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Origin of land plants: Do conjugating green algae
hold the key?
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Abstract

Background: The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million
years ago. Today it is widely accepted that land plants (embryophytes) evolved from streptophyte algae, also referred
to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular
flagellates to morphologically complex forms such as the stoneworts (Charales). For a better understanding of the
evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the
embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the
sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been
resolved and remains controversial.

Results: Here, we use a large data set of nuclear-encoded genes (129 proteins) from 40 green plant taxa
(Viridiplantae) including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal
lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic
analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales
are the sister group to embryophytes.

Conclusions: Our analyses support the notion that the Charales are not the closest living relatives of
embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely
the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic
study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/
embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it
should allow us to address important questions regarding the primary adaptations of viridiplants during the
conquest of land. Clearly, the biology of the Zygnematales will receive renewed interest in the future.

Background
The ancestors of modern land plants (embryophytes)
colonized the terrestrial habitat about 500 to 470 million
years ago (Ordovician period [1-3]). This event was
undoubtedly one of the most important steps in the
evolution of life on earth [4-6], thereby establishing the
path to our current terrestrial ecosystems [7] and signifi-
cantly changing the atmospheric oxygen concentration
[8,9]. Since this time three major groups of land plants
evolved: bryophytes (liverworts, hornworts and mosses),

pteridophytes (lycophytes and monilophytes) and sper-
matophytes with the latter dominating most habitats
today.
It is widely accepted that embryophytes evolved from

green algae, or more specifically, from a small but diverse
group of green algae known as the streptophyte algae (char-
ophycean algae). Streptophyte algae and embryophytes
together constitute the division Streptophyta, which likely
split from the Chlorophyta (all other green algae) about
725-1200 MY ago [10-12]. Streptophyta and Chlorophyta
comprise the Viridiplantae, one of the three evolutionary
lineages derived from the single primary endosymbiosis of
a cyanobacterium and a eukaryotic host cell [13].
The Streptophyta are characterized by several mor-

phological (e.g., structure of flagellate reproductive cells,
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if present [14]), and physiological characters (e.g., occur-
rence of glyceraldehyde-3-phosphate dehydrogenase iso-
form B, GAPDH B [15], leaf peroxisome type of
photorespiration [16,17]). Furthermore, several typical
embryophyte traits have evolved within the streptophyte
algae (e.g., cell division using a phragmoplast, structure
of the cellulose synthase complex [4]). However, the
streptophyte algae differ greatly in cellular organization
and reproduction. Molecular phylogenies indicate that
the Mesostigmatales and Chlorokybales form a clade
that is a sister-group to all other streptophytes, currently
containing only two genera: the biflagellate Mesostigma
and the sarcinoid (non-motile cells occurring in
packages of four) Chlorokybus [18,19]. The Klebsormi-
diales, which is comprised of filamentous algae [14], is
the sister group to the remaining streptophyte algae and
the embryophytes. The phylogenetic position of the
other three groups of streptophyte algae is currently
controversial. The conjugating green algae (Zygnema-
tales) today represent the most species-rich group of
streptophyte algae and are characterized by their unique
mode of sexual reproduction. They have completely lost
flagellate cells, using instead conjugation for sexual
reproduction [20]. The conjugating green algae include
both filamentous and unicellular forms. The last two
groups of streptophyte algae, the Coleochaetales and
Charales, are filamentous with apical growth and an
oogamous mode of sexual reproduction. Based on mor-
phological complexity, either of the latter two groups
have been suggested to be the sister group of the
embryophytes [4]. In many illustrations referring to the
evolution of streptophyte algae and embryophytes in
textbooks [e.g. [21]] or review articles [14,22,23], the
Charales (stoneworts) are depicted as the sister group of
the embryophytes. The strongest support for a sister
group relationship between Charales and embryophytes
was obtained in a phylogenetic analysis using four genes
(atpB and rbcL [plastid], nad5 [mitochondria], and SSU
RNA [nuclear] using 26 streptophyte algae, eight embry-
ophytes, and five chlorophytes and one glaucophyte as
outgroup [24]). In contrast, analyses using plastid LSU
and SSU ribosomal RNAs or whole chloroplast genomes
support the Zygnematales or a clade consisting of
Zygnematales and Coleochaetales as sister group of the
embryophytes [25-27].
Here we use ESTs from six different streptophyte

algae for a phylogenomic analysis including 21 embryo-
phytes. We show that the Charales are most likely not
the sister group of the embryophytes, instead our ana-
lyses indicate that either the conjugating green algae or
less likely a sister group formed by Coleochaete and the
Zygnematales might be the closest living relatives of
embryophytes, in agreement with previous phylogenetic
analyses based on chloroplast genomes.

Results
Zygnematales alone or together with Coleochaetales as
the sister group of embryophytes
New ESTs were sequenced from the streptophyte algae
Klebsormidium subtile, Coleochaete scutata, and Chara
vulgaris and the chlorophyte alga Pyramimonas parkeae
(see Material and Methods for details). We assembled a
data set of 129 expressed genes (30,270 unambiguously
aligned amino acid positions) for 40 viridiplant taxa
including six streptophyte algae (Mesostigma, Klebsormi-
dium, Chara, Coleochaete, Closterium and Spirogyra)
using the chlorophytes as outgroup to root the trees.
The data set was analyzed by maximum likelihood

(ML) and Bayesian inference (BI) methods using several
evolutionary models. We first evaluated the fits of the
models to our data set using cross validation (Table 1).
The site-heterogeneous CATGTR model is the best of
the four models under study. The site-heterogeneous
CAT model, which assumes uniform exchangeability
rates among amino acids, has a much better fit than the
site-homogeneous LG+F and GTR models, and is just
slightly worse than the CATGTR model. Interestingly,
the data set is sufficiently large to accurately estimate the
amino acid exchangeability rates, since the GTR model
has a better fit to the data than the LG+F model, where
these parameters were learned from numerous align-
ments [28]. The simplifying assumption of equal rates of
the CAT model, albeit biologically unsound and rejected
by cross validation (in favor of the CATGTR model), has
the advantage of allowing a significant increase in
computational speed [29], and was therefore used for
bootstrap analysis.
Despite very different model fits, the same tree topol-

ogy (Figure 1) was obtained in all analyses. Bootstrap
support values were computed for both methods, using
the site homogeneous GTR+Γ4 model (ML) and the site
heterogeneous CAT+Γ4 model (BI). The posterior prob-
abilities of all nodes for both the CAT+Γ4 and CATGTR
+Γ4 models were 1 except for three nodes (0.99 each,
indicated with an asterisk in Figure 1). The molecular
phylogeny of embryophytes and chlorophyte algae (out-
group) is in agreement with other recently published
phylogenies [14,23,30-32] and supports the monophyly of
liverworts and mosses which is however still a matter of
debate [33]. The phylogeny of the streptophyte algae is

Table 1 Cross-validation results for the data set of 40
viridiplant species and 30,270 positio ns (a positive score
indicates a better fit)

Model compared Likelihood difference (±SD)

GTR+Γ4 vs LG+Γ4 377.99 ± 28.51

CAT+Γ4 vs LG+Γ4 1187.27 ± 78.75

CATGTR+Γ4 vs LG+Γ4 1547.08 ± 63.35
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asymmetrical. Mesostigma is sister to all the remaining
streptophytes, as in other studies without Chlorokybus
[18,19,24]. There is a long, highly supported, branch at
the base of the clade uniting the other streptophyte algae
and embryophytes, likely indicating the elapse of a sub-
stantial amount of time. In contrast, the phylogeny of the

remaining streptophyte algae resembles an adaptive
radiation, with the five major lineages, including the
embryophytes, appearing serial, but with relatively short
internal branches. Within this clade, Klebsormidium is
sister to all the other species. The Charales are sister to a
clade comprising Coleochaetales, Zygnematales and
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Figure 1 Consensus Tree inferred by PhyloBayes under the CAT+ Γ4 using the viridiplant data set of 40 taxa and 30,270 amino acid
positions (129 concatenated nuclear encoded proteins). An identical topology was obtained with two different methods (ML, BI) and four
different models applied (site homogeneous ML, LG+F+Γ4 and GTR+Γ4; site heterogeneous BI, CAT+Γ4 and CATGTR+Γ4). Numbers represent (in
order from top to bottom) the bootstrap support values for the PhyloBayes CAT+Γ4 and the RAxML GTR+Γ4 analyses. Black dots indicate that
the branch was supported by a BP of 100% using both models. All except three nodes, which are indicated by a star, were supported by
posterior probabilities (PP) of 1. The scale bar denotes the estimated number of amino acid substitutions per site.

Wodniok et al. BMC Evolutionary Biology 2011, 11:104
http://www.biomedcentral.com/1471-2148/11/104

Page 3 of 10



embryophytes and are therefore an unlikely candidate as
the sister-group of the embryophytes (only BP of 5% and
2% with CAT+Γ4 and GTR+Γ4 models, respectively).
The latter clade is moderately well supported (BP of 88%
and 94%) and its support is lower than for the clade
Klebsormidium+Chara+Coleochaetales+Zygnematales
+embryophytes (100%). However, the sister-group rela-
tionship of embryophytes and Zygnematales (BP 83% and
54%) is less well supported, especially in the analysis
under the site-homogeneous GTR+Γ4 model. A fraction
of the bootstrap replicates supports the alternative topol-
ogy that unites Coleochaete with the Zygnematales
(BP 12% and 35%, respectively). The data indicate that
Mesostigma, Chara, Klebsormidium and Coleochaete are
evolving at a comparable and moderate rate, with embry-
ophytes and Zygnematales evolving faster. For instance,
the Zygnematales appear to have evolved twice as fast as
Coleochaete.
This difference in evolutionary rate suggests that the

grouping of embryophytes and Zygnematales could be
due to a long-branch attraction (LBA) artifact [34]. To
explore this possibility, we analyzed two reduced taxon
samples, where the 15 fastest-evolving land plants have
been discarded (Figure 2A) and the 13 long-branched
chlorophytes and Mesostigma were not used as an out-
group (Figure 2B). The impact of LBA should be
reduced in both cases. Again, the four models and the
two methods (ML and BI) lead to identical topologies
for both data sets. Interestingly, in both cases, the
topology differs from the one of the complete data set
(40 species, Figure 1) by the appearance of a sister-
group relationship between Coleochaete and Zygnema-
tales. However, this grouping receives non-significant
support (PP between 0.51 and 0.90 and BP of 36 and
72%). In both cases, the Zygnematales plus Coleochaete
clade is the closest relative to embryophytes (however,
with limited support when the outgroups were removed
[BP of 74%, Figure 2B]). It is noteworthy, that in none
of the analyses was Chara recovered as a sister clade to
the embryophytes (low BP: 2% in Figure 2A and 19% in
Figure 2B).
Another cause of systematic errors in phylogenetic

inference is the compositional heterogeneity across taxa
[35,36]. A principal component analysis of the amino
acid composition (Figure 3) demonstrates that Coleo-
chaete, Chara and Spirogyra and most embryophytes
have a similar composition. Other organisms (e.g. Proto-
theca, Chlorella, Closterium and Klebsormidium) show
much larger compositional differences, but are correctly
placed in a phylogenetic tree due to the presence of a
strong phylogenetic signal, as the strongly supported
monophyly of Closterium+Spirogyra and Selaginella
+Huperzia illustrate. We explored the potential impact of
compositional heterogeneity on our inference by using

the Dayhoff recoding, an approach known to be efficient
[37-39]. Interestingly, the three models (GTR, CAT and
CATGTR) and the three taxon samples in Figures 1 and
2 A, B all lead to the same topology as in Figure 1. Since
the Dayhoff recoding reduces not only compositional
heterogeneity but also saturation, the sister-group rela-
tionship between the Zygnematales and embryophytes as
observed in Figure 1 is less likely to result from systema-
tic error.

Discussion
Previous studies of the phylogeny of Streptophyta were
restricted mainly to ribosomal RNA or sequences of
organellar origin [24-27]. We now, used for the first time,
large data sets of nuclear-encoded proteins for phyloge-
netic studies in this important evolutionary lineage. Our
phylogenetic analyses are in agreement with both phylo-
genies obtained using a data set of concatenated plastid
proteins or ribosomal RNAs [26,27], but are in conflict
with the 4 gene tree mentioned above [24]. In contrast,
Coleochaete was found to be sister to embryophytes [40]
in a recent analysis based on 77 nuclear encoded riboso-
mal proteins (12,459 amino acid positions). However, as
this study failed to recover the monophyly of the Coleo-
chaetales (placing Chaetosphaeridium within the Zygne-
matales) the conclusions from this study should be
treated with caution. In the 4 gene analysis the topology
(Zygnematales, (Coleochaetales, (Charales, embryo-
phytes))) was observed. This analysis suggested that the
streptophyte algae regularly (without reversions) evolved
towards increasing morphological complexity (resulting
in a larger number of shared morphological characters
with embryophytes). In contrast, our results and the
results obtained using chloroplast data [25,26] suggest
that most likely the morphologically simpler Zygnema-
tales (or a clade consisting of Zygnematales and Coleo-
chaetales) is the sister group of embryophytes, rather
than the Charales. It seems plausible that the simpler
morphology of extant Zygnematales represents a second-
ary simplification, similar to the loss of flagellate cells in
this group, which may actually represent an adaptation to
ensure sexual reproduction in the absence of free water
[41]. Alternatively, the morphological complexity of the
Charales and Coleochaetales might have evolved inde-
pendently after the three evolutionary lines (Coleochae-
tales, Charales, and Zygnematales) diverged. This kind of
scenario was already proposed by Stebbins and Hill [41]:
They suggested that the early evolution of streptophyte
algae took place in a moist terrestrial habitat and
involved rather simple unicellular types. They considered
the extant Coleochaetales, Charales, Klebsormidiales and
Zygnematales to be derived forms with a secondary aqua-
tic life style. A fast initial radiation at the time of coloni-
zation of the terrestrial habitat by the ancestors of
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Figure 2 Consensus Tree inferred by PhyloBayes using reduced data sets of 25 taxa (A. Spermatophytes and Selaginella eliminated) or
26 taxa (B. Chlorophytes and Mesostigma eliminated). The same methods and models were used as in Figure 1, with the only exception
that no bootstrap analyses were performed for the PhyloBayes analyses, for which only the posterior probabilities are given. The alternative
taxon samplings were aimed at either eliminating the fast evolving embryophytes (all spermatophytes and Selaginella) (A) or the distantly-related
outgroup sequences eliminating chlorophytes and Mesostigma (B).
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modern streptophyte algae as proposed by Stebbins and
Hill [41] may also explain the relative difficulty to infer
the phylogenetic relationships among the four groups of
streptophyte algae, enhanced by the accelerated evolu-
tionary rate of the Zygnematales. However, in contrast to
Stebbins and Hill [41], we argue that at least some of the
morphological complexity had evolved prior to the early
radiation of the streptophyte algae for the following rea-
sons: (1) Based on the available fossil record, the Charales
already had a morphology similar to that of extant forms
in the Silurian period [42], (2) the available EST data
indicate that Zygnematales, Coleochaetales and Charales
possess homologues of a number of proteins that are
involved in the development of morphologically complex
structures in embryophytes, such as GNOM, Wuschel,
Meristemlayer 1, MIKc-type MADS-box protein ([43,44]
and unpublished results). Taken together, these data
lend support to the idea that the extant morphological
complexity of the Charales and Coleochaetales is an
ancient trait that may have been secondarily lost in the
Zygnematales.
Alternatively, as was found by the comparison of Volvox,

a multicellular system, with its close relative Chlamydomo-
nas reinhardtii, the evolution of multi-cellular structures
seems to rely mainly on the reorganization and differential
regulation of already existing genes [45]. From this point
of view, the complex morphologies of the Charales and

Coleochaetales could have evolved completely indepen-
dently by using the toolbox already present in the com-
mon ancestor of these streptophyte algae. Although our
results, based on the complete data set, favor the Zygne-
matales as the sister group of the embryophytes, the
results from the two alternative taxon sampling tests, in
which we tried to reduce as much as possible potential
disturbing influences of the LBA artifacts, seem to point
rather to a sister group relationship between Coleochaete
and the Zygnematales. In contrast, Dayhoff coding favors
the grouping of the Zygnematales with the embryophytes,
whatever the taxon sampling. Since this recoding is
expected to reduce several sources of systematic errors,
this topology is more likely. However, the support in this
part of the tree remains limited, and large-scale genomic
data from more streptophyte algae (especially Coleochae-
tales, Charales and Klebsormidiales) are needed to resolve
this question. Whatever the relative position of Coleo-
chaete and the Zygnematales, our analysis supports the
scenario of a secondary loss of morphological complexity
in the Zygnematales.
The first land plants encountered a more extreme

environment compared to a freshwater habitat, with
large fluctuations in water content (wetting and desicca-
tion), radiation intensity (visible light and UV) and
nutrient supply. Potentially, the last common ancestor
of the Zygnematales and embryophytes was better

Figure 3 Principal component analysis of the complete 46 taxa data set. The two first axes of the multidimensional space are shown, they
account together for 48% of the data. The principal component analysis demonstrates that the majority of the sequences have a homogeneous
amino acid composition. Nevertheless, there are also several outliers most of them expectedly associated with distant outgroup species; more
precisely there are two red algae, several chlorophytes, but also three streptophyte algae (Mesostigma, Klebsormidium and Closterium) and the
embryophyte Huperzia.
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adapted to these types of environmental stressors than
other streptophyte algae. The more variable environ-
mental conditions might have also favored the evolution
of more complex signaling pathways [46]. Rensing et al.
[46] discussed several proteins likely to be important for
the adaptation of embryophytes to their terrestrial habi-
tat. Preliminary analysis of the available ESTs from
streptophyte algae indicate that expressed genes similar
to most of the proteins listed by Rensing et al. [46] can
be found in various streptophyte algae (Table 2). For
example, proteins similar to major light harvesting com-
plex II proteins (lhcb1-3), which were considered to be
missing from green algae [46-48], are clearly found
in ESTs from streptophyte algae except Mesostigma
(Table 2). Expressed genes similar to late embryo abun-
dant (LEA) proteins known to protect spermatophyte
seeds from desiccation [49] are found in several strepto-
phyte algae (Table 2).
The probable fast radiation of the derived lineages of

streptophyte algae (see above) in conjunction with the sec-
ondary morphological simplification of the Zygnematales
makes it difficult to find any synapomorphies for the pos-
sible sister group relationship of the Zygnematales and
embryophytes. We note two complex traits that might
potentially support this relationship. Firstly, components
of the “auxin signaling machinery” are highly conserved in
embryophytes [46,50], but appear to be absent in strepto-
phyte algae, except for the auxin binding protein (abp1),
which can be found in various green algae including chlor-
ophytes [50]. However, as also noted by De Smet et al. [51]
the recently published ESTs from Spirogyra [52] include
expressed genes similar to components (ARF, PIN,
PINOID, Table 2) of the embryophyte-specific “auxin sig-
naling machinery”. Secondly, embryophytes generally
show chloroplast movements in response to high (avoid-
ance response) or low light (accumulation response),

which has been shown to be of ecological importance [53].
Chloroplast movements in response to low or high light
conditions have also been reported for several Zygnema-
tales [53] as well as for some chlorophytes, diatoms and
Vaucheria [54]. While the photoreceptor is not known for
most algae, recent work has shown that, in Mougoetia
scalaris (Zygnematales), phototropin and neochrome are
used as photoreceptor similar to the situation in Physcomi-
trella and Adiantum [54,55], suggestive of a common
origin of this response.

Conclusions
Knowledge of the phylogenetic relationships within strep-
tophyte algae is of crucial importance for developing a rea-
listic scenario for the colonization of the terrestrial habitat
and the origin and early evolution of embryophytes. Phylo-
genomic analyses of nuclear and chloroplast data now
indicate that the Charales are most likely not the closest
living extant relatives of the embryophytes despite their
morphological complexity. Instead, the analyses favor
either the Zygnematales or, less likely, a clade consisting
of the Zygnematales and Coleochaetales as the sister
group of embryophytes. An extended taxon sampling and/
or analyses of larger data sets such as complete genomes/
transcriptomes will likely be necessary to shed further
light on the elusive sister group of the embryophyte plants

Methods
Preparation of cDNA libraries and EST sequencing
The preparation of cDNA libraries for Pyramimonas par-
keae, Klebsormidium subtile and Coleochaete scutata, EST
sequencing and processing of the primary reads have all
been described by Wodniok et al. [56]. Chara vulgaris
zygotes were collected from the botanical garden of the
Universität zu Köln. Zygotes were surface-sterilized using
the following protocol (modified after [57,58]): after

Table 2 Proteins proposed to be important in the adaptation to the terrestrial habitat [46] are present in streptophyte
algae

Gene
name

TAIR
number

Klebsormidum
subtile

Chara
vulgaris

Coleochaete
scutata

Coleochaete
orbicularis

Closterium
spec.

Spirogyra
pratense

Photosynthesis Lhcb3 At5g54270 8 (e-119) 9 (e-38) 3 (e-117) 78 (e-102 (e-126) 37 (e-126)

Dessication
tolerance

Lea11) At3G51810 1 (e-20) 1 (e-33) 1(e-19) 1 (e-189 n.d. ?

Ethylen signaling EIN At5g03280 n.d. n.d. n.d. 1 (e-22) n.d. n.d.

ETR At1g66340 n.d. n.d. n.d. n.d. n.d. 1 (e-105)

ACS At5g65800 n.d. n.d. n.d. 1 (e-53) n.d. 1 (e-49)

Auxin signaling ARF At5g62010 n.d. n.d. n.d. n.d. n.d. 1 (e-44)

PIN At1g73590 n.d. n.d. n.d. n.d. n.d. 1 (e-33)

PINOID At2g34650 n.d. n.d. n.d. n.d. n.d. 1 (e-72)

BLAST analyses were performed to identify putative homologues in the indicated streptophyte algae. The number of contigs and the best e-value obtained are
given.

n.d. not detected, ? no clear result. 1)for most species ESTs showing similarity to several different Lea proteins were found (e.g., in Klebsormidium ESTs we
detected additional sequences showing similarity to Lea14, Lea76 and Lea D29).
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washing with distilled water, zygotes were rinsed with
EtOH (70%, 1-2 min), followed by sodium hypochlorite
(7-12%, 20-25 min). In some experiments the EtOH step
was omitted. Surface-sterilized zygotes were rinsed repeat-
edly with sterile distilled water to remove hypochlorite
and ethanol. For germination, single zygotes were each
placed in a well of a microtiter plate and incubated in
Chara-medium ([57,58]) at 24°C and a 14/10 h light dark
cycle at 20 - 40 μEm-2s-1. Zygotes germinated after
4-6 weeks. After germination, young plants were trans-
ferred into 100 ml Erlenmeyer flasks containing 10 ml
agar overlaid with 40 ml Chara-medium. Cultures often
underwent sexual reproduction within one year. Prepara-
tion of cDNA libraries and Sanger sequencing was done as
described earlier [56,59].
For 454 sequencing Chara total RNA was isolated

using Trizol (Invitrogen) following the manufacturer’s
instructions. The cDNA library was made from the
RNA with the Mint cDNA synthesis kit (Evrogen) using
21 cycles in the PCR amplification step. The cDNA sub-
sequently was converted to a Roche/454 sequencing
library (rapid) according to the manufacturer’s protocols.
Sequencing of this library yielded 740,341 raw reads
with 245 Mb raw sequence data. Assembly resulted in
13,615 contigs spanning 6.5 Mb.

Phylogenetic analyses
The data set assembly and the detection of possible non-
orthologous sequences were performed as described else-
where in detail [60,61]. Briefly, the latter approach is based
on the assumption that the tree obtained in the phyloge-
netic analysis of the concatenated data set (super-matrix)
is a good proxy of the “true” tree. All single gene data sets
were analyzed separately with RAxML using the LG+Γ4
model including 100 bootstrap pseudo-replicates [62].
Nodes of the single gene trees that are in conflict to the
reference tree (super-matrix) and that are supported by a
bootstrap value ≥ 70% are considered to be incongruent.
Most of these conflicts are usually due to problems of the
phylogenetic reconstruction (stochastic, but also systema-
tic errors), most often the conflict can be resolved by a
nearest-neighbor-interchange (NNI). However, occasion-
ally there are also true conflicts related to the presence of
paralogous or xenologous sequences and the genes were
therefore discarded from the super-matrix.
The final data set was assembled using Scafos [63] and

consisted of 46 taxa, including six distant outgroups
(two glaucophytes and four red algae), with a total of
30,270 amino acid positions coming from 129 genes. To
reduce the amount of missing data three chimerical
sequences were made within the streptophytes, two at
the genus and one at the family level, as well as a higher
order (class) chimera invoking the Florideophyceae. By

allowing no more than 16 missing taxa for any given
gene, the final amount of missing data in the superma-
trix was 30%. The concatenated data set and three sub-
samples with a different species sampling were analyzed
with two different probabilistic methods, i.e. Maximum
Likelihood (ML) as implemented in the program
RAxML [62] and Bayesian Inference with PhyloBayes
[64]. The RAxML analyses were done under the site-
homogeneous LG+F+Γ4 and GTR+ Γ4 models,
and included a fast-bootstrap analysis with 100 pseudo-
replicates with the same models. The Bayesian analyses
were performed under the site-heterogeneous CAT+Γ4
and CATGTR+Γ4 models [29]. Two independent chains
were run per analysis for 10,000 cycles (with each 10th

cycle sampled) and their bipartitions were compared
after the elimination of the “burn-in” in order to test
the quality of the convergence. The maximal difference
observed between bipartition frequencies of two inde-
pendent runs was always lower than 0.1. Furthermore, a
bootstrap analysis with 100 pseudo-replicates was per-
formed under the CAT+Γ4 model, a chain per dataset
was run for the same length and sampled as above, the
“burn-in” was fixed to 1,000 cycles. Each of the 100
resulting consensus trees was then used as an input for
the program Consense of the Phylip package to generate
the bootstrap consensus tree [65]. We performed cross
validation tests to evaluate the fit of the four models
used (LG, GTR, CAT and CATGTR). The analysis was
performed in PhyloBayes, using ten randomly generated
replicates, in which the original data set was divided
into training data sets (9/10 of the positions) to estimate
the parameters of the given model and into the test data
sets (1/10 of the positions) to calculate with these para-
meters the likelihood scores.
The amino-acid composition of the 46 species data set

was visualized by assembling a 20 × 46 matrix containing
the frequency of each amino acid per species using the
program NET from the MUST package [66]. This matrix
was then displayed as a two-dimensional plot in a princi-
pal component analysis, as implemented in the R pack-
age. To counteract sequence bias, we recoded the 20
amino acids into six groups as previously proposed [39].
Phylogenetic analysis of the three Dayhoff-recoded data
sets was performed using PhyloBayes with the GTR+ Γ4,
CAT+Γ4 and CATGTR+Γ4 models.

Data access
EST reads (Sanger) were deposited in Genbank under the
following accession numbers: Klebsormidium subtile
(LIBEST_027068), Coleochaete scutata (LIBEST_027067).
The 454 sequence of Chara vulgaris can be found in the
Sequence Read Archive (SRP005673). The alignment has
been deposited to Treebase (S11199).
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