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Abstract

Background: Tandem mass spectrometry has emerged as a cornerstone of high throughput
proteomic studies owing in part to various high throughput search engines which are used to
interpret these tandem mass spectra. However, majority of experimental tandem mass spectra
cannot be interpreted by any existing methods. There are many reasons why this happens.
However, one of the most important reasons is that majority of experimental spectra are of too
poor quality to be interpretable. It wastes time to interpret these "uninterpretable" spectra by any
methods. On the other hand, some spectra of high quality are not able to get a score high enough
to be interpreted by existing search engines because there are many similar peptides in the
searched database. However, such spectra may be good enough to be interpreted by de novo
methods or manually verifying methods. Therefore, it is worth in developing a method for assessing
spectral quality, which can used for filtering the spectra of poor quality before any interpretation
attempts or for finding the most potential candidates for de novo methods or manually verifying

methods.

Results: This paper develops a novel method to assess the quality of tandem mass spectra, which
can eliminate majority of poor quality spectra while losing very minority of high quality spectra.
First, a number of features are proposed to describe the quality of tandem mass spectra. The
proposed method maps each tandem spectrum into a feature vector. Then Fisher linear
discriminant analysis (FLDA) is employed to construct the classifier (the filter) which discriminates
the high quality spectra from the poor quality ones. The proposed method has been tested on two

tandem mass spectra datasets acquired by ion trap mass spectrometers.

Conclusion: Computational experiments illustrate that the proposed method outperforms the
existing ones. The proposed method is generic, and is expected to be applicable to assessing the

quality of spectra acquired by instruments other than ion trap mass spectrometers.
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Background

High performance liquid chromatography (HPLC) cou-
pled to tandem mass spectrometer provides an auto-
mated, high throughput approach widely used to generate
peptide collision-induced dissociation (CID) mass spectra
data for the analysis of complex biological protein mix-
ture [1]. Most frequently, peptide identifications are made
by searching CID mass spectra against a sequence data-
base to find the best matching peptide in the database.
From these assignments of spectra to peptides, the origi-
nal proteins present in the sample are inferred. In addi-
tion, peptides corresponding to MS/MS spectra can be
derived by de novo sequencing methods [2,3] and manu-
ally verifying methods. These methods are particularly
useful in the case that search engines fail to assign high
quality peptide CID spectra.

Over the past decade, many automated database search
engines have been developed for assigning peptide CID
mass spectra, for example SEQUEST [4], Mascot [5] and
Sonar [6]. These search engines have successfully been
applied to peptide CID mass spectrum assignments in
many proteomics projects. However, majority of CID
mass spectra in a proteomics project can often not be
interpreted by any search engines, even after filtering poor
quality spectra using some simple filters such as "most
intensive peak selection" criterion [4-6]. For example,
SEQUEST takes 138 hours to search 2*10905 MS/MS
spectra, and finally 3404 spectra assignments are consid-
ered to be significant [7]. Supposed that searching each
spectrum spends the same time, this example indicates
that only 16% (= 3404/2*10905) of search time is useful
while 84% of the search time (116 hours) is wasted. There
are several reasons why the search engines failed to inter-
pret the mass spectra. However, one of main reasons is
that majority of MS/MS spectra are of too poor quality to
be interpretable. In general, a spectrum is called to be of
high quality if it is interpretable by a certain method, and
otherwise it is called to be of poor quality. Even if high
quality CID spectra that cannot be identified by any data-
base search engine, they still are potential candidates to be
interpretable for de novo sequencing or manually verify-
ing method. Hence it is worthwhile to develop a powerful
filter that masks out the poor quality of CID spectra before
interpretation by any method for saving the time.

The earliest researches for assessing spectral quality have
been reported from Yates Laboratory (The Scripps
Research Institute). Tabb et al in this group [8] have
assessed the spectral quality using a number of simple
rules such as the minimum and maximum thresholds for
the number of peaks, a minimum threshold on total peak
intensity, and so on. They have claimed that such rules
could remove 40% or more of the bad spectra. Later, Sady-
gove et al [7] for the same group have proposed a program
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called 2 to 3 to eliminate poor quality spectra and to nar-
row charge "uncertainty" - 2 to 3. The 2 to 3 method
empirically determines the charge state of the precursor
ion using its mass-to-charge ratio (m/z) and fragment ions
contained in the tandem mass spectrum values. This
approach has shown that by eliminating 20-30% of poor
quality spectra, the search time required is decreased by
50%. The methods reported in these two papers just con-
sider few features of spectra to describe the quality of spec-
tra. Therefore it is not surprised that their filters perform
poor.

Recently, some sophisticated methods have been reported
for assessing spectral quality using more features of pep-
tide CID mass spectra. The SPEQUAL proposed by Pur-
vine et al. [9] uses three basic features: charge state, total
signal intensity, and signal-to-noise estimates. Purvine et
al. have claimed that the SPEQUAL may safely eliminate
55% of poor quality spectra. The three studies mentioned
above do not give what percentage of high quality spectra
is lost when the performances of their filters are achieved
to eliminate their claimed percentage of poor quality spec-
tra. Xu et al [10] have used four variables derived from five
features of spectra to assess the spectra quality. These five
features include three peak intensity-related features: the
number of peaks larger than 5% of base peak intensity,
3% TIC (total ion current), and 2% TIC, and two peak dis-
tance-related features: the average peak distance along m/
z for the peaks larger than 2% TIC, and the average dis-
tance along m/z for the peaks within 1.0~1.5% TIC. By
trial and error, they have found a quadratic discriminant
function which can be used to discriminate high quality
spectra from high quality spectra.

More recently, Bern et al [11] used four of seven features
of peptide CID mass spectra to establish the filters for sin-
gly charged spectra and multiply charged spectra, respec-
tively. These seven features are Npeaks, Total Intensity,
Good-Diff Fraction, Isotopes, Complements, Water
Losses, and Intensity Balance. The best result reported in
their paper [11] is that the method can remove 75% of
poor quality spectra while losing 10% of the high quality
spectra which are identifiable by SEQUEST. This paper
develops a novel method for assessing the quality of pep-
tide CID mass spectra, which can be used to establish a fil-
ter with the training data. Computational experiments on
two datasets illustrate that the trained filters can eliminate
majority the poor quality spectra while losing very minor-
ity of high quality spectra.

Methods

Properties of peptide predicted mass spectra

Many algorithms such as SEQUEST, Mascot and Sonar
have been used to assign MS/MS spectra to peptides in a
protein/peptide database. A key component of these algo-
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rithms is the score function, which evaluate the similarity
between each experimental MS/MS spectrum and the pre-
dicted (theoretical) spectra of a given peptide in a data-
base. A peptide in the database with the maximum
similarity to the experimental spectrum is a likely candi-
date for the solution of the peptide identification. At this
point, a perfect (highest quality) MS/MS spectrum is a
peptide predicted spectrum theoretically produced
according to the amino sequence of the peptide. In prac-
tice, no mass spectrometers can produce perfect MS/MS
spectra. However, investigating the peptide predicted
spectrum is extremely helpful in understanding the high
quality spectra which could be potentially assigned to a
peptide. Let P be a peptide consisting of n amino acids a,,
a, U, a, with respective masses m(q;). The mass of peptide
P is calculated by

n
m(P):m(H)+m(OH)+2m(a,») (1)
i=1
where m(H) and m(OH) are the additional masses of the
peptide's N- and C- terminals. Hereafter, we will use m(X)
to express the mass of molecule or a group of atoms X.

From Figure 1, as peptide P fragments at backbone bond
between the i-th and i+1-th amino acids counting from N-
terminal, several types of ions could be produced in its
predicted spectrum. The singly charged ion with N-termi-

nal is denoted by b;", and its m/z value is computed by
m(b) =m(H)+ Y m(a;) (2)
j=1

The doubly charged ion with N-terminal is denoted by

b/, and its m/z value is computed by

m(b;"™") = [m(b;") + m(H)]/ 2 ()

The singly charged ion with C-terminal is denoted by

Vi, and its m/z value is computed by
n
m(ys) =2 m(H) +m(OH) + > m(a;)  (4)
j=itl

The doubly charged ion with C-terminal is denoted by

yat., and its m/z value is computed by

m(y ;) = [m(y,_) + m(H)]/ 2 (5)
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From Equations (1) through (5) the following comple-
mentary equations

m(P)+ 2 =m(H) = m(b;") + m(y}_,) (6)

m(P) 2+ 2+ m(H) = m(b;™) + (m(y,;) + m(H))/ 2

(72)

m(P)/ 2+ 2+ m(H) = (m(b") + m(H)) / 2+ m(y,;
(7b)
m(P)/ 2+ 2+ m(H) = m(b;™) + m(y,; (8)

hold for a predicted (perfect) peptide spectrum. Therefore,
equations (6) through (8) indicate that high quality spec-
tra should have more complementary pairs of m/z values
than poor quality spectra.

According to the CID fragmentation principle [12], these
ions could lose a water or ammonia molecule. Therefore,
high quality spectra should also have more pairs of m/z
values with differences of a water molecular mass or an
ammonia molecular mass for singly charged ions and
with differences of half a water molecular mass or half an
ammonia molecular mass for doubly charged ions than
poor quality spectra. In addition, the N-terminal ions
could lose a group CO while C-terminal could lose a NH
group, Therefore, high quality spectra could have more
pairs of m/z values with differences of (half) a CO mass or
(half) an NH mass for (doubly) singly charged ions than
poor quality spectra.

For a predicted spectrum, the difference between two con-
secutive singly charged N-terminal (C-terminal) ions is
one of twenty amino acid mass weights. The difference
between two consecutive doubly charged N-terminal (C-
terminal) ions is half a mass weight of one of twenty
amino acids. Therefore, high quality spectra should also
have more pairs of m/z values with difference of (half) an
amino acid mass weight for (doubly) singly charged ions
than poor quality spectra.

Features of peptide mass spectra

According to the properties of the predicted spectra, we
introduce 12 discriminatory features to describe the qual-
ity of peptide CID mass spectra. These features may be
classified into four categories: amino acid distances, com-
plements, water or ammonia losses, and supportive ions.
To do this, we first define four variables for a given peptide
CID mass spectrum Sg

difl(x,y) =x-y, xy€Sg )
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Figure |
The schematic of the common peptide fragment ions.

dif2(x, y)=x-(y+1)/2, x,y€ S (10)
suml(x, y)=x+y, x,y€Sg (1)
sum2(x, y)=x+(y+1)/2, x,y€ S (12)

(1) Amino acid distances

These features measure how likely two components in a
peptide CID mass spectrum S; differ by one of twenty
amino acids. Let

DIF, = {(x, y)|difl(x, y) = M, i=1,U, 17}
DIF, = {(x, y)|difl(x, y) = M;/2,i=1,U, 17}
DIF; = {(x, y)|dif2(x, y) = M;,/2,i=1,U, 17}

Where M;,U, M;; stand for the 17 mass weights of all 20
amino acids. In this study we consider all Methionine
amino acids to be sulfoxidized and do not distinguish
three pairs of amino acids in their mass: Isoleucine vs.
Leucine, Glutamine vs. Lysine, and sulfoxidized Methio-
nine vs. Phenylalanine as the masses of each pair are very
close. The comparison implied by = uses a tolerance
which is set to 0.5 Thompson in this study, but can be
changed by the user. The set DIF, collects all pairs of singly
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charge ions in the spectrum S that are different from one
amino acid. The set DIF, collects all pairs of doubly
charged ions in the spectrum S that are different from one
amino acid. The set DIF; collects all pairs of one doubly
charged and the other singly charged ions that are differ-
ent from one amino acid. Let

F,=|DIF|, i=1,2,3

where || represents the cardinality of a set. If a tandem
mass spectrum is produced from a peptide with well frag-
menting, one expects that values F; (i = 1, 2, 3) calculated
from this spectra should be much higher than those from
a spectrum produced randomly.

(2) Complements
These features measure how likely an N-terminus ion and
a C-terminus ion in the peptide CID mass spectra Sy are
produced as the peptide fragments at the same peptide
bond. Let

SUM, = {(x, y)lsum (x, ¥) = My + 2 * m(H)}

paren
SUMZ = {(x, y)|sum (x’ Y) ~ Mpmenr/z +2* m(H)}
SUMl = {(x, y)|sum (x’ Y) ~ Mpmenr/z +2* m(H)}
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where M,,,,,,, is the mass of precursor ion of the spectrum
Sg. The set SUM, collects the complementary pairs of sin-
gly charged ions. The set SUM, collects the complemen-
tary pairs of doubly charged ions. The set SUM, collects
the complementary pairs of one doubly charged ion and
the other singly charged ion. For the same reason as the
first three features, we define the other three features as
the cardinalities of these three sets, i.e.

Fy,;=|SUM,], i=1,2,3

(3) Water or ammonia losses

These features measure how likely one ion in a peptide
CID mass spectrum S is produced by losing a water or
ammonia molecule from other ion. Let

WAD, = {(x, Y) |dlf1 (x, Y) ~ Mwater OTMammonia}
WADZ = {(xl Y) |dlf1 (x' Y) ~ Mwater OrMammonia/z}
WADS = {(x’ y) |dlf1 (x’ Y) ~ Mwater OrMammonia/z}

Where M,,,,,, and M,,,,..ni. ar€ the mass of a water mole-
cule and an ammonia molecule, respectively. The set
WAD, collects the pairs of singly charged ions with a dif-
ference of a water or ammonia molecule. The set WAD,
collects the pairs of doubly charged ions with a difference
of a water or ammonia molecule. The set WADj, collects
the pairs of one doubly charged ion and the other singly
charged ion with a difference of a water or ammonia mol-
ecule. Similarly, we define the next three features as the
cardinalities of these three sets, i.e.

F,,;=|WAD], i=1,2,3

One can consider the water losses and the ammonia loss
as separate features. This leads the resulting feature vector
to have more components. In the classification problem,
the more features do not mean leading a better classifier.
The reverse state is often true as the more insignificant fea-
tures could degrade the discriminatory power of other sig-
nificant features.

(4) Supportive ions

These features measure how likely one ion in a peptide
CID mass spectrum S is a supportive ion. In this paper,
we consider two kinds of supportive ions a-ions and z-
ions. Although a-ions and x-ions are complementary if a
peptide fragments at the specific bond shown in Figure 1,
the a-ions are often generated by losing a CO group from
b-ions [12], but not by fragmenting at the specific bond.
With the same reason, we take z-ions into account but not
c-ions

AZDl = {(x, }/) |dlf1 (x, y) ~Mco OTMNH}

http://www.biomedcentral.com/1471-2105/9/S6/S13

AZD, = {(x, y)|difl(x, y) ® Mo 0rMyp/2}
AZDy = {(x, y)|dif2(x, y) ® Mo 0rMyy/2}

Where M, and M, are the mass of a CO group and an
NH group, respectively. The set AZD; collects the pairs of
singly charged ions with a difference of a CO or NH
group. The set AZD, collects the pairs of doubly charged
ions with a difference of a CO or NH group. The set AZD,
collects the pairs of one doubly charged ion and the other
singly charged ion with a difference of a CO or NH group.
Finally, we define the next three features as the cardinali-
ties of these three sets, i.e.

Fy,;=|AZD), i=1,2,3

At this point, we have introduced 12 features with physi-
cal meaning to describe the quality of peptide CID spec-
tra. The four features F; (j = 1, 4, 7, 10) represent the
evidence of existence of singly charged ions, called singly
charged features. Although the other eight features have
their own physical meaning, the pair of F,and F,,,, (k = 2,
5, 8, 11) could summed into one feature with a certain
meaning. These four combined features represent the evi-
dences of existence of doubly charged ions, called multi-
ply charged features. As spectra with singly charged
precursor ions are much different from those with multi-
ply charged precursor ions, two separate classifiers should
be trained: one for singly charged parent ions and one for
multiply charged. The spectra with singly charge precursor
ions are mapped into feature vectors with 4 singly charged
features as it is impossible for the singly charged spectra to
produce doubly charged ions. The spectra with doubly or
triply charged precursor ions are mapped into feature vec-
tors with all 12 features or feature vectors with 8 features
which include four singly charged and four multiply fea-
tures.

In principle, the high quality spectra are expected to have
a number of feature values more than the poor quality
spectra. On the other hand, the longer the peptide, the
more the feature values have. This likely leads to a low
sensitivity of the classifier as the high quality spectra pro-
duced from a shorter peptide would have a small number
of feature values. To alleviate these effects, some normali-
zation methods should be applied. In this study we tried
two kinds of normalization methods: F;/L; and log(1 +
F;)/log(Lg), where Ly is the estimated peptide length of a
precursor ion. L is computed by dividing the precursor
ion mass by an average amino acid mass of 110 Daltons.
The latter normalization method leads to better results,
and thus has been adopted in this study.
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Classifier and validation

For our purpose, feature vectors of n peptide CID mass
spectra has been summarized by an n x p matrix F = (fy),
where F;; denotes the value of feature j for peptide CID
mass spectrum i. A classifier for determining spectral qual-
ity partitions a set of peptide CID mass spectra into two
disjoint subsets, A (for high quality spectra) and A, (for
poor quality spectra), such that for a spectrum with fea-
ture vector f = (f;,U, f,) € A, the predicted group label is
X (X = H or P). Classifiers are built from the spectra whose
group labels are known. Such spectra with labels comprise
the training set. In this study we has used Fisher linear dis-
criminant analysis (FLDA) for building a classifier. FLDA
is a classical method that models feature vectors of each
group by multivariate Gaussian distributions. Although
FLDA is assumed to analyze feature vectors subjected to
multivariate Gaussian distributions, it is expected to per-
form well with summation features such as ours that have
approximate Gaussian distributions due to the central
limited theorem [13].

FLDA finds the discriminatory vector a such that the linear
combinations fa of all feature vectors f = (f;,U, fp) have
the maximum ratios of between-group to within-group
sums of squares. Assume that an learning set consist of a
set of feature vectors of high quality spectra A;;and a set of

feature vectors of poor quality spectra Ap and each feature
vector has p component. Let n,and fy be the number of
feature vectors and the mean vector of group X (= H, P),
and f the mean of the whole learning set. It has proved

that the discriminatory vector a is the vector which maxi-
mize a' Ba/a' Wa, where B and W stand for the p x p matri-
ces of between-group and within-group sums of squares
and cross-products. Matrices B and W are calculated by

B = 2 ”x(fx _J?)'(J?x _]_C)
X=H,P
W= Y (F-F)(F-Fi)+ D, (F=Fo) (F~Tr)
fEAHi fEAPx
By Rayleigh's Quotient, the maximum values of a' Ba/a'
Wa is the nonzero generalized eigenvalues of (B, W), and

the vector a is the corresponding generalized eigenvectors.
The discriminant variable is defined as u = fa.

For a spectrum with feature vector f = (f;,U, f,), let
dx(f)= |( f- fX)a| denote the distance between the fea-

ture vector f = (f},U, f,) and the mean fx= (?Xll""?Xp)

of group X, in terms of the discriminant variable, for the
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learning set. The predicted group label for the spectrum is
the one whose mean vector fx is closer to f in the space

of the discriminant variable. That is, the spectrum is high
quality according to FLDA if d(f) = dp(f) - dy(f) > 0, and
otherwise it is poor quality. In this study, we use the fol-
lowing normalized value of d(f) to judge a spectrum,

nd(f) — dH(f)_dP(f)
dH(f)+dp(f)

Obviously, the function nd(f) has the range |1, -1], nd(f) =
-1if j_CH = f whilend(f) = 1if ]?P = f . For a given feature
vector f of a spectrum, the larger the value of nd(f), the
more likely the spectrum is of high quality. This study
introduces a parameter ¢ to determine the quality of a
spectrum. That is, a spectrum is considered to be of high

quality if nd(f) > 6. The bigger the number &, the more
confident a spectrum is of high quality, and vice versa.

Once a classifier is well trained, it can be applied to pre-
dicting the group labels of each spectrum in the testing set.
In the case that the group labels are known for the testing
set, the predicted and true class label may be compared to
estimate the correct rate of the classifier. In this study we
calculate two correct rates: one for high quality dataset
(denoted Rp) and one for poor quality dataset (denoted
Rn)

Rp = # of correctly predicted high quality spectra

# of high quality spectra
_ # of correctly predicted poor quality spectra
# of poor quality spectra

Rn

In literature, Rp is also called the sensitivity while Rn the
specificity. If there is just one labelled dataset at hand, two
methods can be applied to evaluate the performance of a
classifier. A simple estimate of the correct rates can be
obtained by using the same learning dataset as the testing
one. This method is commonly referred to as resubstitu-
tion. The correct rates resulting from resubstitution are
called the apparent correct rates. For large datasets the
apparent correct rates have only a small amount of bias
for estimating the actual correct rates and can be used with
little concern. Another method is called bootstrapping.
The bootstrapping method can avoid the bias of correct
rate estimates. In bootstrapping method, the dataset is
randomly split into two disjoint datasets: one for learning
and the other for testing, for a number of times. The aver-
age correct rates have little bias for large datasets. The big-
ger the value o, the less the value Rp and the greater the
value Rn. A good classifier is expected to have high values
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Rp and Rn with some value 6. In practice, some trade-off
must be made between values Rp and Rn.

Training datasets

TOV dataset

This dataset consists of 22,577 peptide CID mass spectra
which were acquired on a LCQ DECA XP ion trap
(Thermo Electron Corp.) in Eastern Quebec Proteomic
Center in Laval University Medical Research Center in
Canada. The samples analyzed were generated by the tryp-
tic digestion of a whole-cell lysate from the human malig-
nant epithelial ovarian tumor cell-line TOV-112D [14].
These MS/MS spectra were searched against a subset of the
Uniref100 database (release 1.2, http://www.uniprot.org)
containing 44,278 human protein sequences using
SEQUEST. The assignments of 2197 spectra were vali-
dated by PeptideProphet [14,15] to be correct. The 2159
multiply charged spectra out of these 2197 interpreted
spectra are labelled as "high" quality spectra while the
17987 multiply charged spectra out of other 20380 unin-
terpretable spectra are labelled as "poor" quality spectra in
this study. As the number of singly charged spectra is too
small for training a reasonable classifier, this study does
not train a classifier for singly charged spectra in this data-
set.

Standard protein mixture (SPM) dataset

This dataset consists of 16727 peptide CID tandem spec-
tra which were acquired on an ion trap and were provided
by Institute of Systems Biology (ISB, Seattle, USA). The
samples analyzed were generated by the tryptic digestion
of a control mixture of standard 18 proteins (not of
human origin) [16]. The MS/MS spectra were searched
using SEQUEST against a human protein database
(extracted from ftp://ftp.ncicfr.gov/pub/nonredun/pro
tein.nrdb) appended with the sequences of the 18 stand-
ard proteins and other common contaminants (totally,
5395 protein sequences in the final database). The assign-
ments of 2067 peptide to the spectra were determined to
be correct and other 13650 spectra are uninterpretable.
The 2018 multiply charged spectra out of these 2067
interpreted spectra are labeled as "high" quality spectra
while the 13635 multiply charged spectra out of other
13650 uninterpretable spectra are labeled as "poor" qual-
ity spectra in this study. For the same reason as for TOV
dataset, this study does not train a classifier for singly
charged spectra in this dataset.

The peptide CID mass spectrum is often expressed by the
peak list, i.e, S = {(x; h) || 1 <i < m}, where (x; h;)
denotes the fragment ion i with m/z value x; and intensity
h;. Peptide bonds are not chemically equivalent within
protonated peptides, and proton retention varies between
moieties after peptide bond cleavage. For example, an N-
terminal proline is an easily fragmented bond, and large

http://www.biomedcentral.com/1471-2105/9/S6/S13

b-ions are often degraded to a,-ions [12]. As a result, dis-
similar intensities of fragment ions and/or incomplete
fragment ion series are usually observed in CID of proto-
nated peptides. Although it would be rash to assume that
the more intense peaks were more "evident" than the
weaker ones, it is true that peaks with relatively small
intensity are more likely to be random noise. Peptide CID
mass spectra often tend to exhibit a peak at every Thomp-
son and thus include many small crowded "grass" peaks.
In practice, peak rich, over-crowded peptide CID spectra
are too noisy while less crowded spectra with prominent
peak intensity distribution are more likely produced from
some peptides of proteins in the sample and thus are good
quality. It becomes essential to select more informative
peaks for assessing the quality of peptide CID spectra. Our
method selects the N most intense peaks of a peptide CID
mass spectrum as its representatives for quality assess-
ment, where N is a user-selected integer number. With a
small N, some informative peaks could be lost. Alterna-
tively, with a large N, more noise peaks might be included
although little more informative peaks are selected. Rea-
sonable numbers for N are between 50 and 200 [4,5]. Fur-
thermore, since ion intensities are the results of many
unknown factors and are yet difficult to utilize for spectral
quality assessment, this study does not take into account
intensity values of ions selected. Thus the peptide CID
mass spectra in this study are reduced into a set of m/z val-
ues, and denoted by S;.

Results

The proposed method has been tested on two tandem
mass spectra datasets acquired by ion trap mass spectrom-
eters: TOV dataset and SPM dataset (see section "meth-
ods" for the details about these datasets). To obtain more
robust predicators, we have removed those feature vectors
considered as outliers. A feature vector is considered to be
an outlier if the Mahalanobis distance between the feature
vector and the mean feature vector of its class fall in the
extreme distance 5%. We map each spectrum into three
feature spaces: one with all 12 features, one with 8 features
(four doubly and four singly charged), and one with 4 sin-
gly charged features only. Three classifiers have been
trained in these three feature spaces. The resubstitution
method and bootstrapping method are used to evaluate
their performance in terms of the sensitivity (Rp) and spe-
cificity (Rn) (see section "methods" for their definition).

In the bootstrapping method, the training dataset have
been randomly split 20 times with the ratio of learning
dataset size to testing dataset size: 80:20. The average cor-
rect rates Rp vs. Rn from the bootstrapping method are
depicted in Figures 2 and 3 for TOV dataset and SPM data-
set, respectively. For TOV dataset, the performance of
three classifiers is comparable in terms of Rp and Rn.
However, for SPM dataset, the performance of the classifi-
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Plots of the correct rate Rn with respect to the correct rate
Rp of classifiers for TOV dataset.

ers with 12 and 8 features are comparable and clearly bet-
ter than that with 4 features.

The results from the resubstitution method are almost the
same as those from the bootstrapping method and are not
depicted here due to the limitation of pages. Some special
values of Rn and Rp from two methods are listed in Table
1 for both datasets to compare our classifier to the one
proposed by Bern et al [11]. Bern et al [11] have claimed
that the best of their classifiers can eliminate over 75% of
the uninterpretable spectra while losing only 10% of the
interpretable spectra. For TOV dataset, Table 1 shows that
our classifier can eliminate over 83% of the uninterpreta-
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Plots of the correct rate Rn with respect to the correct rate
Rp of classifiers for 18PM dataset.
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Table I: Some special rates of classifier for training datasets.

TOV data 18 PM data

RP(%)  Rn(%)  Rp(%)  Rn(%)
Resubstitution 90 83 90 97
Bootstrapping 90 83 90 96
Resubstitution 92 75 98 75
Bootstrapping 92 75 98 75

ble spectra while losing only 10% of the interpreted spec-
tra. Alternatively, it loses only 8% the identifiable spectra
while eliminating 75% of the uninterpretable spectra.
Table 1 also shows that our classifier performs better on
SPM dataset than the one proposed by Bern et al. For this
dataset, our classifier can eliminate over 97% of the unin-
terpretable spectra while losing only 10% of the inter-
preted spectra. Alternatively, it loses only 2% the
interpretable spectra while eliminating 75% of the unin-
terpretable spectra. These results show that our method
outperforms the existing methods.

The developed classifier has been run on Dell Workstation
PW350 to predict the quality of spectra. The workstation
was equipped with Pentium 4/2.80 GHz processors, 512
MB RAM, and 75 GB hard drive. The operating system was
Microsoft Windows 2000 Profession version. The devel-
oped classifier takes 245 seconds to process 20,000 spec-
tra (or 0.0125 seconds per spectrum). SEQUEST takes 15
seconds per spectrum on a large (100 MB) database. Note
that typically 16% spectra can be interpretable in a whole
spectral dataset. This means that about 84% of search time
may be save if the classifier is applied to filtering out the
poor quality spectra before the SEQUEST search is applied
to the original spectrum dataset.

Conclusion

In this paper, we have done an initial research on assess-
ing the quality of peptide CID spectra produced by tan-
dem mass spectrometry. We have proposed 12 features to
describe the quality of peptide CID mass spectra based on
the properties of peptide predicted spectra (perfect spec-
tra). Each spectrum has been mapped into feature vectors.
We have employed the Fisher Linear discriminant analysis
(FLDA) to construct the classifier in the feature space
which distinguishes the high quality from the poor qual-
ity of peptide CID mass spectra. The proposed method has
been tested on two tandem mass spectral datasets
acquired by quadrupole ion trap mass spectrometers.
Computational experiments have illustrated that the clas-
sifier developed in this study for assessing spectral quality
is better than the one proposed by Bern et al [11] in terms
of sensitivity and specificity.
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The proposed method is generic for assessing the quality
of peptide CID mass spectra although we has only tested
on spectra produced by quadrupole ion trap mass spec-
trometers. One direction of the future work is to apply the
proposed method to spectra produced by quadrupole
time-of-flight mass spectrometers. Although the classifier
is trained and tested on two dataset, to be practical the
resultant classifier should be good at classifying other
spectral datasets, at least those produced by the same type
of instruments. The other direction of the future work is to
test the classifier trained from one dataset on another
dataset produced by the same type of instruments. In
addition, incorporating the properties of the instrument
which produces spectra into the feature vectors is expected
to improve the performance of the classifier.

In this study, we consider spectra to be of high quality if
they were significantly assigned to peptides by SEQUEST-
based PeptideProphet software, and otherwise consider
spectra to be of poor quality. A recent study [17] has
shown that search results from the different search
engines are very different and have few in common. Intu-
itively, spectra significantly assigned to peptides by any
search engine should be of high quality. Therefore, an
additional direction of the future work is to define a train-
ing spectral dataset with the results from as many search
engines as possible, and then train a classifier on such
datasets. It is expected that such a trained classifier is more
reasonable than the one only based on the results from
one search engine.
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