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Abstract
Background: Understanding how proteins fold is essential to our quest in discovering how life
works at the molecular level. Current computation power enables researchers to produce a huge
amount of folding simulation data. Hence there is a pressing need to be able to interpret and
identify novel folding features from them.

Results: In this paper, we model each folding trajectory as a multi-dimensional curve. We then
develop an effective multiple curve comparison (MCC) algorithm, called the enhanced partial order
(EPO) algorithm, to extract features from a set of diverse folding trajectories, including both
successful and unsuccessful simulation runs. The EPO algorithm addresses several new challenges
presented by comparing high dimensional curves coming from folding trajectories. A detailed case
study on miniprotein Trp-cage [1] demonstrates that our algorithm can detect similarities at rather
low level, and extract biologically meaningful folding events.

Conclusion: The EPO algorithm is general and applicable to a wide range of applications. We
demonstrate its generality and effectiveness by applying it to aligning multiple protein structures
with low similarities. For user's convenience, we provide a web server for the algorithm at http://
db.cse.ohio-state.edu/EPO.

Background
Proteins are the main agents in cells. From a chemical
point of view, a protein molecule is a linear sequence of
amino acids. This linear sequence, under appropriate
physicochemical conditions, folds into a unique native
structure rapidly. Understanding folding process is of par-
amount importance, especially since the outcome of it,
namely the three dimensional protein structure, to a large
extent decides the functionality of the molecule. Hence a
lot of research has been devoted to investigating the kinet-
ics of protein folding. In particular, modern (parallel)

computation power makes it possible to perform large-
scale folding simulations. As a result, interpreting the
huge amount of simulation data obtained becomes a cru-
cial issue.

Given the highly stochastic nature of the protein motion,
the study of protein fold usually relies on an ensemble of
folding simulations including both successful and unsuc-
cessful runs, which are trajectories that do or do not
include a sequence of conformations leading to a near
native conformation. Given such a diverse data set, scien-
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tists wish to answer questions such as what causes the
folding process falling into different results, and what
common properties are shared by the successful runs, but
not the unsuccessful ones? To this end, it is highly desira-
ble to be able to compare multiple folding trajectories and
extract useful information from them.

In this paper, we model each protein folding trajectory as
a multi-dimensional curve, and then present a novel mul-
tiple-curve comparison (MCC) algorithm to identify criti-
cal information from a set of trajectory curves in an
automatic manner. In particular, we focus on the geome-
try of protein chain conformations throughout the fold-
ing process, and convert each conformation into a high
dimensional point. The goal is to extract lists of ordered
events common to successful runs but not to unsuccessful
ones, such as discovering that a conformation B is always
formed after A and followed by a conformation C before
reaching a successful folding conformation. (Conforma-
tions A, B, and C may not be consecutive.) To this end, we
develop an effective new multiple curves comparison
algorithm called the enhanced partial order (EPO) algo-
rithm, to capture similarities and dis-similarities between
a set of input folding trajectories. The EPO algorithm is
developed over the concept of POA (partial order align-
ment) [2,3], but is greatly improved and extended in sev-
eral aspects, especially in its sensitivity in detecting low
level of similarity and its capability of handling high
dimensional curves. Applying it to the folding trajectories
of a miniprotein Trp-cage [1] shows that our algorithm is
able to automatically detect important critical folding
events which are observed earlier [4] by biological meth-
ods. Our EPO algorithm is general, and we demonstrate
its generality and effectiveness by also applying it to align-
ing multiple protein structures with low similarities.

Related work
Previously, folding simulations analysis is performed
mainly for testing various protein folding models [5-7],
such as the folding pathway model and the funnel model;
and/or for studying energetic aspects of folding kinetics
[8-11]. The geometric shapes of the conformations
involved in folding trajectories have not been widely
explored [4,12,13], despite their important role in fold-
ing. A particularly interesting work in this direction is by
Ota et al. [4], where they investigated the folding trajecto-
ries of a mini-protein Trp-cage using phylogenic tree com-
bined with expert knowledge. However in general, an
automatic tool to facilitate the folding simulations analy-
sis at large scales is still missing. This paper provides an
important step towards this goal by modeling folding tra-
jectories as curves and using a new multiple curve compar-
ison (MCC) algorithm to detect critical folding events.

The closest relative of our MCC problem in computa-
tional biology is the multiple structure alignment (MSTA)

problem, which aims at aligning a family of protein struc-
tures, each modeled as a three dimensional polygonal
curve to represent its backbone.

MSTA is a very hard problem. In fact, even the pairwise
comparison problem of aligning two structures A and B is
believed to be NP-hard since one has to optimize simulta-
neously both the correspondence between A and B and
the relative transformation of one structure with respect to
the other. Numerous heuristic-based algorithms have
been developed in practice for this fundamental problem
[14-20]. If we have a set of k > 0 structures, then even the
problem of aligning them optimally without considering
transformations becomes intractable – it takes Ω(nk) time
using the standard dynamic programming algorithm,
where n is the size of each protein involved.

In practice, progressive methods are widely used to attack
the MSTA problem [21]. For example, given a set of struc-
tures, many approaches start with a seed structure and
then progressively align the remaining structures onto it
one by one [22-28]. A consensus or core structure is typi-
cally built throughout, to maintain the common substruc-
tures among the proteins that are already aligned. At each
round, usually only pairwise structure comparison is per-
formed to align the current consensus with a new struc-
ture.

The above progressive MSTA framework is a greedy
approach. Its performance depends on the underlying
pairwise comparison methods used, the order of struc-
tures that are progressively aligned, as well as the consen-
sus structure maintained. Various heuristics have been
exploited to find a good order for the progressive align-
ments. Note that this order can also be guided by a tree
instead of a linear sequence, which removes the need of
choosing a seed structure. The progressive procedure may
also be iterated several times to locally refine the multiple
structure alignments.

Our results
There are two main differences between the MCC prob-
lem we are interested in and the traditional MSTA prob-
lem. In the case of protein structures, it is usually explicitly
or implicitly assumed that the (majority of the) input pro-
teins belong to one family (How to classify a set of input
structures into different families is a related problem, and
many such classifications exist [17,29,30]), or at least
share some relations. As such, one can expect that some
consensus of the family should exist. However in our case,
the set of curves are from a set of simulations including
both successful and unsuccessful runs, and we wish to
classify this diverse set of curves, and capture common fea-
tures within as well as across its sub-families. Secondly
and more importantly, the level of similarity existing in
these folding trajectories is usually much lower than that
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in a family of related proteins. Hence we aim at an algo-
rithm with high sensitivity, which is able to detect small-
scaled partial similarity and handle multi-dimensional
curves (trajectories) as well.

In this paper, we propose and develop a sensitive MCC
algorithm, called the EPO (enhanced partial order) algo-
rithm, to compare a set of diverse high dimensional
curves. Our algorithm follows a similar framework as the
POA algorithm [3,28] to encode the similarities of aligned
curves in a partial order graph, instead of in a linear struc-
ture used by many traditional MSTA algorithms. This has
the advantage that other than similarities among all
curves, similarities among a subset of input curves can
also be encoded in this graph. See Figure 1 for an example,
where nodes in both graphs represent a group of aligned
points from input curves.

For the more important problem of sensitivity, we observe
that being a greedy approach, the progressive MSTA
framework tends to be inherently insensitive to low level
of similarities – if one early local decision is wrong, it may
completely miss a small-scaled partial similarity. To
improve this aspect of the performance of the progressive
framework, we first propose a novel two-level scoring
function to measure similarity, which, together with a
clustering idea, greatly enhances the quality of the local
pairwise alignment produced at each round. We then
develop an effective merging step to post-process the
obtained alignments. This step helps to reassemble verti-
ces (high dimensional points) from input curves that
should be matched together, but were scattered in several
sub-clusters in the alignments due to some earlier non-
optimal decisions. Both techniques are general and can be
used to improve the performance of many existing MSTA
algorithms. Experimental results show that our MCC algo-
rithm is highly sensitive and able to classify input curves.
We also demonstrate the power of our tool in mining crit-

ical events from protein folding trajectories using a
detailed case study of a miniprotein Trp-cage.

Although our EPO algorithm is developed with the goal of
comparing folding trajectories, the algorithm is general
and can be applied to other domains as well, such as pro-
tein structures or pedestrian trajectories extracted from
surveillance videos [31]. In particular, in this paper, we
demonstrate this generality by showing that the EPO algo-
rithm can be used to improve the results of existing mul-
tiple protein structure alignment algorithms, especially
when input proteins share low structural similarity.

Results
Experimental Results on trajectory data
In this section, we report a systematic performance study
on a biological dataset that contains 200 molecular
dynamics simulations. The experiments achieve the fol-
lowing goals: First, we show that the quality of the align-
ments produced by our EPO algorithm is significantly
better than that of the original POA algorithm. Second, we
demonstrate the effectiveness of our algorithm by apply-
ing it to real protein simulation data and obtaining bio-
logically meaningful results that are consistent with
previous discoveries [4].

Background of dataset
Our input dataset includes 200 simulated folding trajecto-
ries for a particular protein called Trp-cage. The dataset is
provided by the Ota's Lab [4]. The folding simulations
were performed at 325 K by using the AMBER99 force
field with a small modification and the generalized Born
implicit solvent model. Trp-cage (see Figure 2) is a mini-
protein consisting of 20 amino acids. It has been widely
used for folding study because of its short, simple
sequence and its quick folding kinetics. Following the def-
inition from [32], a successful folding event has to satisfy
the following two criteria:

Linear graph vs. partial order graphFigure 1
Linear graph vs. partial order graph. Aligning five trajectories (IDs 1 to 5) using (a) a linear graph, and (b) a partial order 
graph. Symbols in the circles are the node IDs and numbers on edges are trajectory IDs. Note that the linear alignment in (a) 
will not be able to record the partial similarity between curves 3 and 4, which is maintained in (b) (i.e, node d).
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• The RMSD for a conformation from the native NMR
structure [1] is less than 2 Å.

• A subsequence of such near-native conformations holds
for at least 200 ps.

In [4], 58 successful folding trajectories reaching success-
ful folding events are identified, and each trajectory
includes 101 successive conformations sampled at 20 ps
interval. Furthermore, there are two crucial observations
in [4] that we will examine in the our experiment. First,
before moving to the native conformation, a "ring" sub-
structure (see Figure 2) has to be formed. Second, the dis-
tinction of native and pseudonative confirmations heavily
relies on side-chain position of "ring" sub-structure. Ota
et al. [4] obtained the above results by aligning each pair
of trajectories first and then applying a neighbor joining
method to group similar trajectories together. However
this semi-automatic approach requires dedicated expert
knowledge. The following experiments applied on the
same dataset show that our EPO algorithm can automati-
cally detect the above folding events with little prior
knowledge.

Experimental setting
In order to be consistent with the results from [4], we
select all 58 successful folding events, and call it SuccData.
We also randomly select 58 unsuccessful folding trajecto-
ries, each containing 101 conformations, and collect them
in a set called FailData. The union of successful and unsuc-
cessful data is referred to as the MixData. There are two
parameters used in our experiments: ε, and τ. They are set
as ε = 1 Å and τ = 40 in all our experiments unless speci-
fied otherwise. Their meaning will be explained in Section
3 Method.

Investigation on entire protein structure
In the first set of experiments, we convert each conforma-
tion to a high dimensional point (i.e, a 20 × 20 = 400
dimensional point), based on the distance matrix
between all of the alpha-carbon atoms. Figure 3 compares
the quality of the alignments of the SuccData by perform-
ing the POA algorithm, our EPO algorithm without the
merging procedure (EPO-NoMerge), and the EPO algo-
rithm. It shows the number of aligned nodes (y-axis) ver-
sus the size of aligned nodes (x-axis). Note that EPO-
NoMerge is essentially POA with a clustering preprocess-
ing and the new two-level scoring function.

The similarity level between these trajectories is low (i.e,
the number of aligned nodes with large size is small). It is
clear from this histogram that our EPO algorithm signifi-
cantly outperforms the other two by producing more
aligned nodes with large sizes. The comparison between
EPO and EPO-NoMerge demonstrates the effectiveness of
our merging procedure, and that EPO-NoMerge is better

NMR structure of trp-cage protein 1l2yFigure 2
NMR structure of trp-cage protein 1l2y. Labels on graph 
mark amino acids(AAs). AA2 to AA7 roughly form an alpha-
helix. AA2 to AA19 form a ring-type structure. In particular, 
AA2 to AA5 and AA16 to AA19 form the "neck" of this ring.

Comparison of EPO, EPO-NoMerge and POAFigure 3
Comparison of EPO, EPO-NoMerge and POA. Distri-
bution of aligned nodes produced by the EPO algorithm, 
EPO-NoMerge (i.e, first stage of the EPO algorithm), and the 
traditional POA algorithm. The histogram is the number of 
aligned nodes (y-axis) versus the size of aligned nodes (x-
axis).
Page 4 of 13
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1l2y
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1l2y


BMC Bioinformatics 2008, 9:344 http://www.biomedcentral.com/1471-2105/9/344
than POA shows that the two-level scoring function as well
as the clustering preprocessing greatly enhances the perform-
ance. We have also performed experiments which show
that compared to the POA algorithm, EPO-NoMerge is
much less sensitive to the order of curves aligned. Com-
parisons of the three algorithms over the MixData pro-
duces a similar result, and majority of points aligned to
heavy nodes (i.e, |o| ≥ 40) are from successful runs (the
results are not shown in this report).

We also observe that most of the heavily aligned nodes are
close to the end of the trajectories for the SuccData. In fact,
many aligned points have conformation IDs around and
greater than 90, which is indeed the time that the folding
starts to get stabilized. More specifically, consider the set
of aligned nodes of size greater than 40 for the SuccData.
Among all points aligned to these nodes, 67.2% has a con-
formation ID greater than 90, and 24.4% has an ID
between 80 and 90. This implies that our algorithm has
the potential to detect the stabilization of successful fold-
ing events in an automatic manner.

This also implies that using the entire protein structure
may be too coarse to detect critical folding events, as they
are usually induced by small key motifs. In what follows,
we map only a substructure of the input protein into a
multi-dimensional point and provide more detailed anal-
ysis of this folding data.

Investigation on substructures
It is usually believed that certain critical motifs play
important roles which stabilize the whole structure in the
folding process [6,7]. We wish to have a tool that can
identify such critical motifs (substructures) automatically.
We define a candidate motif to be two subchains of Trp-
cage, each of length 4. These two pieces induce a sub-win-
dow in the distance map of each conformation of the pro-
tein. We further require that the number of contacts in this
subwindow w.r.t. the distance map of the native structure
is at least 4, where a contact corresponds to two alpha-car-
bon atoms within distance 6 Å. We collect a set of candi-
date motifs based on these criteria.

Now for a candidate motif, for each of its conformation of
along the trajectory, we consider the distance matrix
between its alpha-carbon atoms as before, and convert the
folding trajectory of this motif into a curve in the 4 × 4 =
16 dimensional space. In order to be more discriminative,
we also introduce a side-chain weighting factor α, ranging
from 0 to 1, to include the side chain information when
comparing two high dimensional points: α = 0 means that
side-chain information is completely ignored (Roughly
speaking, for every conformation, we record for each resi-
due also the relative position of the centroid of its side-
chain with respect to its alpha-carbon atom. This provides

another high dimensional point that we call a side-chain
point. The distance between two conformations will com-
bine the distance between their side-chain points by the
side-chain weighting factor). We perform our EPO algo-
rithm on both the SuccData and the MixData, and there
are two motifs that especially stand out, which we
describe below.

Alpha-helix substructure
The first one corresponds to an alpha-helix substructure.
In Figure 2, five successive amino acids (No.2–7) form an
alpha-helix structure which is a simple, self-contained sec-
ondary structure (SSE) [1]. From the results returned by
our EPO algorithm, we note that this alpha-helix is
formed rather early consistently in both successful and
unsuccessful runs. Once formed, it remains stable. This is
consistent with the common conception that due to its
chemical property, alpha-helix is a stable secondary struc-
ture, and can be formed quickly. Hence the formation of
alpha-helix cannot be used to differentiate successful runs
from unsuccessful ones.

Ring-substructure
The second motif corresponds to the neck of a ring struc-
ture. In particular, it consists of the sub-chains of No. 2 –
5 and No. 16 – 19 amino acids. The following results
demonstrate that EPO can automatically not only find but
also track the formation of such fingerprint sub-structures
(critical motif).

First, we observe from Table 1 that when applying the
EPO algorithm to the MixData (with the sidechain weight
factor α = 0.9), signifificant alignments involve mainly
trajectories from SuccData. For example, the last row of
Table 1 shows that among the 62 points (from 62 trajec-
tories) aligned to a particular node, 58 are from SuccData,
with the remaining 4 from FailData. Hence this motif is
potentially critical to the success of the folding of Trp-
cage. It also suggests that we can automatically classify the
MixData into SuccData and FailData with few false posi-
tives based on this ring-neck motif, while previously, the
classification in the input data was obtained by a few
expert defined rules.

Second, when the side-chain weighting factor α = 0.9, it
turns out that 49.6% of significant aligned nodes are
formed before the conformation ID 85 (compared to
results from Section). For example, there are two aligned
nodes from the successful runs, where 80% of points (i.e.
trajectories) aligned to them has a conformation ID
between 75 – 85. This implies that the complete forma-
tion of this ring-neck usually immediately precedes the
stabilization of the folding structure (which is roughly at
conformation ID 90 for successful trajectories).
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If reducing the side-chain weighting factor α to 0.5, natu-
rally, we found more aligned nodes. In particular, other
than the cluster with conformations of IDs around 80, we
observe more significant clusters involving conformations
with IDs from 50–70. By comparing the conformations of
the ring-neck motif in these clusters with those in the
aligned nodes around 80, we found that the backbone
structures are rather similar, but the side-chains are of dif-
ferent orientations. In other words, the shape of the ring-
neck motif is first stabilized by the backbone structure,
and then the side-chains gradually move into right posi-
tion. There are a few trajectories where the side-chains
eventually move to the mirror image of their correct posi-

tions, and lead to pseudo-native conformations which can
be detected when considering the side-chains.

Figure 4 displays several groups of critical events identi-
fied by the EPO algorithm (corresponding to the aligned
nodes as shown in Table 1). In particular, 4(a) includes
two closely occurred events during the early stage of the
folding procedure (one of the conformations is selected
from the aligned node 1, and the other one is from
aligned-node 2). At this time, the sequence has started to
fold and one can observe the helical structure, but the ring
is not yet formed. 4(b) presents two conformations repre-
senting aligned nodes 3 and 4, respectively. We observe
that the ring has started to form at this point, but is still
not stable. 4(c) shows several conformations (one each
from aligned nodes 5 to 15) occurred in order in most suc-
cessful runs. At this stage, the ring is adjusted and stabi-
lized. The adjustment mainly happens around the turn
area and for side chains. 4(d) shows the final successful
structure.

The above results are consistent with the results from [4],
where such a ring-shaped substructure was discovered
semi-automatically by pairwise structure comparisons
together with expert knowledge.

Timing of EPO
The above experiments are implemented on a Windows
XP machine with 1.5 GHz CPU and 512 MB Memory.
Table 2 compared the running time of the three methods:
EPO, EPO without merging, and the POA algorithm (re-
implemented by us). The EPO algorithm is faster than the
traditional POA algorithm. This is because EPO pre-proc-
esses all points from input curves by clustering them into
groups and only creates a new aligned node if it has a
good potential to be heavily aligned. Thus it is not surpris-
ing that the EPO algorithm takes less time in aligning Fail-
data than SuccData, while the POA algorithm takes longer

Table 1: EPO on ring structure(MixData).

Classification

Aligned Node ID |oi| ≥ τ SuccData FailData D(o) Å

1 49 27 22 1.852
2 45 28 17 1.798
3 41 29 12 2.189
4 40 31 9 1.447
5 48 31 16 1.761
6 40 32 8 1.322
7 47 34 13 1.133
8 42 35 7 1.923
9 44 36 8 0.873

10 49 42 7 1.428
11 54 48 6 1.020
12 59 50 9 1.294
13 60 51 9 0.932
14 56 52 4 1.255
15 62 56 6 1.782
16 62 58 4 1.503

Column 2 – 4 shows the size of an aligned node (i.e, the number of 
points aligned to this node) from MixData, SuccData, and FailData, 
respectively. Column 4 shows the diameter of this node (note that 
the distance threshold ε = 1 Å means that the diameter of a node can 
be up to 2 Å).

Folding eventsFigure 4
Folding events. Visualizing of vital events listed the Table 1 during the folding procedure. Purple: α-helix, blue: 3 – 10-helix, 
cyan: turn, lime: coil. Corresponding to the Table 1, the alignment node IDs in: (a)-(1, 2), (b)-(3, 4), (c)-(5–15), (d)-(16).
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time (as it creates a lot of aligned nodes, leading to large
partial order graphs). This interesting property implies
that the EPO algorithm is effective at aligning curves with
low level of similarities.

Experimental Results on protein structure data
Although the EPO algorithm was primarily developed for
multiple high dimensional trajectories alignment, it can
be used to improve multiple protein structures alignment
as well. In particular, assume that we are given an align-
ment of a set of protein structures, that is, a transforma-
tion for each protein involved, as well as the
correspondences between their residues. We can apply our
EPO algorithm to further improve the correspondences
based on the given transformations. We now use the EPO
algorithm to refine the correspondences returned by four
current popular multiple structure alignment algorithms:
CE-ME [23], Multiprot [33], MAMMOTH [34] and POSA
[28]. Table 3 shows our testing data set, which are the
common sets used in previous multiple protein structure
comparison algorithms. Set 1 contains several Calcium-
binding proteins that have rather similar structures. Set 2
and set 3 contain a more diverse set of calmodulin-like
proteins and tim-barrels proteins, respectively.

Table 4 shows the results of applying EPO to the align-
ments of Calcium-binding proteins (set 1) as returned by
other MSTA algorithms. "NCORE" refers to the number of
residues aligned from each protein and "RMSD" refers to
average root-mean square deviation of the aligned core.
Note that as the six proteins in the data set have very sim-

ilar structures, most algorithms can already align them
rather well. Nevertheless, EPO still marginally improve
the quantity and quality of alignment except for a slight
increase in the RMSD when applied to the alignment
returned by MAMMOTH. We test the EPO results by dif-
ferent ordering of input proteins. The results are consist-
ent, which suggests that our EPO algorithm is robust.

Table 5 and 6 show the results of applying the EPO refine-
ment to two structurally-diverse sets of proteins whose
structural cores are harder to detect. There are notable
improvements in terms of both quantity and quality.

In summary, the above results are similar to the case of
comparing multiple folding trajectories. In particular, the
two-stage scoring function exploited by our EPO algo-
rithm is effective and alleviates the ordering issue in pro-
gressive MSTA. The merging stage helps to produce better
correspondences between input structures and makes the
algorithm robust. Hence the EPO algorithm can be used
as a post-processing tool for current MSTA softwares to
refine and optimize their alignment results.

Discussion and conclusion
In this paper we proposed and developed EPO, an effec-
tive multiple curve comparison method. Our primary goal
is to analyze protein folding trajectories, although the
algorithm is general, and can be applied to compare mul-
tiple protein structures as well. Our new method greatly
improved the performance of the POA algorithm by using
a clustering preprocessing, a more discriminative two-
level scoring function, as well as a novel merging post-
processing procedure. It can detect low level of similarity
among input curves. We demonstrated the effectiveness of
our method by applying it to a set of simulated folding
trajectories of the miniprotein Trp-cage. We also show the
generality of our algorithm by using it to post-process the
results returned by several current multiple protein struc-
ture alignment (MTSA) algorithms.

Currently, we have only experimented the EPO algorithm
with a mini-protein (Trp-cage). One immediate question
is to understand the scalability of the EPO algorithm for
larger proteins or longer trajectories. In particular, a larger
protein means a curve of higher dimensions. Our EPO

Table 2: Comparing processing-time.

MixData SuccData Faildata

unit = Min.

EPO ≈ 30 ≈ 14 ≈ 7
EPO w/o merging ≈ 26 ≈ 12 ≈ 6

POA ≈ 49 ≈ 23 ≈ 33

Comparing processing-time by the EPO algorithm, EPO-NoMerge 
and the traditional POA algorithm in three datsets. MixData includes 
116 trajectories, SuccData includes 58 trajectories and FailData 
includes 58 trajectories.

Table 3: Protein structural data set. "Average Size" is the average number of residues in each protein.

Data Set ID Number of Structures Average Size PDB Codes

Set 1
Calcium-binding 6 140 4cpv2scpA2sas1top1scmB3icb

Set 2
Calmodulin-like 3 161 1jfjA1ncx2sas

Set 3
Tim-barrels 7 391 1btc1pii1tml4enl5rubA6xia7timA
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algorithm seems to scale linearly with the number of par-
ticipated trajectories, from current experiments. Further-
more, in practice, it is likely that we only perform the
algorithm on small motifs. For longer trajectories, it seems
that our algorithm scales in a quadratic manner. However,
further experiments are necessary to investigate the scala-
bility issue.

There are some previous work that analyze protein folding
trajectories by collecting various statistics on measures
such as the contact number (i.e, the number of native con-
tacts) of each conformation along a trajectory and the
URMS distance between a conformation and the native
structure [13]. One way to view this is that a trajectory is
mapped into a time-series data representing the evolution
of, say, the number of native contacts, which can be con-
sidered as a one-dimensional curve. In this regard, we can
use our EPO algorithm to analyze a collection of such
curves induced by one measure. In general, there may be
multiple measures, geometric or physio-chemical, that a
user may wish to inspect. Hence it is highly desirable to
build a framework for analyzing folding trajectories that
can incorporate these multiple measures, and that also
enables the addition of new properties easily. This is one
important future direction for us.

Finally, at this stage, the EPO algorithm can only be used
to find the best correspondences between (multiple)
curves (protein structures) for fixed transformations. That
is why current experiments in Section 5 only use the EPO
to refine the MSTA results by other algorithms (so that
there are good initial transformations). We are currently
developing an independent MSTA software to align mul-

tiple protein structures based on the EPO algorithm (i.e,
solving both the alignment and the superimposition
problems). We also remark that compared to other multi-
ple curve alignment algorithms, our algorithm is specifi-
cally effective at capturing low level of similarities. As
such, another important future direction is to extract
structural motifs from a family of proteins that may not
share high global similarity.

Methods
In this section, we describe our EPO algorithm for com-
paring a set of possibly high dimensional general curves. If
we are given a set of protein folding data, we first convert
each folding trajectory to a high dimensional curve. In
particular, a folding trajectory is a sequence of conforma-
tions (structures) of a protein chain, representing different
states of this protein at different time steps during the sim-
ulation of its folding process. We represent each confor-
mation using the distance map between its alpha-carbon
atoms so that it is invariant under rigid transformations.
For example, if a protein contains n amino acids, then its
distance map is a n × n matrix M where M [i] [j] equals the
distance between the ith and jth alpha-carbon atoms
along the protein backbone. This matrix can then be con-
sidered as a point in the n2 dimensions. This way, we map

each trajectory of m conformations to a curve in  with
m vertices. We remark that one can also encode the side-
chain information into the high dimensional curves, or
map the trajectory of a substructure into a high dimen-
sional curve. We will use such more refined high dimen-
sional curves in most of our experiments as well. In the
remaining part of this paper, we use the terms trajectories
and curves interchangeably.

Notations and algorithm overview

Before we formally define the MCC problem, we intro-
duce some necessary notations. Given a set of elements V
= {v1,..., vl}, a relation  over V is transitive if vi vj and vj

vk imply that vi vk. In this paper, we also refer to vi vj

as a partial order constraint. A partial order graph (POG) G =

Rn2

a a

a a a

Table 4: Results of refinement on calcium-binding proteins(Set 
1) across 4 algorithms.

Before EPO refinement After EPO refinement

NCORE RMSD NCORE RMSD

CE-MC 57 3.02 Å 63 2.80 Å
Multiprot 48 1.66 Å 52 1.56 Å

MAMMOTH 14 1.01 Å 15 1.09 Å
POSA 56 2.82 Å 59 2.78 Å

Table 5: Results of refinement on calmodulin-like proteins(set 2) 
across 4 algorithms.

Before EPO refinement After EPO refinement

NCORE RMSD NCORE RMSD

CE-MC 62 5.85 Å 77 4.77 Å
Multiprot 56 1.93 Å 60 1.90 Å

MAMMOTH 15 0.94 Å 17 0.85 Å
POSA 65 2.67 Å 68 2.34 Å

Table 6: Results of refinement on tim-barrels proteins(Set 3) 
across 2 algorithms(CE-MC and MAMMOTH failed to return any 
aligned core).

Before EPO refinement After EPO refinement

NCORE RMSD(Å) NCORE RMSD(Å)

Multiprot 24 1.82 29 1.83
POSA 40 3.6 50 3.22
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(V, E) is a directed acyclic graph with V = {v1,..., vl}, where

vi vj if there is an edge (vi, vj). Note that by the transitivity

of this relation, two nodes may have a partial order con-
straint even when there is no edge between them in G. Let
R be the set of partial order constraints induced by G. We

say that a permutation Π(V) of V is a partial order list w.r.t.

G if for any vi vj ∈ R, we have that vi appears before vj in

the permutation Π(V). In other words, the linear order in

Π(V) is a total order satisfying all partial order constraints
induced from G. See Figure 5 for an example.

Let  = {T1,..., TN} be a set of N trajectories in Rd, where

each trajectory Ti is an ordered sequence of n points

. (For simplicity, we assume without loss of gen-

erality that all Tis have the same length n.) The goal of the

MCC algorithm is to find aligned sub-sequences from .

More formally, an aligned node o is a collection of vertices
from Tis, with at most one point from each Ti. Given a 3-

tuple ( , τ, ε), where τ and ε are input thresholds, an

alignment of  is a POG G with the corresponding set of
partial order constraints R and a partial order list of
aligned nodes  = {o1,..., oL} such that the following

three criteria are satisfied:

C1. |ok| ≥ τ, for any k ∈ [1, L];

C2. for any , ;

C3. if  and  with , then j <j'.

(C1) indicates that the number of vertices of input curves
aligned to each aligned node ok is greater than a size thresh-

old τ . (C2) means that these aligned points are tightly
clustered together (i.e, the diameter of them is bounded

by a distance threshold ε). (C3) enforces that points in dif-
ferent aligned nodes still maintain their partial order
along their respective trajectory, which means that oks are

inherited and thus consistent to the points in each trajec-
tory. Our goal is to maximize L, the size of such an align-
ment . See Figure 6(b) for an example of an alignment
graph.

Algorithm overview

At a high level, the EPO algorithm has two stages (see Fig-
ure 6): (S1) initial POG construction stage and (S2) merg-
ing stage. The first stage generates an initial alignment for

, encoded in a POG G. The procedure has the same
framework as the POA algorithm, but its performance,
especially when the similarity is low, is significantly
improved, via the use of a clustering preprocessing step
and a new two-level scoring function. In the second stage,
we develop a novel and effective procedure to merge
nodes from G to output a better final alignment G*.
Below, we describe each stage in detail.

Initial POG construction
Standard dynamic programming (DP) [35,36] is an effec-
tive method for pairwise comparison between sequences.
It produces an optimal alignment between two sequences
with respect to a given scoring function. One can perform
multiple sequences alignment progressively based on this
DP pairwise comparison method. Roughly speaking, in
the ith round of the algorithm, the alignment of the first i
– 1 sequences is represented in a consensus sequence. The
algorithm then updates this consensus by aligning it with
the ith sequence Si using the standard DP algorithm. Infor-
mation from Si that is not aligned to the consensus
sequence isessentially lost. See Figure 1(a).

The partial order alignment (POA) algorithm [3] allevi-
ates this problem by encoding the consensus in a POG
instead of a linear sequence (see Figure 1(b)). That is, the
alignment of S1,..., Si-1 is encoded in a partial order graph
Gi, which is then updated to Gi+1 by aligning it with Si.
Due to the partial order in a POG, the alignment between
Gi and Si can still be achieved by a DP algorithm. The POA
algorithm reduces the influence of the order of the
sequences aligned, and is able to capture alignments
between a subset of sequences. More details of the POA
algorithm and its variants can be found in [2,3].

a

a
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A POG G of 5 nodesFigure 5
A POG G of 5 nodes. Note that there is a partial order 
constraint a d even though there is no edge between 
them. Both 7 a, b, c, d, e8 and 7a, c, b, d, e8 are valid partial 
order lists w.r.t. G.
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In our case, each trajectory is mapped to an ordered
sequence of points (i.e, a polygonal curve), and a similar
algorithm can be applied to our trajectory data: Instead of
the usual 1D sequences, we now have dD sequences,
where d is the dimension of each point. Note that since
each point corresponds to the distance map of a confor-
mation, no transformation is needed when comparing
such curves. The first stage of our EPO algorithm con-
structs a POG G with respect to the input set of trajectories

 using a modified POA algorithm. Below we explain
the main differences between them.

A clustering preprocessing stage
The first problem with the standard POA algorithm is that
the size of the POG graph maintained expands quickly
when the level of similarity is low. For example, suppose
we are updating the current POG Gi to Gi+1 by aligning it
with a new curve Ti. If a point p ∈ Ti cannot be aligned to
any node in Gi, then it will create a new node in Gi+1, as
this node may potentially be aligned later with the
remaining curves. Consequently, if the similarity is sparse,
many new nodes are created without really producing
densely aligned nodes later and the size of the POG graph
increases rapidly. This induces high computational com-
plexity.

To address this problem, our algorithm first preprocesses
all points from the input curves  by clustering them
into groups [37], the diameter of which is smaller than a
user defined threshold, which is fixed as the distance

threshold ε in our experiments. According to the cluster-
ing result, we only keep those points that belong to a clus-

ter holding more than τ curves' points in it. For example,

if the threshold is τ = 3 (i.e, we require each aligned node

aligns points from at least 3 curves), we will prune out the
points in such clusters that cover less than 3 curves. Mean-
while we collect cluster centers in C = {c1,..., cr}, which we

refer to as the set of canonical cluster centers. Intuitively, C
provides a synopsis of the input curves and represents
potentially aligned nodes.

If, in the process of aligning Ti with Gi, a point p ∈ Ti is not
aligned to any node in Gi, then we insert a new node in
Gi+1 only if p is within ε away from some canonical center
from C – if p is far from all the canonical cluster centers,
then there is little chance that p can form significant align-
ment with points from later curves, as that would have
implied that p should belong to a dense cluster. We
remark that this set of canonical cluster centers are not only
used for shrinking the size of POG, but also used as a pre-
dictor of the new two-stage scoring function that we will
introduce shortly. There is also further advantage of prun-
ing out unpromising points in the second merging stage
of the EPO algorithm.

Scoring function
The choice of the scoring function when aligning Gi = (Vi,
Ei) with Ti, is in general a crucial aspect of an alignment
algorithm. A good scoring function will align as many
points as possible globally. Given a point p ∈ Ti and a
node o ∈ Gi, let δ(o, p) be the similarity between p and o,
the definition of which will be described shortly. The score
of aligning p with o is usually defined as:
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POG constructionFigure 6
POG construction. Symbols inside the circles are the aligned node IDs. The table associated with each node encodes the set 
of points aligned to it. In particular, each row represents a point with its trajectory ID (T column) and its index along the tra-
jectory (S column). For example, the entry (1, 2) associated with node b in (a) means that the aligned node b currently include 

the point , the second point from trajectory-1. In (a), a POG is initialized by the trajectory T1. An example of a POG after 

aligning a few trajectories is shown in (b). Note that a new node/branch is created when a point cannot be aligned to any exist-

ing nodes. For example, node e was created when  (i.e, the 3rd point of T2) was inserted. (c) shows the POG after merging 

point  from the node b to the node e constrained by the distance threshold ε.
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where q is the parent of the point p along Ti, and o' ranges
over all immediate predecessors of o in the POG Gi. It is
easy to verify that such scores can be computed by a
dynamic programming procedure due to the inherent
order existing in both the trajectory and the POG.

A common way to define δ(o, p), the similarity between o
and p, is as follows. Assume that each node o is associated
with a node center ω (o) to represent all the points aligned
to this node. Then

An alternative way to view this is that each node o has an
influence region of radius ε around its center. A point p
can be aligned to a node o only if it lies within the influ-
ence region of o.

Natural choices for the node center ω(o) of o include using
an earlier computed canonical cluster center, or the center
of the minimum enclosing ball of points already aligned
to this node (or some weighted variants of it), which is a
dynamic point relying on alignment order. The advantage
of the former is that canonical cluster centers tend to
spread apart, which helps to increase coverage of aligned
nodes. Furthermore, the canonical cluster centers serve as
good candidates for node centers as we already know that
there are many points around them. The disadvantage is
that it does not consider the distribution of points already
aligned to this node. See Figure 7, where without consid-
ering the distribution of points aligned to oa and ob, the
new point p will be aligned to ob even though oa is a better
choice. Using the center of the minimum enclosing ball
alleviates this problem. However, the influence regions of

nodes produced this way tend to overlap much more than
using the canonical cluster centers and the position of
these centers also depend heavily on the order of curves
aligned. We combine the advantages of both approaches
into the following two-level scoring function for measur-
ing the similarity δ(o, p).

Specifically, for a node o, let q be the first point aligned to
this node. This means that at the time we were examining
q, q cannot be aligned to any existing node in the POG. Let
ck ∈ C be the nearest canonical cluster center of q – recall
that the node o was created because ||q – ck|| ≤ ε. We add
ck as a point aligned to this node, and at any time, the
center of the minimum enclosing ball of currently aligned
points, including ck, will be used as the node center ω(o).
Now let

be the diameter of points currently aligned to o. We define
that:

In other words, the new scoring function prefers centering
points to be around previously computed cluster centers,
thus tending to reduce overlaps between the influence
regions of different nodes. Furthermore, it gives higher
similarity score for points that are more tightly grouped
together with those already aligned at current node,
addressing the problem shown in Figure 7. Our experi-
mental tests have shown that this two level scoring func-
tion significantly outperforms the ones using either only
the canonical centers or only the centers of minimal
enclosing balls. We remark that it is possible to use vari-
ants of the above two-level scoring function, such as mak-
ing it continuous (instead of being a step function). We
choose the current form for its simplicity. Furthermore,
experiments show that there is only marginal difference if
we use the continuous version.

Merging stage
In the first stage, we have applied a progressive method to
align each trajectory onto an alignment graph one by one.
In the ith iteration, a point from Ti is either aligned to the
best matched node in the current POG Gi, or a new node
is created containing this point and the corresponding
canonical cluster center, or discarded. After processing all
of the N trajectories in order, we return a POG G = GN . In
the second stage of our EPO algorithm, we further
improve the quality of the alignment in G by using a novel
merging process.
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An example for scoring functionFigure 7
An example for scoring function. Empty and solid points 
are aligned to the nodes oa and ob, respectively. For a new 
point p (the star), although it is closer to ω(ob), it is better 
grouped with points aligned to oa. Hence ideally, it should be 
aligned to oa instead of to ob.
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Given the greedy nature of the POA algorithm, the align-
ment obtained in G is not optimal and depends on the
alignment order. Furthermore, since the influence regions
of different aligned-nodes may overlap, no matter how we
improve the scoring function, sometimes it is simply
ambiguous to decide locally where to align a new in-com-
ing point, and a wrong decision may have grave conse-
quence later.

For example, see Figure 8, where the set of points P
(enclosed in the dotted circle) should have been aligned
to one node. However, suppose the nodes oa and ob
already exist before any point in P is inserted.

Then as points from P come in, it is rather likely that they
are distributed evenly into both oa and ob. This problem
becomes much more severe in higher dimensions, where
P can be distributed to several nodes whose centers are
well-separated around P, but whose influence regions still
cover some points from P (the number of such regions
grows exponentially w.r.t. the dimension d). Hence
instead of being captured in one heavily aligned node, P
is broken into many nodes with small size. Our experi-
mental tests confirm that this is happening rather com-
monly in both standard and our modified POA
algorithms.

To address this problem, we propose a novel postprocess-
ing on G. The goal is to merge qualified points from
neighboring less-aligned nodes to augment more heavily
loaded nodes. In particular, the following two invariants
are maintained during the merging process:

(I1) At any time, the diameter of the target node is still
bounded by the distance threshold ε;

(I2) The partial order constraints induced by the POG
graph are always consistent with the order of points along
each trajectory.

The second criterion means that at any time in the POG

graph G', if p ∈ o1, q ∈ o2, p, q ∈ Ti and p precedes q along

the trajectory Ti, then either o1 o2, or there is no partial

order relation between them. In other words, the resulting
POG still corresponds to a valid alignment of  with
respect to the same thresholds.

As an example, see Figure 6, where the point  (i.e, the

second point of the trajectory T1) in the node b in (b) is

moved to the node e in (c). Note that the graph is also
updated to reflect the change (the dashed edge in (c)), in
order to maintain the invariants (I1) and (I2). When all
points aligned to a specific node o are merged (thus
moved) to other nodes (i.e, o becomes empty), we delete
o, and its successors in the POG will then become the suc-
cessors of its parent.

A high level pseudocode of the merging process is shown
in Figure 9. It augments better aligned nodes from the cur-
rent POG G by processing first the nodes with larger size.
We perform this procedure a few times till there is no sig-
nificant increase in the quality of the resulting alignment.
In practice, to speed up the algorithm, we merge neigh-
bors to a node o only if its size is greater than some thresh-
old (fixed at half of the size threshold, i.e, τ/2, in our
experiments), as otherwise, there is low probability that o
will become a heavy node later.
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An example for merging stageFigure 8
An example for merging stage. Empty and solid points 
are aligned to the nodes oa and ob, respectively, while points 
in the dotted region should be grouped together.
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