
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
CBESW: Sequence Alignment on the Playstation 3
Adrianto Wirawan*, Chee Keong Kwoh, Nim Tri Hieu and Bertil Schmidt

Address: School of Computer Engineering, Nanyang Technological University, Singapore

Email: Adrianto Wirawan* - adri0004@ntu.edu.sg; Chee Keong Kwoh - asckkwoh@ntu.edu.sg; Nim Tri Hieu - nimt0001@ntu.edu.sg;
Bertil Schmidt - asbschmidt@ntu.edu.sg

* Corresponding author

Abstract
Background: The exponential growth of available biological data has caused bioinformatics to be
rapidly moving towards a data-intensive, computational science. As a result, the computational
power needed by bioinformatics applications is growing exponentially as well. The recent
emergence of accelerator technologies has made it possible to achieve an excellent improvement
in execution time for many bioinformatics applications, compared to current general-purpose
platforms. In this paper, we demonstrate how the PlayStation® 3, powered by the Cell Broadband
Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm.

Results: For large datasets, our implementation on the PlayStation® 3 provides a significant
improvement in running time compared to other implementations such as SSEARCH, Striped
Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646
MCUPS.

Conclusion: The results from our experiments demonstrate that the PlayStation® 3 console can
be used as an efficient low cost computational platform for high performance sequence alignment
applications.

Background
Sequence alignment is a popular bioinformatics applica-
tion that determines the degree of similarity between
nucleotide or amino acid sequences which is assumed to
have same ancestral relationships. The optimal local
alignment of a pair of sequences can be computed by the
dynamic programming (DP) based Smith-Waterman
(SW) algorithm[1]. However, this approach is expensive
in terms of time and memory cost. Furthermore, the expo-
nential growth of available biological data[2] means that
the computational power needed is growing exponen-
tially as well.

The recent emergence of accelerator technologies such as
FPGAs, GPUs and specialized processors have made it

possible to achieve an excellent improvement in execu-
tion time for many bioinformatics applications, com-
pared to current general-purpose platforms. However,
special-purpose hardware implementations such as
FPGAs [3,4] tend to be very expensive and hard-to-pro-
gram. Hence, they are not suitable for many users. Recent
usage of easily accessible accelerator technologies to
improve the search time of the SW algorithm include Intel
SSE2[5], GPU[6] and CUDA[7].

Farrar[5] exploits the SSE2 SIMD multimedia extension of
general-purpose CPUs. His implementation utilizes vec-
tor registers, which are parallel to the query sequence and
are accessed in a striped pattern. Similar to the implemen-
tation by Rognes [8], a query profile is calculated only

Published: 17 September 2008

BMC Bioinformatics 2008, 9:377 doi:10.1186/1471-2105-9-377

Received: 22 April 2008
Accepted: 17 September 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/377

© 2008 Wirawan et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/377
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18798993
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:377 http://www.biomedcentral.com/1471-2105/9/377
once for each database search. However, Farrar's imple-
mentation allows moving the conditional calculation of
the F-matrix outside the inner loop. Therefore, this imple-
mentation achieves a speed up of factor 2–8 over the pre-
vious SIMD implementations by Wozniak[9] and
Rognes[8].

Liu et al. [10] first reported the implementation of the
Smith-Waterman algorithm on graphics hardware. The
SW algorithm is implemented using the streaming archi-
tecture of GPUs by reformulating it in terms of computer
graphics primitives. The implementation relies on
OpenGL, in which a conversion of the problem to the
graphical domain is needed, as well as a reverse procedure
to convert back the results. Although, it achieves a high
efficiency, programming in OpenGL requires specialized
skills. Therefore, Manavski[7] re-implemented the SW
algorithm on a GPU with the recently released C-based
CUDA programming environment. The implementation
performs from 2 to 30 times faster than any other previous
attempt available on commodity hardware.

In this paper, we demonstrate how the PlayStation® 3
(PS3), a commodity hardware powered by the Cell Broad-
band Engine[11], can be used as a low cost computational
platform to accelerate the Smith-Waterman algorithm.
Our implementation is able to outperform both the
striped method on an Intel Core 2 Duo as well as the
CUDA-based GPU implementation on a GeForce 8800
GTX.

The Smith-Waterman Algorithm
The Smith-Waterman algorithm is used to determine the
optimal local alignment between two nucleotide or pro-
tein sequences. The algorithm compares two sequences by
computing the similarity score by means of dynamic pro-
gramming (DP). Two elementary operations are used:
substitution and insertion/deletion (also called a gap
operation). The original algorithm was proposed by
Smith and Waterman[1] with a complexity of O(m2n)
and was improved by Gotoh[12] to run at O(mn).

Consider two strings S1 and S2 with length m and n,
respectively. The Smith-Waterman algorithm computes
the similarity value M(i, j) of two sequences ending at
position i and j of the two sequences S1 and S2, respec-
tively. For affine gap penalties, i.e. α ≠ β, the computation
of M(i, j), for 1 ≤ i ≤ m, 1 ≤ j ≤ n, is given in the following
equations 1–3:

M(i, j) = max{M(i - 1, j - 1) + sbt(S1[i]), S2[j], E(i, j), F(i,
j), 0}, (1)

E(i, j) = max{M(i, j - 1) - α, E(i, j-1) - β}, (2)

F(i, j) = max{M(i - 1, j) - α, F(i - 1, j) - β}, (3)

where sbt is a character substitution cost table, α is the cost
of the initial gap; β is the cost of the following gaps. For
linear gap penalties, i.e. α = β, the above recurrence rela-
tions can be simplified as shown in equations 4:

M(i, j) = max{M(i - 1, j - 1) + sbt(S1[i]), S2[j], M(i, j - 1) -
α, M(i - 1, j) - α} (4)

Initialization values are given as the following: for 0 ≤ i ≤
m, 0 ≤ j ≤ n, M(i, 0) = M(0, j) = E(i, 0) = F(0, j) = 0. Each
position of the matrix M is a similarity value. The two seg-
ments of S1 and S2 producing this value can be deter-
mined by a trace-back procedure.

Figure 1 illustrates an example of computing the local
alignment between two sequences PAWHEAE and HEA-
GAWGHEE using the Smith-Waterman algorithm with
the BLOSUM 50 scoring matrix [13]. The highest score in
the matrix (+28) is the optimal score for the alignment.
The trace-back procedure, shown in form of arrows, shows
that the optimal local alignment is AW- HE and AWGHE.

Cell Broadband Engine Architecture
The Cell Broadband Engine[14] (Cell BE) is a recently
introduced single-chip heterogeneous multi-core proces-
sor, which is developed by Sony, Toshiba and IBM. The
Cell BE offers a unique assembly of thread-level and data-
level parallelization options. It is operating at the upper
range of existing processor frequencies (3.2 GHz for cur-
rent models) and is projected to run at more than 5 GHz
in the near future. Several examples of bioinformatics
applications that has been ported to the Cell BE architec-
ture include Folding@Home[15], FASTA[16], Clus-
talW[16] and RAxML[17].

The Cell BE combines an IBM PowerPC Processor Ele-
ment (PPE) and eight Synergistic Processor Elements
(SPEs)[11]. An integrated high-bandwidth bus called the
Element Interconnect Bus (EIB) connects the processors
and their ports to external memory and I/O devices. The
block diagram of the Cell BE architecture is shown in Fig-
ure 2.

The PPE is a 64-bit Power Architecture core and contains
a 64-bit general purpose register set (GPR), a 64-bit float-
ing point register set (FPR), and a 128-bit Altivec register
set. It is fully compliant with the 64-bit Power Architec-
ture specification and can run 32-bit and 64-bit operating
systems and applications. Each SPE is able to run its own
individual application programs. Each SPE consists of a
processor designed for streaming workloads, a local mem-
ory, and a globally coherent Direct Memory Access (DMA)
engine. The EIB is a 4-ring structure, and can transmit 96
Page 2 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:377 http://www.biomedcentral.com/1471-2105/9/377
bytes per cycle, for a bandwidth of 204.8 Gigabytes/sec-
ond. The EIB can support more than 100 outstanding
DMA requests.

The most distinguishing feature of the Cell BE lies within
the variety of the processors it has, i.e. the PPE and the
SPEs. Heterogenous multi-core systems can lead to
decreased performance if both the operating system and
application are unaware of the heterogeneity. The PPE is
designed to run the operating system and, in many cases,
the top-level control thread of an application, while the
SPEs is optimized for compute intensive applications,
hence, providing the bulk of the application performance.

The SPE can access RAM through direct memory access
(DMA) requests. The DMA transfers are handled by the
Memory Flow Controller (MFC). The MFC provides the
interface, by means of the EIB, between the local storage
of the SPE and main memory. The MFC supports DMA
transfers as well as mailbox and signal-notification mes-
saging between the SPE and the PPE and other devices.
Data transferred between local storage and main memory
must be 128-bit aligned. The size of each DMA transfer
can be at most 16 KB. DMA-lists can be used for transfer-
ring large amounts of data (more than 16 KB). A list can
have up to 2,048 DMA requests, each for up to 16 KB.

The PS3 uses the Cell Broadband Engine as its CPU, hence
making it possible for users to create a high-powered com-
puting environment for a fraction of the cost of a Cell
Blade server. The PS3 utilizes seven of the eight SPEs, in
which the eighth SPE is disabled to improve chip yields,
i.e. chips do not have to be discarded if one of the SPEs is
defective. Only six of the seven SPEs are accessible to
developers as one is reserved by the operating system. The
power requirement for the PS3 is 120 V AC, 60 Hz and the
power consumption approximately 380 W. Generally
available PS3's can be used for scientific high performance
computing through installation of Linux (e.g. Red Hat or
Yellow Dog). Programs can be developed the using freely
available C-based Cell BE SDK [18]. At the time of this
writing, the retail price of the PlayStation® 3 is US$ 399 for
40 GB and US$480 for 60 GB, while the retail price of the
Nvidia GeForce 8800GTX card is US$529, and a Dell
Optiplex 745 with Intel Core 2 Duo 2.4 GHz processor is
US$871. A QS20 Blade Server with two Cell BE chips has
a retail price of US$18,995. Thus, the PS3 offers a good
alternative to other accelerator technologies.

Methods
Cell BE Mapping
Our sequence alignment implementation [see Additional
file 1, 2 and 3] uses affine gap penalties and utilizes the

Sequence alignment of YPKIEAIY and MPKIIEAIYENFigure 1
Sequence alignment of YPKIEAIY and MPKIIEAIYEN. An example of computing the local alignment between two
sequences PAWHEAE and HEAGAWGHEE using the Smith-Waterman algorithm with the BLOSUM 50 scoring matrix[13].
The highest score in the matrix (+28) is the optimal score for the alignment. The trace-back procedure, shown in form of
arrows, shows that the optimal local alignment is AW-HE and AWGHE.
Page 3 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:377 http://www.biomedcentral.com/1471-2105/9/377

Page 4 of 10
(page number not for citation purposes)

Block diagram of the Cell BE ArchitectureFigure 2
Block diagram of the Cell BE Architecture. The Cell BE architecture consists of 1 PPE and 8 SPEs. However, in the Play
Station® 3, only 6 SPEs are available.

Table 1: List of SPU Low-Level Specific and Generic Intrinsics used in the implementation

Category of Intrinsics SPU Low-Level Specific and Generic Intrinsics used

Constant Formation Intrinsics. spu_splats
Arithmetic Intrinsics spu_add

spu_sub
Compare, Branch and Halt Intrinsics spu_cmpgt
Bits and Mask Intrinsics spu_sel
Logical Intrinsics spu_or

spu_and
spu_nor
spu_nand

Shift and Rotate Intrinsics spu_slqwbyte
spu_rlmaskqwbyte
spu_rlmaska

Scalar Intrinsics spu_extract

List of SPU Low-Level Specific and Generic Intrinsics used in the implementation are listed and sorted into categories, as shown below. More details
about the syntax and semantics of these Intrinsics can be found in [19].

BMC Bioinformatics 2008, 9:377 http://www.biomedcentral.com/1471-2105/9/377
128-bit wide SIMD vector registers of the SPEs for optimi-
zation. The vectorization strategy is based on a column-
based approach[5,8]. It also employs a static load balanc-
ing strategy, which means that the work load is known at
the start and distributed equally across the SPEs. The code
is written in C together with the Cell BE SIMD Multimedia
Extension Language intrinsics and SPU intrinsics for port-
ability. DMA transfers and mailbox functions are used for
communication purposes.

A list of SPU Low-Level Specific and Generic Intrinsics
used in our vectorized implementation, divided into cate-
gories, is shown in Table 1. Constant Formation Intrin-
sics, Arithmetic Intrinsics, Compare, Branch and Halt
Intrinsics, Bits and Mask Intrinsics, Logical Intrinsics, Shift
and Rotate Intrinsics and Scalar Intrinsics have been
employed to access hardware features, which are not eas-
ily accessible from a high level language in order to obtain
the best performance from the Cell BE.

Figure 3 illustrates the mapping of different stages of SW-
based protein sequence database scanning application
onto the Cell BE. The PPE starts by reading the query and
the database from the respective files and then pre-proc-
esses the query sequences such that they are suitable for
vector operations. The pre-processed query sequence,
together with some context data, is sent to each respective
SPEs, which in turn will generate its own query profile.
This process is done using DMA transfers, namely mfc_get
and mfc_put. Given a database D consisting of |D|
sequences and k SPEs. Each SPE aligns the query sequence

to database sequences. Pseudocode of the mapping is

illustrated in Figure 4. Scores obtained from those align-
ments are sorted locally in the SPEs and the b highest
scores are sent to the PPE, where they are sorted once
again to obtain the b overall highest scores.

Due to the fact that the SPEs only have 256 Kbytes of local
memory, which have to store program code and data,
memory allocation is crucial for the SPE. The current long-
est sequence in the Swiss-Prot database is 35,213 amino
acids (accession number A2ASS6). In order to accommo-
date for longer protein sequence in the future, we allocate
dynamic memory for the database sequences of up to
64,000 amino acids per sequence. Due to these limita-
tions, the maximum query sequence length allowed for
our implementation is limited to 852.

Query Profile
In order to calculate M(i, j) in the SW DP matrix, the value
sbt(S1[i], S2[j]) needs to be added to M(i-1, j-1). To avoid
performing this table lookup for each element in the DP
matrix, Rognes[8] and Farrar [5] suggested calculating a
query profile parallel to the query sequence beforehand.

Assuming that S1, S2 ∈ Σ* and S1 is the query sequence, the
query profile is defined as a set P = {Px | x∈Σ} consisting
of |Σ| numerical strings of length l1 each, where l1 = |S1|.
Each string Px ∈ P consists of all substitution table values
that are needed to compute a complete column j of the DP
matrix for which S2[j] = x. Pre-computing the query profile
greatly reduces the amount of substitution table lookup in

D
k

Mapping of the different stages of database scanning with SW onto the Cell B.EFigure 3
Mapping of the different stages of database scanning with SW onto the Cell B.E. The block diagram shows the map-
ping of the different stages of database scanning with SW onto the Cell BE.
Page 5 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:377 http://www.biomedcentral.com/1471-2105/9/377
the SW DP matrix computation, since |Σ| is usually much
smaller than |S2|.

The query profile can be calculated in a straightforward
sequential layout [8] or in a more complex striped layout [5],
as shown in figure 5. The values in the query profile for
sequential and striped layout are defined in equation 4
and 5, respectively:

Px[i] = sbt(S1[i], x), for all 1 ≤ i ≤ l1, (4a)

where p is the number of segments and t is the segment
length.

In the striped layout, p corresponds to the number of ele-
ments that can be processed in a SIMD vector register (e.g.
for 128-bit wide SIMD registers, p = 8 when using 16-bit
precision). The length of each segment, t is defined in
equation 6.

t = L(l1 + p - 1)/pO (6)

Both approaches allow efficient vectorization on SSE2-
compatible processors using the corresponding SIMD
instruction set. Using the pre-calculated query profile, the

computation of the DP matrix can be performed in col-
umn-wise order. Due to the simplified dependency rela-
tionship and parallel loading of the vector scores from
memory, fast DP matrix calculations can be achieved. The
advantage of the striped layout compared to the sequen-
tial layout is that data dependencies between vector regis-
ters are moved outside the inner loop. For instance, when
calculating vectors for the DP matrices H or F with the
sequential layout, the last element in the previous vector
has to be moved to the first element in the current vector.
When using the striped query layout, this needs to be
done just once in the outer loop when processing the next
subject sequence character.

Saturation Arithmetic
The inner loop of the algorithm requires saturation arith-
metic, namely saturated additions and saturated subtrac-
tions. The Cell BE lacks the saturation arithmetic support,
leaving the tasks to be handled by software instead of
direct hardware support. In order to tackle this problem,
we introduced two new functions, namely spu_adds and
spu_subs to handle saturated additions and saturated sub-
tractions, respectively.

Results and discussion
In this section, we analyze the performance of our parallel
algorithm for various query sequence lengths using
sequences from Swiss-Prot database. Searches for 18 query
sequences with various lengths between 63 to 852 amino
acids were performed. The accession numbers of the query
sequences used are O29181, P03630, P02232, P05013,
P14942, P00762, P53675, Q8ZGB4, P10318, P07327,
P01008, P10635, P58229, P25705, P42357, P21177,
Q38941 and O60341, respectively. All queries were run
against Swiss-Prot release 55.2 comprising 130,497,792
amino acids in 362,782 sequence entries. The gap-open
penalty used was 10 and the gap-extension penalty used
was 2. The scoring matrix used in the testing was
BLOSUM45. All experiments were carried out on a stan-
dalone PlayStation® 3 machine, with Yellow Dog Linux
5.0 operating system and the Cell Software Development
Kit (SDK) 2.0.

The performance statistics measured are then converted to
the following measurements, i.e. computational time and
Mega Cell Updates Per Second (MCUPS). Given a query
sequence of size Q and a database of size D, the MCUPS
rating (million cell updates per second) is calculated by
Equation 7.

where

P i sbt S i p t
i
p

xx[] % ,= −()()() + −⎢

⎣
⎢

⎥

⎦
⎥ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1 1

1
1 for aall 1 1≤ ≤i l

(5)

Q D

t

× ×106
(7)

Pseudocode of the Cell BE mappingFigure 4
Pseudocode of the Cell BE mapping. Pseudocode of the
SPE code for the Cell BE mapping.
Page 6 of 10
(page number not for citation purposes)

http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O29181
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P03630
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P02232
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P05013
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P14942
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P00762
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P53675
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q8ZGB4
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P10318
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P07327
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P01008
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P10635
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P58229
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P25705
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P42357
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P21177
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q38941
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O60341

BMC Bioinformatics 2008, 9:377 http://www.biomedcentral.com/1471-2105/9/377
|Q| = size of query sequence in amino acids

|D| = size of database sequences in amino acids

t = run time (including input from file, initialization and
result output)

Table 2 shows the performance of our parallel algorithm
on the above mentioned datasets. By using 6 SPEs availa-
ble in the PS3, our parallel algorithm reaches a peak per-
formance of 3,646.48 MCUPS for a query sequence of
length 852 (accession number O60341).

We have compared the performance of our CBESW imple-
mentation with other publicly available implementations
of SW-based protein database scanning, namely
SSEARCH[20], Striped Smith-Waterman[5] and
CUDA[7]. The query sequences, as well as their respective
Swiss Prot accession numbers, used in the different per-
formance comparisons are shown in Table 3.

SSEARCH[20] is a SW implementation which is part of
the FASTA[21] package. The SSEARCH performance is
benchmarked on an Intel Core 2 Duo 2.4 GHz CPU with
1 GB RAM. Both execution cores were used in the experi-
ment. As shown in Figure 6, for a query sequence of length

852 (accession number O60341), SSEARCH achieves a
performance of 121.91 MCUPS. Thus, our implementa-
tion is over 30 times faster.

Figure 7 shows the performance comparison between PS3
and striped SW. Striped SW is also benchmarked on an
Intel Core 2 Duo 2.4 GHz CPU with 1 GB RAM. Both exe-
cution cores were used in the experiment. As can be seen
from the figure, for query sequences with length > 255
amino acids, our PS3 implementation achieves a higher
MCUPS performance compared to striped SW. The PS3
peak performance is 1.64 times faster than striped SW for
the query sequence of length 852.

The performance comparison between the PS3 imple-
mentation and CUDA-SW on one Nvidia GeForce
8800GTX is shown in Figure 8. The CUDA implementa-
tion experiment was conducted with a GeForce 8800GTX
512 MB installed in a PC with a Dual-Core AMD Opteron
2210 1.8 GHz CPU, 2 GB RAM running Fedora 6. The sub-
stitution matrix used is BLOSUM50. As can be seen from
the figure, our implementation achieves a better MCUPS
performance. The PS3 peak performance is 3 times faster
compared to the peak performance CUDA implementa-
tion on a single Nvidia GeForce 8800GTX.

The query profile layoutFigure 5
The query profile layout. The query profile layout for (a) sequential method, (b) striped method.
Page 7 of 10
(page number not for citation purposes)

http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O60341
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O60341

BMC Bioinformatics 2008, 9:377 http://www.biomedcentral.com/1471-2105/9/377
Conclusion
In this paper, we have demonstrated that the PlayStation®

3, powered by the Cell Broadband Engine, can be effec-
tively used to accelerate a biological sequence alignment
application. In order to derive an efficient mapping onto
this type of heterogeneous multi-core architecture, we
have utilized SIMD vectorization and parallel data parti-
tioning and communication techniques.

Our implementation achieves a peak performance of
3,646.48 MCUPS for a query sequence of length 852.
Hence, the peak performance of our implementation is
30.1 times and 1.64 times faster than SSEARCH and
striped SW, on an Intel Core 2 Duo 2.4 GHz. The PS3 peak
performance is also 3 times faster compared to the peak
performance CUDA implementation on a single Nvidia

Table 2: Performance evaluation

Accession number Query Sequence Length CBESW (seconds) CBESW (MCUPS)

O29181 63 18.45 445
P03630 127 19.05 869
P02232 143 19.17 973
P05013 189 19.6 1,258
P14942 222 20.12 1,439
P00762 246 20.24 1,586
P53765 255 20.43 1,628
Q8ZGB4 361 22.04 2,137
P10318 362 22.06 2,141
P07327 374 22.39 2,179
P01008 464 23.18 2,612
P10635 497 23.69 2,737
P58229 511 24.43 2,729
P25705 553 24.74 2,916
P42357 657 26.64 3,218
P21177 729 28.06 3,390
Q38941 850 30.45 3,642
O60341 852 30.49 3,646

Performance evaluation of our implementation, in terms of computational time and MCUPS. All queries were run against Swiss-Prot release 55.2
comprising 130,497,792 amino acids in 362,782 sequence entries. Eighteen query sequences of length 63 to 852 amino acids were used. The gap-
open penalty used is 10 and the gap-extension penalty used was 2. The BLOSUM45 scoring matrix was used.

Table 3: List of query sequences used in different performance comparisons

Accession number Query Sequence Length Comparison w/SSEARCH Comparison w/Striped SW Comparison w/CUDA

O29181 63 √ √ √
P03630 127 √ √ √
P02232 143 √
P05013 189 √
P14942 222 √
P00762 246 √
P53765 255 √ √ √
Q8ZGB4 361 √ √ √
P10318 362 √
P07327 374 √
P01008 464 √
P10635 497 √
P58229 511 √ √
P25705 553 √
P42357 657 √ √ √
P21177 729 √ √ √
Q38941 850 √ √ √
O60341 852 √ √ √

List of query sequences, as well as their respective accession number, used in different performance comparisons with other publicly available
implementations of SW-based protein database scanning, namely SSEARCH, Striped Smith-Waterman and CUDA.
Page 8 of 10
(page number not for citation purposes)

http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O29181
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P03630
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P02232
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P05013
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P14942
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P00762
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P53765
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q8ZGB4
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P10318
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P07327
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P01008
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P10635
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P58229
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P25705
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P42357
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P21177
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q38941
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O60341
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O29181
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P03630
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P02232
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P05013
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P14942
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P00762
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P53765
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q8ZGB4
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P10318
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P07327
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P01008
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P10635
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P58229
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P25705
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P42357
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P21177
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q38941
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=O60341

BMC Bioinformatics 2008, 9:377 http://www.biomedcentral.com/1471-2105/9/377
GeForce 8800GTX.

The very rapid growth of biological sequence databases
demands even more powerful high-performance solu-
tions in the near future. Hence, our results are especially
encouraging since high performance computer architec-
tures are developing towards heterogeneous multi-core
systems.

Due to the 256 KB memory limitation of the SPE local
store, the maximum query sequence length in our current
implementation is 852. One of the limiting factors is that

the size of the query profile grows with the length of the
query sequence. Part of our future work is therefore to
tackle this limitation. A promising approach is to align
subject sequences against separate chunks of the query
profile. The complete query profile only needs to be
stored once in the main memory instead of the local store
of the SPE. This frees up more memory space for the SPEs
and thus allows longer query sequences. Given a query
sequence of length l, the query profile can be divided into
n chunks in which each chunks contains a query profile of
size l/n. The respective SPEs can then align a part of the
chunk of the query profile it has and get the next chunk
from outside memory via concurrent DMA transfer.

Availability and requirements
▪ Project name: CBESW

▪ Project homepage: http://sourceforge.net/projects/
cbesw/

▪ Operating system(s): only tested with PlayStation® 3
with Yellow Dog Linux 5.0

▪ Programming language: C

▪ Other requirements: Cell SDK 2.0

▪ License: none

▪ Any restrictions to use by non-academics: none

Performance comparison with the SSEARCH implementationFigure 6
Performance comparison with the SSEARCH imple-
mentation. Performance comparison between our CBESW
implementation with SSEARCH, in terms of MCUPS. All que-
ries were run against Swiss-Prot release 55.2. Nine query
sequences with lengths of 63 to 852 amino acids were used.

Performance comparison with the Striped Smith-Waterman implementationFigure 7
Performance comparison with the Striped Smith-
Waterman implementation. Performance comparison
between our CBESW implementation with Striped Smith-
Waterman, in terms of MCUPS. All queries were run against
Swiss-Prot release 55.2. Nine query sequences with lengths
of 63 to 852 amino acids were used.

Performance comparison with the CUDA implementation on a single Nvidia GeForce 8800GTXFigure 8
Performance comparison with the CUDA implemen-
tation on a single Nvidia GeForce 8800GTX. Perform-
ance comparison between our CBESW implementation with
CUDA implementation on a single Nvidia GeForce
8800GTX, in terms of MCUPS. All queries were run against
Swiss-Prot release 55.2. Seventeen query sequences with
lengths of 63 to 852 amino acids were used. The scoring
matrix used for the CUDA implementation was BLOSUM 50.
Page 9 of 10
(page number not for citation purposes)

http://sourceforge.net/projects/cbesw/
http://sourceforge.net/projects/cbesw/

BMC Bioinformatics 2008, 9:377 http://www.biomedcentral.com/1471-2105/9/377
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Abbreviations
CPU: Central Processing Unit; CUDA: Compute Unified
Device Architecture; CUPS: Cells Updates Per Seconds;
DP: Dynamic Programming; DMA: Direct Memory
Access; FPGA: Field-Programmable Gate Arrays; GPU:
Graphics Processing Unit; MFC: Memory Flow Controller;
PPE: PowerPC Processor Element; SIMD: Single Instruc-
tions Multiple Data; SPE: Synergetic Processor Element;
SSE: Streaming SIMD Extensions; SW: Smith-Waterman

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
AW conceived the study, participated in its design, imple-
mentation and coordination, performed benchmark test
cases and drafted the manuscript. TNH participated in the
design and implementation of the source code. KCK par-
ticipated in the creation of the manuscript. BS conceived
the study, participated in the analysis and interpretation
of data. All authors have read and approve the final man-
uscript.

Additional material

Acknowledgements
AW is supported by the PhD program of Nanyang Technological Univer-
sity.

References
1. Smith T, Waterman M: Identification of common molecular

subsequences. J Mol Biol 1981, 147(1):195-197.
2. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler

DL: GenBank. Nucleic Acids Research 2000, 28(1):15-18.
3. Oliver TF, Schmidt B, Maskell DL: Reconfigurable architectures

for bio-sequence database scanning on FPGAs. IEEE Transac-
tions on Circuits and Systems II: Express Briefs 2005, 52(12):851-855.

4. Li ITS, Shum W, Truong K: 160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array
(FPGA). BMC Bioinformatics 2007, 8:185.

5. Farrar M: Striped Smith-Waterman speeds database searches
six times over other SIMD implementations. Bioinformatics
2007, 23(2):156-161.

6. Liu W, Schmidt B, Voss G, Muller-Wittig W: Streaming Algo-
rithms for Biological Sequence Alignment on GPUs. IEEE
Transactions on Parallel and Distributed Systems 2007.

7. Manavski SA, Valle G: CUDA compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence align-
ment. BMC Bioinformatics 2008, 9:.

8. Rognes T, Seeberg E: Six-fold speed-up of Smith-Waterman
sequence database searches using parallel processing on
common microprocessors. Bioinformatics 2000, 16(8):699-706.

9. Wozniak A: Using video-oriented instructions to speed up
sequence comparison. Comput Appl Biosci 1997, 13(2):145-150.

10. Liu W, Schmidt B, Voss G, Schroder A, Muller-Wittig W: Bio-
sequence database scanning on a GPU. 20th International Parallel
and Distributed Processing Symposium, IPDPS 2006.

11. Pham D, Behnen E, Bolliger M, Hofstee HP, Johns C, Kahle J, Kam-
eyama A, Keaty J, Le B, Masubuchi Y, et al.: The design methodol-
ogy and implementation of a first-generation CELL
processor: a multi-core SoC. Proceedings of the IEEE 2005 Custom
Integrated Circuits Conference: 2005; San Jose, CA, USA: IEEE 2005:45-49.
BN – 40 7803 9023 7807.

12. Gotoh O: An improved algorithm for matching biological
sequences. J Mol Biol 1982, 162(3):705-708.

13. Durbin R, et al.: Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University
Press, Cambridge; 1998.

14. Kahle JA, Day MN, Hofstee HP, Johns CR, Maeurer TR, Shippy D:
Introduction to the Cell multiprocessor. IBM Journal of Research
and Development 2005, 49(4–5):589-604.

15. Pande V: Folding@Home: Using Worldwide distributed com-
puting to break fundamental barriers in molecular simula-
tion. Proceedings of the IEEE International Symposium on High
Performance Distributed Computing: 2006 2006:4.

16. Sachdeva V, Kistler M, Speight E, Tzeng T-HK: Exploring the viabil-
ity of the Cell Broadband Engine for bioinformatics applica-
tions. IEEE International Parallel and Distributed Processing Symposium:
2007; Long Beach, CA, USA: IEEE 2007:8.

17. Stamatakis A, Blagojevic F, Nikolopoulos DS, Antonopoulos CD:
Exploring new search algorithms and hardware for phyloge-
netics: RAxML meets the IBM cell. Journal of VLSI Signal Process-
ing Systems for Signal, Image, and Video Technology 2007,
48(3):271-286.

18. International Business Machines: Software Development Kit 2.1
Accelerated Library Framework Programmer's Guide and
API Reference, Version 1.1. IBM developerWorks; 2007.

19. IBM: C/C++ Language Extensions for Cell Broadband Engine
Architecture v.2.5. IBM developerWorks; 2008.

20. Pearson WR: Searching protein sequence libraries: Compari-
son of the sensitivity and selectivity of the Smith-Waterman
and FASTA algorithms. Genomics 1991, 11(3):635-650.

21. Pearson WR: Rapid and sensitive sequence comparison with
FASTP and FASTA. Methods in Enzymology 1990, 183:63-98.

Additional file 1
The file is the compressed source code for the CBESW.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-377-S1.gz]

Additional file 2
This file is specific to Linux and must be run in a Linux environment
The file is the executable file for CBESW. The command to run it is ./
CBESW.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-377-S2.gz]

Additional file 3
Readme file for CBESW file.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-377-S3.docx]
Page 10 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-377-S1.gz
http://www.biomedcentral.com/content/supplementary/1471-2105-9-377-S2.gz
http://www.biomedcentral.com/content/supplementary/1471-2105-9-377-S3.docx
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17555593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17555593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17555593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17110365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17110365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18387198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18387198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18387198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9146961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9146961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7166760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7166760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1774068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1774068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1774068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2156132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2156132
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	The Smith-Waterman Algorithm
	Cell Broadband Engine Architecture

	Methods
	Cell BE Mapping
	Query Profile
	Saturation Arithmetic

	Results and discussion
	Conclusion
	Availability and requirements
	Abbreviations
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

