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Abstract
Background: Molecular evolution is usually described assuming a neutral or weakly non-neutral
substitution model. Recently, new data have become available on evolution of sequence regions under a
selective pressure, e.g. transcription factor binding sites. To reconstruct the evolutionary history of such
sequences, one needs evolutionary models that take into account a substantial constant selective pressure.

Results: We present a simple evolutionary model with a single preferred (consensus) nucleotide and the
neutral substitution model adopted for all other nucleotides. This evolutionary model has a rate matrix in
which all substitutions that do not involve the consensus nucleotide occur with the same rate. The model
has two time scales for achieving a stationary distribution; in the general case only one of the two rate
parameters can be evaluated from the stationary distribution. In the middle-time zone, a counterintuitive
behavior was observed for some parameter values, with a probability of conservation for a non-consensus
nucleotide greater than that for the consensus nucleotide. Such an effect can be observed only in the case
of weak preference for the consensus nucleotide, when the probability to observe the consensus
nucleotide in the stationary distribution is less than 1/2. If the substitution rate is represented as a product
of mutation and fixation, only the fixation can be calculated from the stationary distribution. The exhibited
conservation of non-consensus nucleotides does not take place if the elements of mutation matrix are
identical, and can be related to the reduced mutation rate between the non-consensus nucleotides. This
bias can have no effect on the stationary distribution of nucleotide frequencies calculated over the
ensemble of multiple alignments, e.g. transcription factor binding sites upstream of different sets of co-
regulated orthologous genes.

Conclusion: The derived model can be used as a null model when analyzing the evolution of orthologous
transcription factor binding sites. In particular, our findings show that a nucleotide preferred at some
position of a multiple alignment of binding sites for some transcription factor in the same genome is not
necessarily the most conserved nucleotide in an alignment of orthologous sites from different species.
However, this effect can take place only in the case of a mutation matrix whose elements are not identical.
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Background
The controlled expression of genes is the main mecha-
nism responsible for the life cycle and biodiversity [1].
Transcription, which is a crucial process defining the level
of gene expression, is regulated by interaction of transcrip-
tion factor proteins (TFs) with transcription factor bind-
ing sites (TFBSs) in a DNA molecule [2]. Thus, adaptable
interaction between TFs and TFBSs is one of the main driv-
ing forces of biological evolution [3].

Both TFs and TFBSs are subject to mutations and selection
affecting their interaction [4]. In this study we focus on
mutations in TFBSs. New experimental [5-7] and compu-
tational [8] methods of TFBS identification produce an
increasing amount of data about TFBS sequences, which
creates a possibility to study evolutionary events in these
regions.

Modelling evolution of regulatory sequences can be useful
for understanding both the general mechanisms of gene
expression control and the regulatory history of particular
genes.

The evolution of regulatory regions has a complex pattern
[3,9-11] and is still unclear in many aspects. DNA seg-
ments can gain and lose the TFBS function [12], and that
can bring new genes under regulation by a particular TF
[13-15], or divert regulation from other genes [16,17].
One particular type of events is emergence of new or
changed sites following displacement of a transcription
factor by horizontal transfer [18]. Sometimes this leads to
considerable changes in the regulon content [19,20] or
even partial or complete rewiring of regulatory cascades
[21-26], reviewed in [27].

Evolution of functional TFBS sequences is strongly non-
neutral [11,28] and under a positive selection [29], which
makes it difficult to calculate the rate of TFBS evolution.
This rate varies between TFBS positions [30,31]. Moreo-
ver, co-evolution of TFBS and TF [16,20] can make the
selective pressure vary in different lineages. Indeed,
although in some cases the DNA motif bound by orthol-
ogous factors may be conserved at surprisingly large evo-
lutionary distances [14,32-34], in other cases not only the
motifs themselves may be different [35,36], but even the
symmetry of the motif (e.g. palindrome or direct repeat)
may change [37,38].

The existing evolutionary models, which were successful
in reconstruction of phylogenetic relations, can be applied
to evolution of regulatory sequences only with a caution.
Such models are historically related to the Jukes–Cantor
[39] and Kimura [40] models of molecular evolution.
Existing modifications of these models take into account
various global characteristics like transition/transversion

rate or local GC composition [41-44]. They are not appli-
cable to the case of strong selection for a specific nucleo-
tide at a particular position.

On the other hand, models developed specifically for the
evolution of TFBS are needed to reconstruct the evolution-
ary origin of a particular TFBS and to evaluate the posi-
tion-specific mutation rate and selective pressure.

Because of the position-specific variation in the rate of
TFBS evolution [30], the rate matrix must also be posi-
tion-specific. The data produced by mass experiments on
TFBS identification or comparative genomic studies pro-
duce tens of TFBS for each TF (more exactly, a group of
orthologous TFs). That might be sufficient to evaluate the
evolutionary rate at each TFBS position.

Here we consider the simplest model of position-specific
evolution with one preferred (consensus) nucleotide and
three other (minor) nucleotides, the latter considered in a
symmetric setting, without any selection or rate prefer-
ences [45]. Such a model can be deduced from physical
requirements of the TF/TFBS interaction [46] and can
explain the observed TFBS fuzziness.

We build a rate matrix, which enhances the model of [45].
We calculate the substitution probability for each finite
time and show that the nucleotide conservation in phylo-
genetic lineages can be non-trivial for some parameter val-
ues. Particularly, a non-consensus nucleotide may appear
more conserved than the consensus nucleotide, although
the latter has a selective preference. This happens when
the rate of mutations between non-consensus nucleotides
is lower than the rate of mutation into the consensus, or
there is selection against any mutation in non-consensus
nucleotides.

Results and Discussion
Model
We start with definitions. We consider an alignment of
several sequences; all positions in this alignment are
assumed to be independent, and thus may be modelled
independently. Consensus nucleotide (or simply consensus)
is the most frequent nucleotide in an alignment column
(position). Other nucleotides are called non-consensus. The
frequency of the consensus nucleotide Nc is a fraction of
the number of consensus nucleotides in a particular posi-
tion. Obviously, 1/4 <Nc ≤ 1. The consensus is called weak,
if 1/4 <Nc < 1/2; the consensus is strong, if 1/2 ≤ Nc < 1.

Consider the model of nucleotide substitutions given by a
Markov process X(t) with four states {g1, g2, g3, g4}. With-
out loss of generality, assume that the state g1 is the con-
sensus state and the states g2, g3, g4 are equiprobable non-
Page 2 of 11
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:125 http://www.biomedcentral.com/1471-2148/7/125
consensus states. Suppose that the transition rate matrix A
= (qij) is given by

where qij is the transition rate from the state gi to gj and α,
β, and δ are positive unknown parameters.

Transitional probabilities
Let Pij(t) be the transitional probability from the state gi to
the state gj for the time t. From the theory of Markov
chains we have for h → 0

For brevity we denote by 'c' the subscript '1' corresponding
to the consensus state g1 and by 'n' and 'm' the subscripts
2, 3, and 4 corresponding to the non-consensus states g2,
g3, g4. Thus we have five transitional probabilities Pcc, Pcn,
Pnc, Pnn, and Pnm, where n and m stand for two distinct
non-consensus states. The formulas for Pij are derived
from simple calculation:

For simplicity, introduce a new time-scale, u = tβ, and
denote λ = α/β, μ = δ/β. Then

and

Note that the parameter μ is related to the conservation
within the set of non-consensus states {g2, g3, g4}. Simply,
λ is a rate of transition from the consensus nucleotide and
μ is a rate of transition between non-consensus states up
to the time-scale parameter β.

The stationary distribution π = (πc, πn, πn, πn) of the proc-
ess X(t) is given by

According to our definition of the consensus as the most
frequent nucleotide, from πc = 1/(3λ + 1) > 1/4 it follows
that 0 <λ < 1. The parameter λ is responsible for transi-
tions from the consensus state to the non-consensus ones.
At the same time, the transition from a non-consensus
state to the consensus state occurs with the rate 1 (up to
the time-scale parameter β). Intuitively, in the model with
one selected consensus state the probability of transition
to a non-consensus state should be smaller than the prob-
ability of transition to the consensus state; thus, λ should
be less than 1. Indeed, if λ ≥ 1, then πc ≤ 1/4, πn ≥ 1/4 and
we have three equiprobable consensus states.

If the consensus is strong, then πc ≥ 1/2, and, conse-
quently, 0 <λ ≤ 1/3. Note that we can not impose any con-
dition on μ other than μ > 0.

Conservation and transition of nucleotides
The goal of this section is to compare the transitional
probabilities between different states in our model. We
will see that the relations we get have clear biological
interpretation.
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Simple cases
Let a unique consensus exist in our model, i.e. 0 <λ < 1. It
is not difficult to obtain the following relations between
the transitional probabilities, which hold for any λ ∈ (0,
1), u > 0.

1. Pcc(u) > Pcn(u);

2. Pcc(u) > Pnc(u);

3. Pcc(u) > Pnm(u) for any μ > 0;

4. Pnn(u) > Pcn(u) for any positive λ and μ;

5. Pnc(u) > Pcn(u);

6. Pnn(u) > Pnm(u) for any μ > 0.

The interpretation of these results is straightforward. Fig-
ures 1, 2, 3, 4 show the graphs of the transitional proba-
bilities for different values of λ and μ. The relations 1–6
between the transitional probabilities are clearly shown in
the figures. The first three inequalities show that the prob-
ability of conservation of the consensus state is always
higher than the probability of transition between the

Transitional probabilities Pcn, Pcc, Pnn, Pnc, Pnm for λ = 2/3, μ = 1/6Figure 3
Transitional probabilities Pcn, Pcc, Pnn, Pnc, Pnm for λ = 2/
3, μ = 1/6. In this case the probability of conservation of the 
consensus nucleotide is less than the probability of conserva-
tion of a non-consensus nucleotide, Pcc(u) <Pnn(u) for u ∈ (0, 
u**), since 3λ > 2μ + 1 and λ > μ. The stationary distribution 
of the consensus state is πc = 1/3. Thus, the consensus is 
weak. Since μ <λ, we have Pcn(u) > Pnm(u) for all u > 0.
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Transitional probabilities Pcn, Pcc, Pnn, Pnc, Pnm for λ = 1/6, μ = 1/2Figure 1
Transitional probabilities Pcn, Pcc, Pnn, Pnc, Pnm for λ = 1/
6, μ = 1/2. This figure describes the case Pcc(u) > Pnn(u) for 
all u > 0. The consensus is strong, since πc = 2/3. Since the 
rate of transition between non-consensus states μ is greater 
than the rate of transition from the consensus state λ, we 
have Pcn(u) <Pnm(u). The relation between the probability of 
conservation of a non-consensus nucleotide and the proba-
bility of transition from the non-consensus state to the con-
sensus one is shown, Pnn(u) > Pnc(u) for u ∈ (0, u0) and, vice 
versa, Pnn(u) <Pnc(u) for u > u0. This figure exemplifies all 
simple cases that hold for any λ ∈ (0, 1), μ > 0, u > 0 (see the 
corresponding paragraph in the main text).
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Transitional probabilities Pcn, Pcc, Pnn, Pnc, Pnm for λ = 2/3, μ = 3/4Figure 2
Transitional probabilities Pcn, Pcc, Pnn, Pnc, Pnm for λ = 2/
3, μ = 3/4. Here we have Pnn(u) > Pnc(u) for u ∈ (0, u0) and, 
vice versa, Pnn(u) <Pnc(u) for u > u0. In this figure Pcc(u) > 
Pnn(u) for all u > 0, as 3λ ≤ 2μ + 1. The consensus is weak, 
since πc = 1/3. Since μ > λ, we have Pcn(u) <Pnm(u). This fig-
ure shows all simple cases that hold for any λ ∈ (0, 1), μ > 0, 
u > 0.
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states of different type. Inequalities 1, 4, and 5 imply that
the probability of transition from the consensus state to a
non-consensus one is always less than the probability of
conservation of a nucleotide or the probability of transi-
tion from a non-consensus state to the consensus one.
Inequalities 3 and 6 show that the probability of transi-
tion between two different non-consensus states is always
less than the probability of state conservation. All these
results correlate well with our intuitive ideas about an evo-
lutionary model with selective pressure. Note that rela-
tions 1–6 hold for any positive μ, λ ∈ (0, 1) and for any
time period.

Interesting cases
The most interesting case is the conservation of the con-
sensus or a non-consensus nucleotide. Recall that Pcc(h) =
1 - 3 λβ h + o(1), Pnn(h) = 1 - (2μ + 1)β h + o(1) for h →
0. Thus, the relation between the probabilities of conser-
vation of the consensus state and conservation of a non-
consensus state during the time u depends on the relation
between 3λ and 2μ + 1. We obtained the following result.

1. If 3λ ≤ 2μ + 1, then

Pcc(u) > Pnn(u) for u > 0.

2. If 3λ > 2μ + 1, λ > μ, then

Here u** = u**(λ, μ) > 0 is a time moment depending on
λ and μ. More precisely, u** is a non-zero solution of the
equation Pcc(u) = Pnn(u). Let F (u) = Pcc(u) - Pnn(u). It can
be shown that for λ > (2μ + 1)/3 and λ > μ

Indeed,

and F'(u) = 0 if and only if

2(3μ + 1) e-(3μ+1)u = (9λ - 1)e-(3λ+1)u.

The solution of the latter equation is u*. If 3λ > 2μ + 1 and
λ > μ, then u* > 0 and F increases for u > u* and decreases
for u <u*. At the same time, F(0) = 0. Thus, in this case
F(u) < 0 for u ∈ (0, u**) and F(u) > 0 for u > u**. This
implies the second statement.

Further, if 3λ ≤ 2μ + 1 and λ > μ, then u* < 0 and F'(u) >
0 for all u > 0. Therefore, F(u) increases for u > 0 and F(u)
> 0, since F(0) = 0. Next, for λ = μ we obtain that

F(u) ≥ 3(1 - λ)(1 - e-(3λ+1)u) > 0

for any u > 0. Thus, F(u) > 0 if 3λ ≤ 2μ + 1, and the first
inequality follows.

The second relation partly describes the case of the weak
consensus (Fig. 3). Since 3λ + 1 > 2(μ + 1), the stationary
distribution of the consensus state is estimated from
above as

At the same time, the first relation holds both in the case
of strong consensus πc≥ 1/2 (Fig. 1) and in the case of
weak consensus 1/4 <πc < 1/2 (Fig. 2).

The second interesting result is a relation between the
probability of conservation of the non-consensus nucleo-
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tide and the probability of transition from a non-consen-
sus state to the consensus state. We have

where u0 ≡ u0(λ, μ) is the solution of equation Pnn(u) =
Pnc(u). It can be shown that u0 is always positive. This rela-
tion shows that the probability of conservation of a non-
consensus nucleotide is less than the probability of transi-
tion to the consensus nucleotide from a non-consensus
one for sufficiently long time u > u0. However, on the
interval (0, u0) the opposite inequality holds (see Fig. 1,
2).

Less interesting cases
It remains to study the relations between Pnm and Pcn, Pnc.
From the practical point of view, these cases are not very
interesting, since the events of transition between differ-
ent non-consensus states can be hardly observed on prac-
tice. However, we consider them for the sake of
completeness.

The following relations imply that the transitional proba-
bility from the consensus to a non-consensus state could
be less or greater than the transitional probability between
two different non-consensus states depending on the rela-
tion between μ and λ (see Fig. 2 and 3):

Indeed, if μ > λ, then δ > α and the transition rate d
between the non-consensus states is greater than the tran-
sition rate from the consensus state to non-consensus.
Clearly, in this case Pnm has to be greater than Pcn (see Fig.
2 and Fig. 3).

The next case concerns the relation Pnm and Pnc for λ ∈ (0,
1) (see Fig. 1 and 4):

where u1 = u1(λ, μ) is a solution of the equation Pnc(u) =
Pnm(u).

An interesting fact is that the probability Pnm(u) is not
monotone in u for μ > λ (see Fig. 4). If μ > λ, then Pnm
increases on (0, u2) and decreases for u > u2, where

Finally, consider the case μ = λ. As it has been shown
above, Pcc(u) > Pnn(u) for u > 0 (see Fig. 5). It is easy to see
that in this case Pnm ≡ Pcn. The function Pnm(u) is monot-
onically increasing for all u. Note that in the degenerate
case λ = μ = 1 all states are equiprobable, the stationary
distribution of the process π = (1/4, 1/4, 1/4, 1/4) and Pnn
= Pcc, Pnc = Pcn = Pnm (see Fig. 6).
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where α, β, γ, δ, are positive unknown parameters.

In this case we have two groups of M consensus and N
non-consensus states. We use the same notation for sub-

scripts of transitional probabilities . If c and d denote

different consensus states, n and m stand for different
non-consensus states as before, we have the following
transitional probabilities:

Thus, this process has the stationary distribution  = (πc,

..., πc, πn, ..., πn) with

Clearly, β > γ, since the first M states are the consensus
ones. Next, compare the probabilities of conservation of
the consensus and non-consensus states Pcc and Pnn. In a

similar way, we obtain that there exists t* > 0 such that
Pcc(t) <Pnn(t) for t ∈ (0, t*). Analyzing the probabilities Pcc
and Pnn we can show that this is possible only for δ (N - 1)
- α (M - 1) + β M - γ N < 0. Then the frequency of the con-
sensus state (stationary distribution of consensus) is esti-
mated from above as

If M = 1, N = 3, then

This condition coincides with the condition on weak con-
sensus obtained for the case of four states with one con-
sensus (M = 1, N = 3) considered above.

Comparison with the Molecular Evolution Theory
In the framework of the molecular evolution theory, the
element aij of the transition rate matrix is considered to be
proportional to the product of the mutation rate pij and
the probability of fixation of a mutation fij, aij = kpijfij,
where k is an arbitrary scaling constant [47]. As in [45] we
start from the simplest Jukes–Cantor (1 - p)-scheme, to
which we introduce selection. Thus, we ignore the differ-
ence between transitions and transversions in pij.

TFBS regulating different genes in the same genome most
likely evolve independently and thus the nucleotide com-
position πi at the respective positions of different TFBS
occurrences approximates the equilibrium frequencies.
With these equilibrium frequencies at hand it is possible
to relate pij and fij with the equation (see [47])

In our case, for the substitution rate between three non-
consensus positions we obtain πi = πj = πn and pij = pji = pnm,
which yields fnm∝ 1 by the l'Hôpital rule as in [47]. Thus,
δ = rnm = kpnm.

For the substitutions between non-consensus and consen-
sus positions, rnc, both the selection preferences and muta-
tion asymmetry come into consideration. In this case the
"asymmetry constant" λ is crucial, which satisfies the ine-
quality rcn/rnc = pn/pc = λ < 1. The following expression is
valid:

Pij

P

P

cc
M N t M N t

cd

t
M N

N

M M N
e

M

M
e

t

( )
( )

,

( )

( ) ( )=
+

+
+

+ −

=

− + − +β
β γ

γ
β γ

β

β γ α γ1

ββ γ
γ

β γ
β

β γ
β

β

β γ α γ
M N

N

M M N
e

M
e

t
M N M

M N t M N t

nc

+
+

+
−

=
+

−

− + − +
( )

,

( )

( ) ( )1

P
++

=
+

−
+

=
+

− +

− +

γ
γ

β γ
γ

β γ
γ

β γ

β γ

β γ

N
e

t
M N M N

e

t
M

M N t

cn
M N t

nn

( )

( )

,

( ) ,

( )

P

P
NN N M N

e
N

N
e

t
M N

N

N

M N t M N t

nm

+
+

+ −

=
+

+

− + − +βΜ
β γ

γ
β γ

β
β

β γ β δ
( )

,

( )
(

( ) ( )1

P
MM N

e
N

eM N t M N t

+
−− + − +

γ
β γ β δ

)
.( ) ( )1

π

π β
β γ

π γ
β γc nM N M N

=
+

=
+

, .

π β
β γ β δ αc M N M N M

=
+

<
+ − − −

β
2 1 1( ) ( )

.

π β
β δc <

+
<

2 2
1
2

.

f

p

p

p

p

ij

j ji

i ij

i ij

j ji

∝

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−

log

.

π
π
π
π

1

Degenerate case λ = μ = 1Figure 6
Degenerate case λ = μ = 1. In this case all states are 
equiprobable, the stationary distribution of the process π = 
(1/4, 1/4, 1/4, 1/4) and Pnn ≡ Pcc, Pnc ≡ Pcn ≡ Pnm.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
λ = 1, μ = 1

P
ij

(u
)

Pcn

Pcc

Pnn

Pnc

Pnm

1/4

Pnn ≡ Pcc

Pnc ≡ Pcn ≡ Pnm
Page 7 of 11
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:125 http://www.biomedcentral.com/1471-2148/7/125
This fixation rate is linked with the Kimura selection con-
stant [48] s by the relation fcn = (1 - e-2s)/(1 - e-2Ns), where
N is the population size.

If the mutation rate is symmetric, pnc = pcn, then fcn ∝ λ
log(1/λ)/(1 - λ). Conversely, for the non-consensus to
consensus substitution fnc∝ log(1/λ)/(1 - λ) = fcn/λ, the
greater flux from a non-consensus state to the consensus
maintains a greater consensus frequency. Note that in
alignments of sites in a single genome we can observe
only the equilibrium constants πn, πc (which actually are
rather rough approximations), thus the assumption pnc =
pcn may be too strong, and the above general formula for
fcn might be more relevant.

The coefficients in the matrix A for the symmetric muta-
tion rates are given by

If the background mutation rate is identical for all consen-
sus and non-consensus nucleotides, we obtain pcn = pnc =
pnm = p and p may be merged with the constant k. In this
most simple case we obtain

and, consequently, β > δ > α . This is the simplest general-
ization of the Jukes–Cantor model for the case with intro-
duced selection.

It should be noted that in this case μ = δ/β = (1 - λ)/log(1/
λ), which implies μ > λ. Thus, 3λ ≤ 2μ + 1 and we are in
Case 1 of "Interesting Cases" for which Pcc(u) > Pnn(u) for
u > 0.

Conservation of non-consensus nucleotides at the reduced 
mutation rate
Previously [8] we have observed that non-consensus
nucleotides may be highly conserved in the alignments of
orthologous TFBS in bacterial genomes. On the other
hand, as shown above, the non-consensus nucleotide in
the alignment of orthologous sites from different species
cannot be more conserved than the consensus nucleotide

if we adopt the Kimura model with the identical mutation
rate for all pairs.

One way to explain the observation made in [8] is to drop
the equivalence of non-consensus nucleotides and
assume that different non-consensus nucleotides are
under different selection in the sites regulating different
rows of orthologous genes. Interestingly, it is possible to
observe such conservation pattern in the model with an
identical probabilities of mutation and fixation for all
non-consensus nucleotides in all orthologous site rows,
with a single preferred nucleotide, the consensus, the
same in all sites. The only necessary relaxation of the
model is to drop the condition pcn = pnc = pnm = p for the
condition pnm <pnc = pcn. Doing this it is possible to satisfy
the inequalities determining Case 2 of "Interesting Cases":
μ <λ, 3λ > 2μ + 1.

The condition pnm <pnc = pcn means that the rate of direct
mutations from one non-consensus nucleotide to another
one is lower than the mutation rate in pairs involving the
consensus nucleotide. A possible example of such specific
reduction of the mutation rate comes from correlations of
nucleotides occupying different positions of the same
binding site. Assume that two positions within the site are
not independent and must be occupied by correlated
nucleotides. These may be, e.g., adjacent positions in a
DNA site or base-paired positions in an RNA structure.
Assume also that if any of the two positions is occupied by
the consensus nucleotide, the correlating nucleotide may
be arbitrary. Conversely, if one position is occupied by a
non-consensus nucleotide, the other position should be
occupied with some specific nucleotide, e.g. the comple-
mentary one in the case of an RNA structure.

In this case, the preferred pathway from a non-consensus
nucleotide to another non-consensus nucleotide would
become not via a direct mutation, but via an intermediate
mutation into the consensus nucleotide. For example, if
"C" is both cytosine and consensus, and for some case this
position is correlated with another one, so that only A-A,
T-T, and G-G pairs involving the non-consensus nucleo-
tides at the first position are allowed, then only mutation
A>C is valid, whereas mutations A>T and A>G are forbid-
den, and may occur via mutation into C and then the
compensating mutation in the second position of the site.
This simple model to some extent agrees with recent stud-
ies demonstrating that protein-DNA interactions are
rather complex and probably may not be described by a
simple position-independent model such as a positional
weight matrix [49].

At the same time, this effect is not in contradiction with
the uniform distribution of non-consensus nucleotides
obtained from alignments of multiple TFBS regulating dif-
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ferent genes in the same genome. It also allows for high
conservation of some non-consensus nucleotides in the
alignment of orthologous transcription factor binding
sites from different species. Indeed, if the context-depend-
ent pattern of conservation is specific to a particular posi-
tion in a particular set of orthologous TFBSs, exactly this
type of behavior may be expected.

Conclusion
The evolutionary model derived here can be generalized
to the case of M consensus and N non-consensus nucleo-
tides that are equiprobable, respectively. Thus, for M = 2,
N = 2 and α = β, γ = δ. we get the case of neutral evolution
with different rates of transitions and transversions [40].
If M = 1, N = 3, then we have the evolution model under
constant selective pressure considered in this paper.

One somewhat non-obvious feature of this model is the
existence of a combination of the rate of transition
between non-consensus states μ and the rate of transition
from the consensus state λ, for which the conservation of
the consensus nucleotide in a sequence alignment can be
lower than the conservation of a neutral (non-consensus)
nucleotide. However, this can be observed only for the
case of a weak consensus 1/4 <Nc < 1/2 and for a relatively
short time interval u ∈ (0, u**), and a mutation matrix
with different elements, e.g. context-dependent.

Models of this type can be applied not only for the analy-
sis of regulatory sites, but in other situations, e.g. for the
analysis of functional sites in proteins [50] or analysis of
evolution in the case of nucleotide biases [41-44,51,52].

In future work, we intend to estimate the parameters of
the model from the data based on the method of maxi-
mum likelihood trees. Consider a Markov process X(t)
describing the evolution at some fixed position. We
assume that we observe only the endpoints of k different
paths of X(t) depending on the evolution branch. In other
words, our data is a set of k nucleotides at a fixed position

in k genomes. The parameter λ can be easily estimated by

the 'naive' estimator  = (1/Nc - 1)/3, where Nc is the fre-

quency of the consensus nucleotide at the fixed position
within k genomes. This estimator is obtained from the for-
mula for the stationary distribution of the consensus state

πc = 1/(3λ + 1). However, it is a good approximation of the

true value of λ. The preliminary analysis of numerically
simulated data shows that the performance of the maxi-
mum likelihood estimator is also rather good. On the
other hand, it is not clear whether it is possible to con-
struct an explicit estimator for the rate of transition

between non-consensus states μ from the data, although

μ participates in the expression for transitional probabili-
ties.

The inspiration for the constructed model was the exam-
ple of a set of orthologous transcription factors interacting
with the cognate regulatory regions. However, it appears
that evolution of sequences under a low selection pressure
is a more widespread phenomenon. Indeed, a recent
study [53] demonstrated that the force causing conserva-
tion of some non-coding genome regions of human,
mouse and chimpanzee can be explained by a rather small
selective pressure at the genomic level. A similar problem
appears in the context of the CG composition of genomic
regions [54]. Again, in this case the selective pressure
appears to be low, although unlike the previous examples,
here two nucleotides become selected for rather than one
consensus nucleotide. The appropriate model in this case
includes differences in the transition and the transversion
rates, which makes the model more complicated, and
probably would result in more complex time behavior of
the substitution probabilities.

Anyhow, the emerging huge amount of data on ortholo-
gous non-coding regions, which has became available
recently, brings forward a problem of modelling evolu-
tion with a selection pressure at finite times.

Methods
The numerical simulations and figures were produced
using Matlab.
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