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Abstract
Background: Analysis of gene expression data for tumor classification is an important application
of bioinformatics methods. But it is hard to analyse gene expression data from DNA microarray
experiments by commonly used classifiers, because there are only a few observations but with
thousands of measured genes in the data set. Dimension reduction is often used to handle such a
high dimensional problem, but it is obscured by the existence of amounts of redundant features in
the microarray data set.

Results: Dimension reduction is performed by combing feature extraction with redundant gene
elimination for tumor classification. A novel metric of redundancy based on DIScriminative
Contribution (DISC) is proposed which estimates the feature similarity by explicitly building a linear
classifier on each gene. Compared with the standard linear correlation metric, DISC takes the label
information into account and directly estimates the redundancy of the discriminative ability of two
given features. Based on the DISC metric, a novel algorithm named REDISC (Redundancy
Elimination based on Discriminative Contribution) is proposed, which eliminates redundant genes
before feature extraction and promotes performance of dimension reduction. Experimental results
on two microarray data sets show that the REDISC algorithm is effective and reliable to improve
generalization performance of dimension reduction and hence the used classifier.

Conclusion: Dimension reduction by performing redundant gene elimination before feature
extraction is better than that with only feature extraction for tumor classification, and redundant
gene elimination in a supervised way is superior to the commonly used unsupervised method like
linear correlation coefficients.
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Background
DNA microarray experiments are used to collect informa-
tion from tissue and cell samples regarding gene expres-
sion differences for tumor diagnosis [1,2]. The output of
microarray experiment is summarized as an n × p data
matrix, where n is the number of tissue or cell samples, p
is the number of genes (features). Here, p is always much
larger than n, which hurts generalization performance of
most classification methods. To overcome this problem,
we either select a small subset of interesting genes (gene
selection, feature selection) or construct K new compo-
nents summarizing the original data as well as possible,
with K <p (feature extraction).

Gene selection has been studied extensively in the last few
years. The most commonly used procedures of gene selec-
tion are based on a score which is calculated for all genes
individually and genes with the best scores are selected.
Gene selection procedures output a list of relevant genes
which can be experimentally analyzed by biologists. The
method is often denoted as univariate gene selection,
whose advantages are its simplicity and interpretability.
However, interactions and correlations between genes are
omitted during gene selection, although they are of great
interest in system biology. Furthermore, gene selection
often fails to pick relevant genes, because the score they
assign to correlated genes is too similar, and none of the
genes is strongly preferred over another.

Feature extraction is an alternative to gene selection to
overcome curse of dimensionality. Unlike gene selection,
feature extraction projects the whole data into a low
dimensional space and constructs new dimensions (com-
ponents) by analyzing the statistical relationship hidden
in the data set. Although feature extraction is often criti-
cized for the lack of interpretability, the new components
often give good information or hints about the data's
intrinsic structure. Researchers have developed different
feature extraction methods in applications of bioinfor-
matics and computational biology [3-5], which are gener-
ally divided into two groups, unsupervised and
supervised. Among various methods, Principle Compo-
nent Analysis (PCA), an unsupervised method, and Partial
Least Squares (PLS), a supervised method, are widely used
[5].

Considering of the fact that gene selection and feature
extraction algorithms have complementary advantages
and disadvantages. Feature extraction algorithms thrive
on correlation among features but fail to remove irrele-
vant and redundant features from a set of complex fea-
tures. Feature selection algorithms fail when all the
features are correlated but do well with informative fea-
tures. It would be an interesting work to combine gene
selection and feature extraction into a general model. In

practical, the simplest way is to apply a preliminarily gene
selection procedure before feature extraction.

As to analysis of microarray data whose speciality is the
huge amount of genes with few examples, it is believed
that there exist many redundant genes among the full
gene set [6]. Preserving the most discriminative genes and
reducing other irrelevant and redundant genes still remain
as an open issue. In this paper, we propose a novel metric
of redundancy which can effectively eliminate redundant
genes before feature extraction. By measuring the discrim-
inative ability of each gene and the pair-wise complemen-
tarity, the new method reduce the redundant genes with
little contribution of discriminative ability. We also com-
pare our method with commonly used redundant gene
reduction methods based on linear correlation. Experi-
ments on several real microarray data sets demonstrate
the outstanding performance of our method.

Some notions used in this work are clarified here. Expres-
sion levels of p genes in n microarray samples are collected
in an n × p data matrix X = (xij), 1 ≤ i ≤ n, 1 ≤ j ≤ p; of which
an entry xij is the expression level of the jth gene in the ith
microarray sample. As we only consider binary classifica-
tion problems, the labels of the n microarray samples are
collected in the vector y. When the ith sample belongs to
class one, the element yi is 1; otherwise it is -1. The matrix
SX denotes the p × p covariance matrix of the gene expres-
sions.

Besides, || • || denotes the length of a vector. XT represents
the transpose of X, X-1 represents the inverse matrix of X.
The matrices X and y used in the following are assumed to
be centered to zero mean by each column.

Results and discussion
Results
According to the framework proposed in this paper,
dimension reduction is performed by combining redun-
dant gene elimination with feature extraction, then the
classifier is used to perform classification on the extracted
feature subsets. The novel proposed algorithm REDISC
(Redundancy Elimination based on DIScriminative Con-
tribution) is compared with the commonly used algo-
rithm RELIC (Redundancy Elimination based on LInear
Correlation) to perform redundant gene elimination on
two microarray data sets, i.e. Colon and Leukemia, where
the threshold of δ in REDISC and RELIC is varied from 0.1
to 0.9. Feature extraction is performed by principle com-
ponent analysis (PCA) and partial least squares (PLS). The
classifier is a linear support vector machine (SVM) with C
= 1.
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Statistical results of the number of remained genes after
performing REDISC and RELIC are showed in Figure 1,
the detailed results are also listed in Tables 1-4.

Comparative results of BACC obtained by SVM on the
new feature sets by using PCA or PLS after performing
REDISC and RELIC are illustrated in Figure 2 and Figure
3. Detailed results of Sensitivity, Specificity, BACC, Preci-
sion, PPV, NPV and correction on Colon and Leukemia
are showed in Tables 1-4, where the results are averaged
on ten times of run.

The results in Figures 1-3 and Tables 1-4 show that:

1. Both REDISC and RELIC dramatically reduce the
number of genes from the original data. With the same
value of δ, REDISC obtains more compact subsets than
RELIC does.

2. With δ = 0:1, RELIC always obtains better results than
REDISC, but when δ increases, the results of REDISC are
better than those of RELIC. On average, REDISC obtains
better results than RELIC does.

3. When the results of REDISC and RELIC reach their
highest point, REDISC uses less features than RELIC.

4. The effect of REDISC is positive for both PCA and PLS,
while RELIC loses in some case, i.e. BACC of PCA on the
Leukemia data set.

5. REDISC and RELIC with different threshhold values
produces different results, no one is optimal for all the
data sets.

Discussion
The experimental results prove our assumption that
redundant features hurt performance of feature extraction
and classification, other considerations on the above
results are listed as below:

1. The results confirm that there exist many redundant
genes in the microarray data and it is necessary to perform
redundant gene elimination. Usually, there are four types
of features in one data set, I is strong relevant features, II
is weak relevant but non redundant features, III is weak
relevant and redundant features and IV is irrelevant fea-
tures. I and II are the essential features in the data sets, and
III and IV should be removed [7]. The previous works
show III and IV should be removed for classifiers, and in
this paper, we show they should also be removed for fea-
ture extraction like PCA and PLS.

2. REDISC obtains better results with less features than
RELIC, which shows that REDISC has the higher ability to
select relevant features and eliminate the redundant fea-
tures than RELIC. Proper redundant feature elimination
help improve performance of feature extraction and clas-
sification. Simply reducing redundant genes by linear cor-
relation is not always positive, because without
considering the label information in the data set, linear
correlation does not give properly redundancy estimation.

Table 1: Statistical results by performing PLS after REDISC and RELIC with different parameters on the Colon data set

#genes Sensitivity Specificity BACC Precision PPV NPV Correction

RELIC 0.1 5.62 0.9750 0.3167 0.6458 0.7362 0.7362 0.5217 0.7424
RELIC 0.2 8.56 0.9600 0.4167 0.6883 0.7646 0.7646 0.6400 0.7667
RELIC 0.3 16.55 0.9350 0.5567 0.7458 0.8131 0.8131 0.7258 0.7995
RELIC 0.4 28.08 0.9150 0.6650 0.7900 0.8468 0.8468 0.8208 0.8264
RELIC 0.5 49.55 0.9100 0.7017 0.8058 0.8633 0.8633 0.8092 0.8352
RELIC 0.6 94.3 0.8975 0.7133 0.8054 0.8682 0.8682 0.7992 0.8329
RELIC 0.7 218.37 0.8950 0.7650 0.8300 0.8955 0.8955 0.8075 0.8490
RELIC 0.8 542.46 0.8825 0.7917 0.8371 0.9003 0.9003 0.8187 0.8500
RELIC 0.9 1413.92 0.8750 0.7967 0.8358 0.9080 0.9080 0.8110 0.8479

REDISC 0.1 2 1.0000 0.1850 0.5925 0.6996 0.6996 0.3600 0.7121
REDISC 0.2 2.1 0.9850 0.2083 0.5967 0.7022 0.7022 0.3950 0.7107
REDISC 0.3 2.94 0.9800 0.2983 0.6392 0.7315 0.7315 0.4883 0.7383
REDISC 0.4 4.3 0.9750 0.3750 0.6750 0.7549 0.7549 0.6050 0.7617
REDISC 0.5 8.09 0.9200 0.5133 0.7167 0.7911 0.7911 0.7133 0.7752
REDISC 0.6 15.82 0.8975 0.6533 0.7754 0.8443 0.8443 0.7525 0.8112
REDISC 0.7 41.9 0.9000 0.7800 0.8400 0.8992 0.8992 0.8208 0.8579
REDISC 0.8 157.06 0.8950 0.8150 0.8550 0.9150 0.9150 0.8350 0.8662
REDISC 0.9 558 0.8900 0.7900 0.8400 0.8985 0.8985 0.8277 0.8533

Full Set 2000 0.8750 0.7733 0.8242 0.8958 0.8958 0.8137 0.8388
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REDISC takes label information into account for redun-
dant gene elimination, which may be viewed as a super-
vised way. Since the final step is classification, so a
supervised redundant gene elimination is better than an
unsupervised one like RELIC.

3. It shows the performances of dimension reduction is
improved when redundant genes are properly eliminated.
The improvement for PLS is much more dramatic than
that of PCA. A possible reason is redundant genes obstruct
the performance of supervised methods more obviously,
since supervised methods often build more precisely
model than unsupervised ones.

Table 2: Statistical results by performing PCA after REDISC and RELIC with different parameters on the Colon data set

#genes Sensitivity Specificity BACC Precision PPV NPV Correction

RELIC 0.1 5.62 0.9750 0.2817 0.6283 0.7231 0.7231 0.4800 0.7298
RELIC 0.2 8.56 0.9625 0.3917 0.6771 0.7546 0.7546 0.6333 0.7605
RELIC 0.3 16.55 0.9300 0.5483 0.7392 0.8075 0.8075 0.7267 0.7931
RELIC 0.4 28.08 0.9175 0.6650 0.7912 0.8480 0.8480 0.8142 0.8279
RELIC 0.5 49.55 0.9075 0.7033 0.8054 0.8645 0.8645 0.8075 0.8338
RELIC 0.6 94.3 0.9125 0.7250 0.8188 0.8743 0.8743 0.8208 0.8455
RELIC 0.7 218.37 0.9025 0.7917 0.8471 0.9053 0.9053 0.8483 0.8631
RELIC 0.8 542.46 0.8725 0.7883 0.8304 0.8987 0.8987 0.8102 0.8424
RELIC 0.9 1413.92 0.9000 0.7400 0.8200 0.8802 0.8802 0.8175 0.8426

REDISC 0.1 2 0.9975 0.0150 0.5063 0.6516 0.6516 0.0200 0.6510
REDISC 0.2 2.1 0.9875 0.0550 0.5213 0.6599 0.6599 0.1000 0.6590
REDISC 0.3 2.94 0.9800 0.2167 0.5983 0.7039 0.7039 0.3950 0.7095
REDISC 0.4 4.3 0.9675 0.3350 0.6513 0.7396 0.7396 0.5483 0.7424
REDISC 0.5 8.09 0.9175 0.5017 0.7096 0.7875 0.7875 0.6833 0.7690
REDISC 0.6 15.82 0.8975 0.6533 0.7754 0.8443 0.8443 0.7525 0.8112
REDISC 0.7 41.9 0.9000 0.7750 0.8375 0.8978 0.8978 0.8108 0.8562
REDISC 0.8 157.06 0.8900 0.8117 0.8508 0.9142 0.9142 0.8300 0.8617
REDISC 0.9 558 0.8750 0.7483 0.8117 0.8828 0.8828 0.7892 0.8298

Full Set 2000 0.8925 0.7150 0.8038 0.8680 0.8680 0.7950 0.8290

Table 3: Statistical results by performing PLS after REDISC and RELIC with different parameters on the Leukemia data set

#genes Sensitivity Specificity BACC Precision PPV NPV Correction

RELIC 0.1 18.1 0.9400 0.7567 0.8483 0.8872 0.8872 0.8898 0.8743
RELIC 0.2 55.86 0.9110 0.7850 0.8480 0.9024 0.9024 0.8318 0.8663
RELIC 0.3 205.48 0.9415 0.8150 0.8783 0.9161 0.9161 0.8842 0.8964
RELIC 0.4 790.41 0.9605 0.8133 0.8869 0.9141 0.9141 0.9200 0.9084
RELIC 0.5 2168.33 0.9720 0.9017 0.9368 0.9537 0.9537 0.9575 0.9470
RELIC 0.6 3859.52 0.9795 0.9550 0.9672 0.9782 0.9782 0.9742 0.9711
RELIC 0.7 5394.2 0.9795 0.9500 0.9647 0.9752 0.9752 0.9742 0.9686
RELIC 0.8 6545.28 0.9815 0.9150 0.9483 0.9585 0.9585 0.9750 0.9573
RELIC 0.9 7035.99 0.9840 0.9067 0.9453 0.9572 0.9572 0.9775 0.9571

REDISC 0.1 3.31 0.9865 0.6317 0.8091 0.8394 0.8394 0.9267 0.8595
REDISC 0.2 4.29 0.9805 0.6683 0.8244 0.8566 0.8566 0.9050 0.8700
REDISC 0.3 6.88 0.9695 0.7833 0.8764 0.9052 0.9052 0.9208 0.9041
REDISC 0.4 14.83 0.9635 0.8783 0.9209 0.9418 0.9418 0.9475 0.9316
REDISC 0.5 46.56 0.9710 0.9533 0.9622 0.9760 0.9760 0.9625 0.9641
REDISC 0.6 131.23 0.9665 0.9633 0.9649 0.9810 0.9810 0.9567 0.9654
REDISC 0.7 531.33 0.9775 0.9450 0.9612 0.9723 0.9723 0.9700 0.9657
REDISC 0.8 2239.81 0.9855 0.9383 0.9619 0.9702 0.9702 0.9842 0.9686
REDISC 0.9 4195.03 0.9885 0.9117 0.9501 0.9600 0.9600 0.9858 0.9613

Full Set 7129 0.9840 0.9083 0.9462 0.9572 0.9572 0.9775 0.9573
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Conclusion
Dimension Reduction is widely used in bioinformatics
and related fields to overcome the curse of dimensional-
ity. But the existence of amounts of redundant genes in
the microarray data often obscure the application of
dimension reduction. Preliminarily redundant gene elim-
ination before feature extraction for dimension reduction
is an interesting issue, which was often neglected.

In this paper, a novel metric of redundancy based on Dis-
criminative Contribution (DISC) is proposed, which
directly estimates the similarity between two features by
explicitly building linear classifiers on each genes. The
REDISC algorithm (Redundancy Elimination based on
Discriminative Contribution) is also proposed. REDISC is
compared with a commonly used algorithm RELIC
(Redundancy Elimination based on Linear Correlation)
on two real microarray data sets. Experimental results

Table 4: Statistical results by performing PCA after REDISC and RELIC with different parameters on the Leukemia data set

#genes Sensitivity Specificity BACC Precision PPV NPV Correction

RELIC 0.1 18.1 0.9395 0.7433 0.8414 0.8818 0.8818 0.8758 0.8702
RELIC 0.2 55.86 0.9115 0.7783 0.8449 0.9024 0.9024 0.8007 0.8646
RELIC 0.3 205.48 0.9440 0.7700 0.8570 0.8960 0.8960 0.8692 0.8827
RELIC 0.4 790.41 0.9585 0.7983 0.8784 0.9105 0.9105 0.8975 0.9027
RELIC 0.5 2168.33 0.9735 0.8783 0.9259 0.9441 0.9441 0.9617 0.9405
RELIC 0.6 3859.52 0.9865 0.9400 0.9632 0.9716 0.9716 0.9825 0.9700
RELIC 0.7 5394.2 0.9910 0.9567 0.9738 0.9786 0.9786 0.9883 0.9784
RELIC 0.8 6545.28 0.9910 0.9633 0.9772 0.9815 0.9815 0.9875 0.9807
RELIC 0.9 7035.99 0.9955 0.9633 0.9794 0.9815 0.9815 0.9933 0.9836

REDISC 0.1 3.31 0.9865 0.6267 0.8066 0.8380 0.8380 0.9167 0.8579
REDISC 0.2 4.29 0.9805 0.6583 0.8194 0.8550 0.8550 0.8858 0.8671
REDISC 0.3 6.88 0.9695 0.7733 0.8714 0.9013 0.9013 0.9108 0.9000
REDISC 0.4 14.83 0.9655 0.8700 0.9178 0.9385 0.9385 0.9508 0.9304
REDISC 0.5 46.56 0.9735 0.9417 0.9576 0.9715 0.9715 0.9642 0.9614
REDISC 0.6 131.23 0.9690 0.9467 0.9578 0.9737 0.9737 0.9592 0.9611
REDISC 0.7 531.33 0.9795 0.9517 0.9656 0.9765 0.9765 0.9742 0.9698
REDISC 0.8 2239.81 0.9880 0.9600 0.9740 0.9798 0.9798 0.9867 0.9782
REDISC 0.9 4195.03 0.9980 0.9550 0.9765 0.9787 0.9787 0.9967 0.9823

Full Set 7129 0.9955 0.9633 0.9794 0.9815 0.9815 0.9933 0.9836

The number of selected genes by performing REDISC and RELIC with different parametersFigure 1
The number of selected genes by performing REDISC and RELIC with different parameters.
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demonstrate the necessariness of preliminarily redundant
gene elimination before feature extraction for tumor clas-
sification and the superiority of REDISC to RELIC, a com-
monly used method. This work is an attempt to propose a
general framework performing dimension reduction for
tumor classification by combing redundant gene elimina-
tion and feature extraction. More investigation need to be
done on the efficiency of fusion of feature selection with
feature extraction in the future.

Methods
A framework of dimension reduction
In this paper, we propose a novel framework for dimen-
sion reduction by combining redundant feature elimina-
tion with feature extraction to improve performance of
classification. The framework is illustrated as in Figure 4,
where the microarray data is performed dimension reduc-
tion before classification, and dimension reduction con-
sists of redundant gene elimination and feature
extraction. The algorithms of redundant gene elimination
before feature extraction in this paper actually remove

Comparative results of BACC scores by using different algorithms on the Colon data setFigure 2
Comparative results of BACC scores by using different algorithms on the Colon data set.

Comparative results of BACC scores by using different algorithms on the Leukemia data setFigure 3
Comparative results of BACC scores by using different algorithms on the Leukemia data set.
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irrelevant features and redundant features at the same
time. We omit irrelevant gene elimination because irrele-
vant genes are few in the gene data set and are not the
focus in this paper.

Redundant gene elimination is the critical part in the
framework, we propose a novel algorithm based on dis-
criminative ability to improve performance of commonly
used linear correlation, which is described in detail in the
following subsections. Feature extraction is performed by
using two methods, one is supervised, i.e. partial least
squares, another is unsupervised, i.e. principle compo-
nent analysis, which are briefly introduced in the follow-
ing subsection. As for the classifier, support vector
machine is used.

Redundant gene elimination
As redundant features have no contribution for classifica-
tion, we consider eliminating them preliminarily before
feature extraction, which has the following benefits:

1. Eliminating redundant features improves classification
accuracy. In general, original microarray data sets have
many irrelevant and redundant genes, which hurts per-
formance of feature extraction. In practical, biologists
often expect noises are reduced, at least in some extent,
during the stage of feature extraction. But, if some redun-
dant genes are reduced beforehand, performance of fea-
ture extraction may be improved.

2. Preliminarily feature selection facilitates the applica-
tion of feature extraction. Compared with modeling on
the original data directly, the computational and RAM
consumptions of feature extraction on preliminarily gene
selected data are much less. Especially for the RAM con-
sumption, most feature extraction methods are often not
practical for high dimensional data, since the requirement
of loading all data into RAM at one time. However, any
additional gene selection procedure may bring some extra

computation, so the computational complexity of prelim-
inarily feature selection must not be too high.

3. Preliminarily feature selection improves the interpreta-
bility of the components. The meanings of the compo-
nents are always difficult to be interpreted in feature
extraction. Biologists often analyze the relation between
extracted components and original features by the coeffi-
cients, but it is obscured by the large amount of genes.
Reducing a number of original features is obviously help-
ful when the components are needed to be related with
original genes manually.

The previous metrics
Discriminative ability (predictive ability) is a general
notion which can be measured in various ways and be
used to select significant features for classification. Many
effective metrics had been proposed such as t-statistic,
information gain, χ2 statistic, odds ratio etc. [8,9]. Filter
feature selection methods sort features by the discrimina-
tive ability scores, and some top rank features are retained
to be essential for classification.

However, t-statistic and most of other discriminative abil-
ity measures are based on individual features, which do
not consider the redundancy between two features.
Because given two features with the same rank scores, they
may be redundant to each other when they are completely
correlated, otherwise, they may also be complementary to
each other when they are nearly independent.

For the task of feature selection, we want to eliminate the
redundant features and only retain the interactive ones.
But there exist many redundant features in the top rank
feature set produced by using the filter methods. The
redundant features increase the dimensionality and con-
tribute little for the final classification. In order to elimi-
nate redundant features, metrics need to estimate the
redundancy directly.

The novel framework of dimension reductionFigure 4
The novel framework of dimension reduction.
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Notions of feature redundancy are normally in terms of
feature correlation. It is widely accepted that two features
are redundant to each other if their values are completely
correlated. But in fact, it may not be so straightforward to
determine feature redundancy when a feature is correlated
with a set of features. The widely used way is to approxi-
mate the redundancy of feature set by considering the
pair-wise feature redundancy.

The linear correlation metric
For linear cases, the most well known pair-wise redun-
dancy metric is the linear correlation coefficient. Given a
pair of features (x, y), the definition of the linear correla-
tion coefficient Cor(x, y) is:

where  and  are the mean of x and y respectively. The

value of Cor(x, y) lies between -1 and 1. If x and y are com-
pletely correlated, Cor(x, y) takes the value of 1 or -1; if x
and y are independent, Cor(x, y) is zero. It is a symmetrical
metric.

The linear correlation coefficient has the advantage of its
efficiency and simplicity, but it is not suitable for redun-
dant feature elimination when classification is the final
target, since it does not use any label information. For
example, two highly correlated features, whose differences
are minor in values but happen to causing different criti-
cal discriminative ability, may be considered as a pair of
redundancy features. Reducing any one of them will
decrease classification accuracy. Guyon et al. has also
pointed out that high correlation (or anti-correlation) of
variables does not mean absence of variable complemen-
tarity [8]. The problem of the linear correlation coefficient
is that it measures the similarity of the numerical values
between two features, but not the similarity of discrimina-
tive ability between two features.

The ideal feature set should have both great discriminative
ability and little feature redundancy, where redundancy
could not be obtained by estimating their properties sep-
arately. A more elaborate measure of redundancy is
required to estimate the differences of the discriminative
ability between two features.

The proposed novel metric
In order to measure the similarity of discriminative ability
of two features, the discriminative ability need be defined
more precisely. That is to say, we want to know which
example can be rightly classified by the given feature and
which can not. Upon the new metric, it is possible to com-

pare the discriminative ability of two features by the cor-
responding correctly classified examples.

In the field of text classification, Training Accuracy on Sin-
gle Feature (TASF) has been proved to be an effective met-
ric of discriminative ability [9], which builds a classifier
for each feature, and the corresponding training accuracy
is used as the discriminative score.

Various classifiers can be used to calculate TASF, in simpli-
fication, we consider a linear learner here. Given a feature
z, the classification function is given as:

where  and n1 are the feature mean and the sample size

of class one,  and n2 are the feature mean and the sam-
ple size of class two. This is a weighted centroid based clas-
sifier, which predicts examples as the class label whose
weighted distance to its centroid is smaller. The computa-
tional complexity of this classifier is O(n).

Putting the whole training set back, we can estimate train-
ing accuracy of each classifier by different features, which
is used to represent discriminative ability of the corre-
sponding feature. The higher training accuracy, the greater
discriminative ability. Since only one feature is used to
build the classifier, a part of training examples can be cor-
rectly separated in most cases. So the value of TASF ranges
from 0 to 1. One feature is considered as an irrelevant one
if its TASF value is no greater than 0.5.

Based on TASF, we propose a novel metric of feature
redundancy. Given two features of z1 and z2, two classifiers
C1 and C2 can be constructed. Feeding the whole training
set to the classifiers, both C1 and C2 can correctly classify a
sample subset. The differences of the correctly classified
examples are used to estimate the similarity of discrimina-
tive abilities. We record the concrete classification results
as in table 5, where a + b + c + d equals to the size of the
training set n. The values of (a + b)/n and (a + c)/n are
training accuracy of C1 and C2 respectively. The score of a
+ d measures the similarity of the features, and the score
of b + c measures the dissimilarity. When b + c = 0, the two
features z1 and z2 have exactly the same discriminative
ability.

Our feature elimination problem is becoming whether the
contribution of the additional feature to the given feature
is significant. The additional feature is considered as
redundant if its contribution is tiny. Then, we propose a
novel metric of Redundancy based on DIScriminative

Cor( , )
( )( )

( ) ( )
x y i xi x yi y

i xi x i yi y
= − −

− −

Σ

Σ Σ2 2 (1)

x y

ˆ sgn(( )( ))y z z z
n z n z

n n
= − − +

+
1 2

1 1 2 2

1 2
(2)

z 1

z 2
Page 8 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 6):S8 http://www.biomedcentral.com/1471-2105/9/S6/S8
Contribution (DISC). DISC of z1 and z2, which estimates
z2's redundancy to z1, is defined as follows,

The pair-wise DISC metric is asymmetrical, and the com-
putation complexity is O(n).

It is clear that c + d is the number of examples which could
not be discriminated by C1, c is that which could be cor-
rectly classified by the collaboration of C1 and C2. So the
proportion of c/(c + d) is the discriminative contribution
of C2 to C1, and the value of d/(c + d) is the DISC metric of

redundancy, which varies from 0 to 1. When the DISC
score takes 1, C2's discriminative ability is covered by C1's
and then z2 is completely redundant to z1. When the DISC
value is 0, all training examples could be correctly classi-
fied by the union of C2 and C1 and we consider z2 is com-
plementary to z1.

DISC is proposed in a linear way, which shows in two
respects, one is the linear classifier, another is the linear
way of counting the cross discriminative abilities. The
microarray problems meet the assumption, since most
microarray data sets are binary classification problems,
where each gene has equal position to perform classifica-
tion.

The proposed redundant gene elimination algorithms
The REDISC algorithm
Based on the DISC redundancy metric, we propose the
REDISC algorithm (Redundancy Elimination based on
Discriminative Contribution), which eliminates redun-
dant features by the pair-wise DISC scores. REDISC is
illustrated in Figure 5, its basic idea is that, firstly, REDISC
filters out trivial features, which do not have discrimina-
tive ability on itself, by the TASF score threshold of 0.5.

DISC( , )z z
c

c d
d

c d

1 2 1= −
+

=
+

(3)

Table 5: Statistical relative classification results of two classifiers

C1/C2 true false

true a b
false c d

The REDISC algorithmFigure 5
The REDISC algorithm.
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Then the features are ordered by their TASF scores. As we
usually want to retain the more discriminative one
between two redundant features, REDISC tries to preserve
the top TASF score ranked features. REDISC uses two
nested iterations to eliminate redundant features whose
discriminative ability are covered by any higher ranked
features. The computational complexity of REDISC is
O(np2).

The RELIC algorithm
In order to compare our method with commonly used
redundant feature elimination methods, we present the
algorithm of RELIC (Redundancy Elimination based on
Linear Correlation) [10], which filters out redundant fea-
tures by the pair-wise linear correlation. A threshold is
needed to control how many features should be elimi-
nated. RELIC is given in Figure 6, whose computational
complexity is also O(np2).

Feature extraction techniques
Principle component analysis
Principle component analysis (PCA) is a well-known
method of feature extraction [11]. The basic idea of PCA
is to reduce the dimensionality of a data set, while retain-
ing as much as possible the variation in the original pre-
dictor variables. This is achieved by transforming the p
original variables X = [x1, x2, ..., xp] to a new set of K pre-
dictor variables, T = [t1, t2, ..., tK], which are linear combi-
nations of the original variables. In mathematical terms,

PCA sequentially maximizes the variance of a linear com-
bination of the original predictor variables,

subject to the constraint , ∀ 1 ≤ i <j. The

orthogonal constraint ensures that the linear combina-

tions are uncorrelated, i.e. Cov(Xui, Xuj) = 0, i ≠ j. These

linear combinations

ti = Xui (5)

are known as the principal components (PCs).

The maximum number of components K is determined by
the number of nonzero eigenvalues, which is the rank of
SX, and K ≤ min(n, p). But in practical, the maximum value
of K is not necessary. Some tail components, which have
tiny eigenvalues and represent few variances of original
data, are often needed to be reduced. The threshold of K
often determined by cross-validation or the proportion of
explained variances [11]. The computational cost of PCA,
determined by the number of original predictor variables
p and the number of samples n, is in the order of min(np2

+ p3, pn2 + n3). In other words, the cost is O(pn2 + n3) when
p > n.

u u
u u

K
T

X=
=

arg max( ( ))
1

Var (4)

u ui
T

X jS = 0

The RELIC algorithmFigure 6
The RELIC algorithm.
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Partial Least Squares
Partial Least Squares (PLS) was firstly developed as an
algorithm performing matrix decompositions, and then
was introduced as a multivariate regression tool in the
context of chemometrics [12,13]. In recent years, PLS has
also been found to be an effective feature extraction tech-
nique for tumor discrimination [14,15].

The underlying assumption of PLS is that the observed
data is generated by a system or process which is driven by
a small number of latent (not directly observed or meas-
ured) features. Therefore, PLS aims at finding uncorre-
lated linear transformations (latent components) of the
original predictor features which have high covariance
with the response features. Based on these latent compo-
nents, PLS predicts response features y, the task of regres-
sion, and reconstruct original matrix X, the task of data
modeling, at the same time.

The objective of constructing components in PLS is to
maximize the covariance between the response variable y
and the original predictor variables X,

subject to the constraint , ∀ 1 ≤ i <j. The cen-

tral task of PLS is to obtain the vectors of optimal weights
wi (i = 1, ..., K) to form a small number of components,

while PCA is an "unsupervised" method that utilizes the X
data only.

Like PCA, PLS reduces the complexity of microarray data
analysis by constructing a small number of gene compo-
nents, which can be used to replace the large number of
original gene expression measures. Moreover, obtained by
maximizing the covariance between the components and
the response variable, the PLS components are generally
more predictive of the response variable than the princi-
pal components.

PLS computes efficiently with a cost only at O(npK), i.e.
the number of calculations required by PLS is a linear
function in terms of n or p. Thus it is much faster than the
method of PCA for K is always less than n.

Feature extraction methods extract components to repre-
sent original data, which are linear or non-linear transfor-
mations of original genes. Although the new subspace is
effective for data analysis, no original gene is excluded
during the process, which often obstructs the explanations
of PCs. In order to solve this problem, eliminating redun-
dant genes before dimension reduction is an alternative
way.

Classifier – Support Vector Machines
Support vector machines (SVM) proposed by Vapnik and
his co-workers in 1990s, have been developed quickly
during the last decade [16], and successfully applied to
biological data mining [17], drug discovery [18,19] etc.
Denoting the training sample as S = {(x, y)} ⊆ {�n × {-1,
1}}�, SVM discriminant hyperplane can be written as

y = sgn(�w·x� + b)

where w is a weight vector, b is a bias. According to the
generalization bound in statistical learning theory [20],
we need to minimize the following objective function for
a 2-norm soft margin version of SVM:

in which, slack variable ξi is introduced when the problem
is infeasible. The constant C > 0 is a penalty parameter, a
larger C corresponds to assigning a larger penalty to errors.

Data Sets
Two microarray data sets used in our study are listed in
Table 6. They are briefly described as below, and the cor-
responding C4.5 format versions are available at [21]. We
do not use the original split by their authors, we merge the
data set before using it.

Colon used Affymetrix oligonucleotide arrays to monitor
expressions of over 6,500 human genes with samples of
40 tumor and 22 normal colon tissues. Expression of the
2,000 genes with the highest minimal intensity across the
62 tissues were used in the analysis [2].

Leukemia The acute leukemia data set was published by
[1], which consists of 72 bone marrow samples with 47
ALL and 25 AML. The gene expression intensities are
obtained from Affymetrix high-density oligonucleotide
microarrays containing probes for 7,129 genes.

Experimental settings
We use the stratified 10-fold cross-validation procedure,
where each data set is firstly merged and then split into ten
subsets of equal size. Each subset is used as a test set once,
and the corresponding left subsets are combined together
and used as the training set. Within each cross-validation

w w y
w w

K
T

X=
=

arg max( ( , ))
1

Cov (6)

w wi
T

X jS = 0

minimize

subject to
w w w

w x
,

( ) , ,
b i i

i i i

C

y b i

〈 ⋅ 〉 +
〈 ⋅ 〉 + ≥ − =

=Σ 1
2

1 1

x

x ...., ,

(7)

Table 6: Experimental data sets

Data sets Number of examples Class ratio Number of genes

Colon 62 22/40 2,000
Leukemia 72 25/47 7,129
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fold, the gene expression data is standardized. The expres-
sions of the training set are transformed to zero mean and
unit standard deviation across samples, and the test set are
transformed according to the means and standard devia-
tions of the corresponding training set. We use 10 fold
cross validation because the 10 × 10 cross-validation
measurement is more reliable than the randomized re-
sampling test strategy and the leave-one-out cross-valida-
tion due to the correlations between the test and training
sets, some detail discussions can be found at [22].

The linear Support Vector Machine (SVM) with C = 1 is
used as the classifier, which is trained on the training set
to predict the label of test samples. Figure 7 contains
pseudo-code to describe the complete 10 × 10 cross-vali-
dation measurement procedure.

In order to precisely characterize the performance of dif-
ferent learning methods, we define several performance
measures below (see [23]). Here TP, TN, FP, and FN, stand
for the number of true positive, true negative, false posi-
tive, and false negative samples, respectively.

Sensitivity is defined as  and is also known as

Recall.

Specificity is defined as .

BACC (Balanced Accuracy) is defined as

, which defines the average of sensitiv-

ity and specificity.

Precision is defined as .

PPV (Positive Predictive Value) is defined as .

NPV (Negative Predictive Value) is defined as .

Correction is defined as  and measures the

overall percentage of samples correctly classified.
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