2012).
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