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Abstract

Background: Microarray analysis is an important area of bioinformatics. In the last few years,
biclustering has become one of the most popular methods for classifying data from microarrays.
Although biclustering can be used in any kind of classification problem, nowadays it is mostly used
for microarray data classification. A large number of biclustering algorithms have been developed
over the years, however little effort has been devoted to the representation of the results.

Results: We present an interactive framework that helps to infer differences or similarities
between biclustering results, to unravel trends and to highlight robust groupings of genes and
conditions. These linked representations of biclusters can complement biological analysis and
reduce the time spent by specialists on interpreting the results. Within the framework, besides
other standard representations, a visualization technique is presented which is based on a force-
directed graph where biclusters are represented as flexible overlapped groups of genes and
conditions. This microarray analysis framework (BicOverlapper), is available at http://vis.usal.es/

bicoverlapper

Conclusion: The main visualization technique, tested with different biclustering results on a real
dataset, allows researchers to extract interesting features of the biclustering results, especially the
highlighting of overlapping zones that usually represent robust groups of genes and/or conditions.
The visual analytics methodology will permit biology experts to study biclustering results without
inspecting an overwhelming number of biclusters individually.

Background

Biclustering

Microarray experiments determine the transcript abun-
dance of an organism's genes under different conditions.
Microarray analysis tries to identify groups of genes that
exhibit similar behavior under certain conditions.

One of the main methods to analyze microarray data is
biclustering, a non-supervised technique very widespread
in the recent years (see [1] for a survey). Biclustering out-

performs traditional clustering because of its two main
characteristics: simultaneous grouping of genes and con-
ditions, and overlapping. Simultaneous grouping means
that biclusters (the groups found by biclustering algo-
rithms) group genes with similar behavior under a certain
number of conditions (thus, the bicluster will group genes
and conditions), while traditional clustering techniques
only group genes with similar behavior across all the con-
ditions (or vice versa). This characteristic makes biclusters
better fitted to biological behavior in several circum-
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stances, for example, when an interesting cellular process
is active only in a subset of the conditions. Although it is
unusual that the subsets of genes grouped by two different
clusters intersect, overlapping is an intrinsic characteristic
of biclusters. If two biclusters B, and B, that group genes
G, and G, and conditions C, and C,, respectively, have G,
N G= & and/or C, N C,# & it is said that B, and B, over-
lap. Overlapping gives biclusters the flexibility to repre-
sent biological circumstances such as genes that
participate in multiple pathways active under a subset of
conditions.

Visualization of single biclusters

The most widespread visualization technique to represent
a single bicluster are heatmaps, which are used in several
popular tools [2-4]. In a heatmap (Fig. 1a) genes are dis-
played as the rows, and conditions as the columns, of a
matrix A, where element a;; is the transcript abundance of
gene i under condition j. Each element a; is then repre-
sented as a square colored upon its transcript abundance.
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Figure |

Heatmap visualization of biclusters. a) Typical heatmap,
with bright colors representing the lowest or highest tran-
scription levels. b) A section of the heatmap in a), after reor-
dering the rows and columns in such a way as to put those
corresponding to an identified bicluster first. ¢) Two non-
overlapped biclusters can be seen on the diagonal of the
matrix. More non-overlapped biclusters could be added, but
if they overlap, representation becomes difficult, or even
geometrically impossible without replication of rows and/or
columns.

http://www.biomedcentral.com/1471-2105/9/247

To draw a bicluster B, that groups a subset of genes G, and
conditions C;, the heatmap is reordered so G, rows and C,
columns appear together, usually in the upper left section
of the matrix (Fig. 1b).

Heatmaps usually satisfy the purpose of inspecting a sin-
gle bicluster. Unfortunately, they have geometrical limita-
tions when representing several biclusters simultaneously,
especially if they overlap (see Fig. 1¢). BiVoc [5] addresses
this problem by repeating rows and columns to properly
represent overlapped biclusters. Although it is a useful
tool and implements a method that minimizes the
number of repeated rows and columns, this replication
could lead to ambiguities and misinterpretations.

Parallel coordinates [6] have also been used to represent
biclusters, but they are less widespread than heatmaps. In
this technique, the gene g; is an m-dimensional point p; =
(a;1, ai, ...a;,) where a;, is the transcript abundance of g;
under condition ¢,. Conditions are visualized as vertical
axes and genes as lines joining the corresponding tran-
script abundances (Fig. 2).

In this case, a bicluster with n' genes and m' conditions is
represented by n' lines corresponding to the genes, and by
rearranging or somehow highlighting the axes corre-
sponding to the m' conditions. When we try to represent
several biclusters with this method, again geometrical
problems arise because of the large number of lines and
the overlapping of several different ones. BicAT [3] and
BiVisu [4] use parallel coordinates to display single biclus-
ters. However, their representations are limited. BicAT
does not rearrange bicluster conditions, as it simply marks
their corresponding axes with vertical lines (making hard
to visualize the whole bicluster). On the other hand,
BiVisu only visualizes gene profiles under the conditions
in the bicluster, losing context information for other con-
ditions, which could be related but not grouped by the
bicluster. None of these methods provide interactive
thresholds to manipulate the display.

Visualization of multiple clusters

As in the case of single biclusters, the most widespread
technique used to visualize multiple clusters from a single
clustering are heatmaps. Usually heatmaps are used
together with dendrograms, as introduced by Treeview
[7]. This way, the hierarchical clustering is represented in
a tree and the heatmap rows are rearranged to fit with the
clusters found. Sometimes the attached dendrogram can
also be used to visually vary the clustering threshold to
check the robustness of clusters (see Fig. 3). Usually, clus-
tering is applied to rows (genes) and to columns (condi-
tions), so both dimensions are rearranged and two
dendrograms are displayed. Treeview has been enhanced
[8], adding a scatterplot visualization for one-by-one con-
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Parallel coordinates visualization of biclusters. Parallel coordinates representing the bicluster in Fig. Ib). The lines for
genes on the three first conditions are overlapped, indicating a high level of similarity for the genes, equivalent to the homoge-

neous upper-left area formed in the heatmap.

dition comparison of transcription levels and a "karyo-
scope" visualization that represents the transcription
levels of the genes under one condition, ordered as they
are located in the chromosomes.

gCLUTO [9] uses a variation of this heatmap visualization
to represent clusters from hierarchical clustering, includ-
ing the representation of clustering averages for rows and/
or columns. In addition, it introduces mountain maps, a
3D visualization technique (see Fig. 4) that displays clus-
ters simultaneously by means of projections onto a 2D
space, while the third dimension is used to represent geo-

metrical properties of the mountains (height, width,
slope, etc.) that are used to represent properties of the
clusters (size, homogeneity, etc.). However, clusters only
group genes (not conditions) with similar transcription
levels under all the conditions, and therefore its adapta-
tion to biclusters is not satisfactory.

Hibbs et al. [10] take advantage of a linked-views
approach, so two visualizations, heatmaps and cluster
projections, are displayed simultaneously, boosting the
visual analysis. The projection used is similar to that of
gCLUTO but now in a 3D space. It improves heatmap rep-

# of ltems Left = 99

Minimum Similarity = 0.702 # of Clusters =5 ¥ of Alones = 0

Figure 3

I

Dendrogram visualization of hierarchical clustering. Heatmap and dendrogram representing hierarchical clustering on
genes for a yeast microarray data matrix of sporulation conditions, generated with HCE [2]. In this case, a similarity threshold
of 0.702 groups genes in five clusters (alternate red and blue branches of the dendrogram), whose differences are clearly visible

on the heatmap.
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Figure 4

Mountain map visualization. gCLUTO's mountain visuali-
zation. Each mountain represents a cluster, where position,
height, width and slope depend on cluster characteristics
such as the genes grouped, the number of genes and their
homogeneity.

resentation by assigning colors by rank and by visualizing
cluster averages. As in gCLUTO, projections are useful, but
because of the reduction of dimensionality that they
require, some information is lost. Although this is not so
important when representing clusters, it becomes an issue
with biclusters, where overlapping is a main characteristic
and projections usually fail to convey actual overlap
between biclusters.

Related Biological Knowledge

Besides the input (the microarray data matrix) and the
outcome of the analysis (for our purpose, biclusters),
additional information is available from previous biolog-
ical studies. This information is usually structured in
ontologies, for example, in the case of genes and proteins
from eukaryotes, there is the Gene Ontology [11], a
dynamic, controlled vocabulary that describes all known
biological processes, molecular functions and cellular
components associated to them. On the other hand, Tran-
scription Regulation Networks (TRN) represent transcrip-
tion relationships between genes. In these networks,
nodes correspond to genes, and an edge from node a to b
means that gene a transcriptionally regulates (activates or
inhibits) gene b.

This information can be used to partially guide the biclus-
ter search, or to validate the biclusters found. Note that
although this information may be helpful for finding or
validating groups, it is rarely complete and grows everyday
with new biological discoveries (as an example, the TRN
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for Escherichia coli increased from 577 relationships in
2002 [12] to 2724 in 2004 [13]). Also, its use may bias the
search of biclusters to already known groups, limiting the
knowledge discovery capability of the methods.

Some of the visualization tools discussed above make use
of ontologies to complement their displays, either embed-
ded in the visualization [2] or from a web navigator [8].
There are also several tools that visualize TRNs (for exam-
ple, Cytoscape [14] or Hawkeye [15]) and link them with
other biological knowledge, but it's more difficult to find
tools that link TRN networks with clustering or bicluster-
ing results.

Motivation

As described above, the display of several clusters and sin-
gle biclusters is well known, but the visualization of sev-
eral biclusters is an almost entirely new area of study. The
ability of visualizing several biclusters in the same display
speeds up the understanding of relationships among the
different biological groups represented by biclusters, spe-
cifically it permits:

¢ To find genes with similar biological functions or condi-
tions that affect similarly to a particular group of genes.
This is given by each bicluster alone, but the relevance of
these relationships grows if several biclusters coincide in
them (forming sorts of 'super-biclusters').

e To trace third-party relationships among biclusters,
helping to find, for example, two groups of genes related
under different groups of conditions, but also with some
conditions in common. The finding of these common
genes or conditions (‘hubs') is key to infer relationships or
bridges among different functional groups.

¢ To quickly characterize the biclustering algorithm search
through its results: is it exhaustive?, does it find several
groups?, of which size?, how much are they connected?,
are there unconnected groups?

Currently, during an analysis biclusters must be individu-
ally inspected and/or filtered using statistical methods or
a priori biological knowledge. Due to the heterogeneity of
biclustering approaches and the novelty of most of the
biclustering algorithms (an increasing number of which
have appeared since the year 2000), few theoretical statis-
tical methods to analyze or filter them are available. Most
of them are based on significance tests over biological
knowledge as Transcription Regulatory Networks [16] or
Gene Ontology [17]. These tests are not perfect since bio-
logical knowledge is still incomplete. Because of this lack
of statistical or biological filters, it is usually difficult to
reduce the number of biclusters and even if reduced, to be
able to draw conclusions quickly, one way of putting all
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the biclusters together on a single graphical representation
is an urgent need.

Since there are no fault-free standards to determine which
is the best biclustering method for each case, problems are
usually approached from different points of view, often by
using different methods, or different configurations of the
same method, in order to identify the most robust results
(the biclusters that are found under different approaches).

Due to overlap, in the case of the outcome of a single
biclustering method with a single configuration, an inter-
esting fact is that a kind of robustness can still be found in
genes or conditions that are grouped together by several
biclusters (in other words, they are at the intersection of
several biclusters). This can be extended to the use of dif-
ferent methods or configurations of parameters. The
robust groups of genes and/or conditions formed by the
intersection of different biclusters are a kind of super-
biclusters, usually not directly grouped by any method
(what can lead to groups of only genes or only condi-
tions) but grouped together by several biclusters.

Visual analytics is the science of analytical reasoning sup-
ported by highly interactive visual interfaces [18]. This is
our approach, which focuses on the representation of
biclusters in several ways that enhance the analysis of
biclustering results. Thus, while the center of the analysis
is based on a representation of biclusters that is capable of
visualizing several biclusters simultaneously, this visuali-
zation technique has been implemented as part of a
framework that includes other traditional bicluster repre-
sentations such as heatmaps or parallel coordinates, so
the user can inspect biclustering results from different
points of view. All the visualizations are highly interactive
and are linked together. As a result, the detection of super-
biclusters and hub nodes is easy and useful. The frame-
work helps in the comprehension of the differences and
similarities among biclusters from different biclustering
methods and quickens the task of analyzing biclustering
results.

Results and Discussion

Group data: movie relations analogy

The main difficulty when it comes to assessing a visualiza-
tion for biclustering results is the need for a very well
known data set that permits the validation of the conclu-
sions reached using the tool. Taking this into account,
before using our visualization technique to represent
biclustering results from microarray data sets, it has been
validated using a database of more than 20.000 movies
and over 250.000 persons, extracted from IMDb [19].
Each movie is treated as a 'bicluster', so each person
involved in the movie is a node in it. Of course these are
fictional biclusters because they do not come from a

http://www.biomedcentral.com/1471-2105/9/247

biclustering algorithm, nor do they refer to two dimen-
sions, but they have the most interesting property of over-
lapping. The characteristics that our tool helps to discover
in the movie relationships usually have a direct analogy in
a biological context, for example:

e Working groups involved in more than one movie.
These groups are of special interest if the movies in which
the people worked together are prize-winning movies or
movies that earned lots of money, because one can iden-
tify which are the most successful collaborations. For
example, in Fig. 5 both successful sagas (Spider-man at the
left and The Lord of the Rings at the top) and couples work-
ing in prize-winning films (such as Paul Haggis and
Michael Pefia at the bottom) are easily distinguished. Anal-
ogously, groups of genes present in several similar biclus-
ters that are expected to have similar behaviors can be
identified, for instance.

¢ Hub nodes (or groups of nodes) joining two larger, oth-
erwise separated, groups. In the case of movie relation-
ships, these groups are quite interesting because they
connect working groups of different nationalities, movie
genres or degrees of success. For example, if you are a pro-
ducer, the hub nodes that join blockbusters with prize-
winning movies will lead you to the people that is capable
of making quality movies that earn money (in Fig. 5, we
can see hub nodes connecting prize-winning movies with
blockbusters, such as Danny Elfman, and others such as
Catherine Zeta-Jones or Orlando Bloom). In biology hub
genes related to two groups of biclusters, each one group-
ing different biological processes, can be interesting as
they may participate in the regulation of both processes.

¢ Indirect relationships. Each single group gives informa-
tion of direct relationships among movie people. How-
ever, the inspection of several groups, by means of the
navigation through the graph (possibly tracing hub
nodes), helps to discover third party relationships (notice
how, in Fig. 5, Russell Crowe and Cate Blanchett have
worked with John Logan in different films). Biologically,
this can lead to the discovery of side-effects of the activa-
tion (or inhibition) of genes.

The familiarity with the movie ontology makes it easy to
test the capability of analysis of the presented technique,
much more than to use gene or biological ontologies
(usually incomplete), applied to results of (very heteroge-
neous in concepts) biclustering algorithms. Focused in
this field, the framework in which the visualization tech-
nique is embedded was also validated by entering two
contests, one centered on visual analytics and the other
one on graph drawing (social networks). Our entry was
selected as finalist of the former [20] and was awarded the
first place in the latter [21].
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Figure 5
Movie results visualization. Groups of people working in the
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SHREK 2 (2004)

AVIATOR, THE (2004)

John Logan

IATOR (2000)

most awarded movies (orange) and the main blockbusters

(green) from 2000 to 2006. Recurrent groups appear in blockbusters, referring to the Spider-Man saga (left) and the Lord of the
Rings (top), which also has won several awards. The couple formed by Michael Pefia and Paul Haggis appears in two awarded
movies (bottom). Overlapping groups, hub nodes and third party relationships can be quickly identified with this visualization.

Microarray Data and Biclustering algorithms

To test the power of our bicluster visualization method,
now applied to biological information, the budding yeast
Saccharomyces cerevisiae microarray data [7] has been used.
This data set has been broadly studied and images of heat-
map clustering are available. This organism genome is
fully sequenced, and the conditions of the microarray are
understandable even by non-specialists, presenting clear
groups such as sporulation time series, cell division or
changes in temperature.

The yeast microarray data forms a 2467 x 79 matrix that
has been analyzed using three different biclustering meth-
ods: Bimax [16], Iterative Search Algorithm (ISA) [22,23]
and Ben-Dor et al. [24] approach to find Order-Preserving
SubMatrix biclusters (we will refer to this biclustering
algorithm just as OPSM) using BicAT analysis Toolbox

3].
These three algorithms have been chosen because they

look for different concepts of biclusters using different
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strategies. Bimax searches for constant up-regulated
biclusters (using Madeira and Oliveira notation [1]), ISA
searches for biclusters that highly deviate from the mean
(both above or below) and OPSM searches for biclusters
which preserve certain order (coherent evolution). Bimax
uses a divide-and-conquer strategy while ISA uses Z-score
statistics and OPSM performs a greedy iterative search.
This way, we can present the results of the visualization
under different biclustering conditions and discuss how
those differences affect results by comparing their differ-
ent layouts.

Bimax results analysis

Bimax is an exhaustive divide-and-conquer method that
preprocesses the data matrix to convert it into a binary
matrix by fixing a threshold, so transcription levels above
this threshold become ones and transcription levels below
become zeros (or vice versa). Then, it searches for all pos-
sible biclusters that contain only ones, so up or down-reg-
ulated constant biclusters are found.

Bimax was executed with a discretisation threshold of 1%,
so only that percentage of transcription levels (the highest
up-regulated) were considered. The minimum size of
biclusters was set to 3 x 2, finding 421 biclusters, most of
them of small size (groupings with under 30 transcription
levels).

Fig. 6 shows the 50 biggest biclusters found. With a simple
glance at the representation, two clear groups of biclusters
appear, one at the top of the graph and another one at the
bottom. The display of a higher number of biclusters, up
to 250, did not reveal additional information, other than
making the two groups tighter.

High connectivity of the nodes demonstrates the exhaus-
tiveness of Bimax, since some of the biclusters are very
similar, although no one is completely included in
another bicluster. The top group mainly contains condi-
tions related to sporulation (spo.mid, spo.7, spo.9, spo.11
are the most biclustered but not the only ones), revealing
that this process provokes up-regulation on a high
number of genes. We have compared Fig. 6 with the genes
related to sporulation that have been identified by Eisen
et al. [7] by means of clustering. The top group contains
all the genes related to sporulation in that previous work,
as expected. The bottom group, less connected, contains
biclusters that group other conditions, especially heat
shock conditions such as heat.20 and heat.40. Some genes
highly active under heat shock and sporulation condi-
tions such as those with ORFs YGR088W, YNR034W or
YKLO96W are present in biclusters of both groups; and
can be seen at the center of the representation. These hub
genes are of special biological interest because they act as
a bridge between sporulation conditions and heat shock

http://www.biomedcentral.com/1471-2105/9/247

conditions. For example, ORF YKLO96W corresponds to
gene CWP1, involved in cell wall organization [25] and
known to be related to sporulation [26], but it has not
been related with heat shock conditions, triggering a new
research question in order to clarify these findings.

OPSM results analysis

OPSM defines a bicluster as a group of rows whose values
are monotonically increased under a certain column
ordering, enabling us to find coherent evolution biclus-
ters, i.e. genes and conditions that significatively increase
or decrease at the same time regardless of the amount of
the change. This is the broadest bicluster definition, yield-
ing sometimes very large groups of genes.

OPSM was run using 10 models for each iteration, which
yielded 13 biclusters. Four of the biclusters found were
ignored due to their high number of genes (above 400).

The visualization (Fig. 7) reveals one of the characteristics
of OPSM biclusters: when an OPSM bicluster contains few
genes, it usually has more conditions, and vice versa (this
is especially evident in biclusters 6 and 7, or 1 and 2).
However the most interesting result that the visualization
helps to quickly detect for this dataset is that OPSM
biclusters are mainly connected by sporulation condi-
tions. These detected conditions are biologically interest-
ing because they are able to maintain an order in
transcription levels over a large number of genes.

This feature could also be discovered by means of the vis-
ualization of single biclusters, but it requires much more
effort. Also, third party relationships cannot be discovered
unless all the elements in each bicluster are tracked one by
one, while in this visualization they are quickly identified.
For example, we can see that genes with locus tags
YGL147C, YER102W and YGLO76C are grouped together
in two biclusters (3 and 4), and are not related to genes in
bicluster 1, except for some nodes (mainly sporulation
conditions) at the center. These three genes, along with
several others, such as YHR203C or YLRO75W (high-
lighted in the figure), are protein components of the
ribosomal subunits 40S and 60S. This explains why they
are grouped together in biclusters by OPSM. In this case,
they serve as validation of the method because there are
biological evidence of the relation among genes (compo-
nents of ribosomal subunits), but in other cases (as for
example, in Bimax hub nodes above) these identifications
could lead to new knowledge. It is also remarkable that
most of the genes grouped along with sporulation condi-
tions at OPSM is not grouped by Bimax for the same con-
ditions, suggesting that genes related to ribosomal
subunits present order in transcription levels during
sporulation, but they are not highly expressed.
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Figure 6

Bimax results visualization. Representation of the 50 biggest Bimax biclusters. Clearly, two groups appear at the top (1)
and bottom (2), and a small number of genes connecting both groups (3). Subgroups of nodes (mainly genes) grouped together
in three (a), four (b) or more (c) biclusters are also easily detected thanks to the pie charts. The names of some relevant genes

and conditions have been highlighted.
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Figure 7
OPSM results visualization. OPSM bicluster visualization. Biclusters 3 and 4 are highlighted after interaction with the repre-
sentation. Biclusters grouping mainly genes (I, 2, 3) or mainly conditions (6, 7) are easily identified. The relaxed condition of

coherent evolution makes biclusters very large in some cases (I, 2).
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ISA results analysis

Iterative Search Algorithm (ISA) aims at finding genes and
conditions that deviate from the mean, so only highly up-
or down-regulated genes and conditions are biclustered.
The method starts with two normalized copies of the data
matrix, one for genes and another one for conditions.
Then, different thresholds are imposed for genes and con-
ditions, and biclusters are searched using Z-score statistics.
In the end, biclusters with both up- and down-regulated
transcription levels are obtained.

This algorithm found 45 biclusters with both gene and
condition thresholds set to 2, and taking 100 starting
points. ISA's bicluster structure is more entangled than the
ones of Bimax or OPSM (see Fig. 8). While hull overlap-
ping helps to draw conclusions regarding bicluster rela-
tionships (see Fig. 8a), when clusters grow in number and
heterogeneity as in this case, abstraction to a higher level
of grouping is also interesting. This way, highly inter-
sected zones, such as nodes in biclusters 1, 2 and 3 (Fig.
8b) acquire relevance not through the individual biclus-
ters they pertain to, but through the frequency by which
the biclustering method groups them together (forming a
super-bicluster around conditions heat.40 and heat.160).
When complexity increases, it is also interesting to know
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Figure 8
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exactly what nodes are connected, which is achieved by
highlighting all related nodes when hovering one of them.

Since ISA searches for both up and down-regulated biclus-
ters, relevant nodes differ from Bimax. For example, some
conditions arise as important for this method, such as
heat shock conditions heat.40, heat.80, heat.160 or diauxic
shift conditions diau.e, diau.f (see Fig. 8b), while sporula-
tion conditions, very relevant in Bimax, are secondary
(Fig. 8d).

Conclusion

The present article analyzes and compares results from
three prominent biclustering methods when applied to a
real microarray experiment using a visual analytics frame-
work that allows whole representation and interaction for
all biclusters. The main conclusions are the following:

e The proposed visualization allows to display large
number of biclusters in a single representation, enhancing
the detection of overlap among biclusters.

e As a consequence of conveying overlapping groups,
actual biological features can be extracted by the detection

of super-biclusters and hub nodes.

YLR395C

YNROJOW

YCLDAOW
wuoore @

@

YLLOO2W

ISA results visualization. Detail of ISA biclusters. a) Hulls wrapping highly overlapped biclusters. Biclusters |, 2 and 3 share
nodes, but elongated hulls tell us they also share other nodes with biclusters 4, 5, and 6. Bicluster 7 also shares some nodes
with biclusters I, 2 and 3. b) The same biclusters as in a), but hulls are hidden and glyphs drawn. This detailed representation
complements and clarifies hull representation, focusing on overlapping groups of genes and conditions. All nodes related to
YORI81W at the bottom-that is, all nodes grouped by bicluster |- are highlighted in bright yellow. ) Overviews of the com-
plete set of ISA biclusters, with and without hulls. The orange rectangles in the overview are used to select the desired area of
detail (left: overview of a) and b), right: overview of d)). d) Detail of sporulation-related biclusters. In this case, only two biclus-
ters support this relationship, much less important for ISA than for Bimax or OPSM.
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¢ The combination of different representations (hulls, pie-
charts, labels) with the interaction and navigation
through the graph helps in the analysis, allowing to sim-
plify the visualization of complex results.

e This visualization also helps to determine biclustering
algorithms characteristics, and differences and similarities
between biclustering algorithms.

¢ The integration of the presented visualization into a vis-
ual framework that provides standard representations
helps experts to follow the results more easily. Further-
more, the linkage of novel and traditional visualizations
permits a deeper analysis of results, from overview to
details, thus gaining insight into the problem at hand.

Following these promising results, our future line of work
will be based on the research and optimization of the lay-
out when different biclustering algorithm's results are
compared with each other, and on the integration of addi-
tional biological knowledge from gene and condition
databases.

http://www.biomedcentral.com/1471-2105/9/247

Methods

This section details the main characteristics of the pre-
sented visual analytics approach, focusing on the descrip-
tion of the novel graph-based bicluster visualization (we
will refer to it as overlapper) and its use inside a framework
(BicOverlapper) that implements other well known biclus-
ter visualizations such as heatmaps or parallel coordinates
(see Fig. 9).

We start with the definition of bicluster, then we explain
the graph building, layout and complexity. Finally, we
will see how the overlapper and the other views interact
and are linked together to help discover new knowledge.

Bicluster Definition

The presented visualization technique relies on a graph
where nodes represent genes or conditions, and edges join
nodes that are grouped by one or more biclusters (Fig.
10). By using the same entity (graph nodes) for genes and
conditions, the characteristic of the grouping of genes and
conditions, natural in biclusters, can be easily visualized,
a difficult task when both entities are separated (rows and
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Figure 9

Framework. The framework, showing all the implemented visualization techniques: a) Parallel coordinates. b) Microarray
heatmap. c) Bicluster bubble map. d) Overlapper. €) TRN graph. The figure shows data from a synthetic Escherichia coli micro-
array, generated by SynTReN [40], and the biclusters found on it by Turner's plaid model [34]. In the figure, four gene nodes
have been selected in the overlapper (d). These genes are grouped together in several biclusters, forming a super-bicluster. Its
selection has flown to other views, modifying them. This way it can be easily determined that they actually have similar gene
profiles (a, b). Also, we can see that all of them are in the same transcription group, except one, gcvA (e).
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Bi={g1, 92, &, 3}
B2= {01, gs, s, €1, Ca}
B

3= 191, G4, Ca, Csy

Figure 10

Bicluster building. This figure shows how three simple
biclusters (B,, B,, B;) are represented. Observe that g, is in
the three biclusters, and that ¢, and g, are in two of them. a)
The method generates an internal edge structure by building
complete graphs for each subset of nodes corresponding to a
bicluster. This structure places close nodes in the same
biclusters when the force layout is applied, moving g, to the
center of the three biclusters, since it is shared by all of
them. A similar behavior occurs with ¢, and g, shared each
one by two different biclusters. b) When displayed, edges
are omitted and instead hulls with limits defined by splines
surrounding the outermost nodes of each bicluster are
drawn. Hulls are transparent, so their overlap forms solider
colors, highlighting g, more than ¢, and g4, and these ones
more than the rest.

columns in heatmaps, or lines and axes in parallel coordi-
nates). Of course, gene nodes and condition nodes will be
finally identifiable by using different shapes to represent
them.

Let By, be a bicluster that groups genes G;, = {1/ - Sn}
and conditions C;, = {¢};, .- Cjy}- By, is represented as an
undirected complete subgraph with nodes N, = {G, U C,}
= {8117 - & Ci1-- Crm § - AS previously explained, for pur-
poses of graph computation, genes and conditions are not
distinguished and are simply considered as nodes Nj, =
{n1 ... Myuem)}, and edges are defined as E, = {(n;, n)) = (n;,
n;), with n;, n; € N;.}. The weight w;; of each edge ¢;;= (n;, n))
is given by the number of biclusters that contain both
nodes n;and ;.

Graph Layout

The nodes are displayed following a force-directed layout
[27]. In our model, each pair of nodes n; and n; (posi-
tioned at p; and p; respectively) with a distance between
them d;;, can be affected by up to two forces. If the nodes
are connected, a spring force acts to keep them at an opti-
mal distance d,, with stiffness depending on a constant s

and the weight of the edge:

http://www.biomedcentral.com/1471-2105/9/247

(1)

where |d;| = |p; - p;| is the magnitude of the distance and

d;; is the unit vector that indicates direction from n; to n;.
Between every pair of nodes, whether connected or not,

an expansion force makes them repel each other:

Xy=—(G/|dyl)dy (2)

where G is a gravitational constant that controls the inten-
sity of the repulsion. S;; keeps nodes in the same biclusters
close, while X;; separates nodes into different biclusters.

Edge cluttering is an issue when we deal with large graphs,
making the resulting display confusing [28]. To solve this,
edges are not drawn unless requested by the user. Instead,
each bicluster (represented as a complete subgraph) is
wrapped in a polygon or a rounded shape (hull). This hull
is drawn by determining the outermost nodes of each
bicluster, and using their positions as anchor points for a
spline curve that draws the contour of the hull. The inside
of the hull is filled with the same color used for the line,
but with a degree of transparency. Unlike other zone
graph visualizations [29,30], a node can be in more than
one zone, reflecting overlapping between biclusters,
which can usually affect more than one node. Because
hulls are drawn with a transparent color, their intersecting
areas become more opaque, enhancing the detection of
overlaps.

Node Representation

Node positions are defined by the graph layout, but other
information can be displayed by node representation, by
means of glyphs, at user's demand. A glyph is a graphical
object designed to convey multiple data values [31]. The
geometrical properties of the glyph represent different
dimensions (Fig. 11). In our case:

¢ The shape of each node distinguishes between genes
(circles) and conditions (squares).

¢ Pie charts have as many sectors as biclusters in which the
node appears. The color of sectors could also be used to
identify different biclusters which meet some predeter-
mined criterion. Pie charts also serve to quantify the
degree of overlapping of hull zones.

e Labels with gene and condition names can be displayed
for node identification. In this case, label color is deter-
mined by the node type (gene or condition) and text size
by the degree of overlapping.
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Figure 11

Bicluster visualization. Three of the biggest biclusters that Bimax algorithm found for microarray data discussed in the
Results section. a) Biclusters represented by their wrapping hulls. This visualization is useful to draw an overview of how
biclusters are related. b) Nodes are now represented as glyphs. Attention goes into intersecting areas, which can be seen as
'supergroups' of genes and/or conditions (x, y, z). These structures will frequently appear in more complex visualizations. c)
Detail of b). The nodes in a supergroup are drawn as pie charts. These nodes have a strong relationship under the specific cri-
teria of the biclustering algorithm. For example, in the case of (z), it means that eight genes have very high transcription levels
with similar variations under two subsets of conditions (those from biclusters 2 and 3). These two subsets share one condition
(square shaped), present in the supergroup. In addition, we can see that biclusters | and 2 share two conditions; also there are
no conditions shared by the three biclusters; finally bicluster 2 is secondary, because it only has six genes and one condition not

grouped in biclusters | or 3.

The final result of the graph display is a set of flexible over-
lapped, colored areas representing biclusters, with glyph
nodes inside representing genes or conditions. Drawing
these areas instead of drawing edges, along with its flexi-
bility, allows a large number of biclusters to be repre-
sented without excessive cluttering on the display.

Graph Complexity

An optimal implementation of force-directed layouts has
a complexity of O(n3) [32], with n being the number of
nodes. Microarray experiments tend to have high dimen-
sionality, containing 103-5genes and 10!-2 conditions.
Usually the number of genes n is much higher than the
number of conditions m.
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Regarding edge complexity on our representation, the
worst scenario for an n x m microarray data matrix is that
all genes behave similarly for all conditions, so the only
bicluster will be the entire matrix n x m, and thus the
resulting graph will have n + m nodes and (n + m)(n + m -
1)/2 edges (around 10° edges for a 1000 x 100 matrix).

Obviously, such a microarray experiment is useless, but
helps to understand that complexity is very sensitive to the
dimensionality of the biclusters. The number of biclusters
found is another factor which increases the complexity,
but is much less important, since more edges will be
shared when the number of biclusters grows.

In practice, the number and size of biclusters vary depend-
ing on the biclustering algorithm, the input parameters
and the microarray data set. Typically, for a 1000 x 100
matrix, an exhaustive method like Bimax [16] gives hun-
dreds of biclusters. Other methods such as Spectral Biclus-
tering [33] or ISA [22] yield around 50 biclusters, while
Turner's Plaid model [34] or OPSM [24] generate only a
dozen biclusters. Other algorithms take the number of
biclusters as an input parameter. Usual sizes for biclusters
range from 2 x 2 to 100 x 10, though exceptionally larger
ones may be generated.

Overlapper can deal with up to 100 biclusters with sizes
ranging from 2 x 2 to 100 x 10, on an Intel Pentium D 2.8
GHz processor, without relevant loss of interactivity.
Although performance is currently being optimized to
deal with more than 100 biclusters, graph complexity and
the ability of human perception to inspect a graph impose
limits on the number of biclusters than can be visualized.
Therefore, previous statistical or biological filters linked to
graph visualization are of great importance when it comes
to comparing larger biclustering results.

The visual analytics approach described here helps to
reduce complexity by interacting with other linked visual-
izations such as parallel coordinates or TRN networks, fil-
tering the displayed biclusters using simple criteria such as
"only biclusters that contains gene X" or "only biclusters
with genes that have high transcription levels for condi-
tionY".

Muttiple Linked Views

Four other visualizations are implemented along with the
overlapper: heatmap, parallel coordinates, TRN network
and bubble map. Heatmap and parallel coordinates are
used to display transcription levels and also to represent
gene or condition profiles and single biclusters.

The heatmap implementation is conventional, represent-
ing single biclusters by rearranging and distorting the cor-
responding rows and columns. The implementation of

http://www.biomedcentral.com/1471-2105/9/247

parallel coordinates allows transcription thresholds to be
set for each condition, thus helping to perform user-
driven filtering of gene profiles. Biclusters are represented
by first placing all coordinate axes corresponding to con-
ditions in the bicluster. The lines corresponding to genes
in the bicluster are highlighted, with the segments corre-
sponding to conditions in the bicluster being brighter (see
Fig. 12). With this implementation of parallel coordi-
nates, the context of genes and conditions not in the
bicluster is not lost, one of the main limitations of other
implementations of this technique, as discussed in the
Background section.

On the other side, the bubble map is a 2D projection map
similar to gCLUTO's mountain map, but we use both
genes and conditions to compute projections (see Fig. 9¢).
However, this implementation uses 2D characteristics
such as diameter, color and transparency to represent the
characteristics of biclusters (size, homogeneity, etc.), so
biclusters are drawn as 2D 'bubbles' instead of 3D moun-
tains. This way, we avoid the occlusion of objects, which
is an issue in 3D visualizations, and we simplify the dis-
play, which is more complex in the case of biclusters than
in the case of clusters.

Finally, the TRN visualization is implemented as a force
directed graph in the fashion of tools such as Cytoscape
[14] or Hawkeye [15], with genes as nodes, joined by
directed edges if they are related by any transcription
behavior (activation or inhibition).

Visual analytics focuses on the interaction with the repre-
sentations, so they can be adapted to the user's informa-
tion needs. Thus, all the visualizations in the framework,
including the overlapper, implement a large number of
options to interact with them. Most of these interactions
deal with navigation through the view and the capability
of selecting or searching for biclusters, genes or condi-
tions. However, other interactions are specific to each vis-
ualization, such as for example, the setting of
transcription thresholds in parallel coordinates, as
described above. Please refer to the Implementation sec-
tion for a list of additional material explaining these inter-
actions in detail.

It must be added that many of the interactions within a
representation will lead to different visual changes in the
rest of the visualizations of the framework.

Filters and thresholds

A helpful way of using the proposed visual analytics meth-
odology is an incremental exploration of the problem.
The initial problem (the analysis of all the biclusters
found for a given microarray data matrix) can be divided
into simpler problems. For example, if a gene is consid-
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Figure 12

Parallel coordinates comparison. a) BiVisu parallel coordinates. All gene expression profiles are displayed, with the ones

in the bicluster in green and the rest in blue, but only conditions in the bicluster are displayed. The highest and lowest expres-
sion levels are hard to tell. b) BicAT parallel coordinates. Gene profiles of the genes in the bicluster are displayed through all

the conditions. The conditions in the bicluster are marked by a vertical line, but they are not rearranged, so visual interpreta-

tion of the bicluster is difficult. Gene profiles not in the bicluster are not drawn, and no interaction is implemented. c) BicOv-
erlapper parallel coordinates. Gene profiles in the bicluster are highlighted in red. The rest of gene profiles are still visible as a
light gray background. Coordinate axes corresponding to conditions in the bicluster are rearranged on the left, and gene pro-
file segments for conditions in the bicluster are highlighted in bright red. Interaction with the parallel coordinates, allowing

threshold setting and rearrangement of axes is implemented.

ered interesting for our experiment, to search for all the
biclusters that group it can be a way to simplify our anal-
ysis.

For this reason, as stated above, all the visualizations
implemented in the framework are linked, so an interac-
tion with one of them propagates to the other visualiza-
tions. By interacting with the ancillary visualizations
(heatmap, parallel coordinates, TRN network and bubble
map) we can filter the number of biclusters displayed in
the overlapper making them easier to analyze.

For example, we can search for a gene named lacl in the
TRN network and select it to display its profile (parallel
coordinates, heatmap) and the biclusters where it belongs
to, which will appear in the bubble map and the overlap-
per (see Fig. 13). Or we can set parallel coordinate thresh-
olds to select the genes with low transcription levels for

conditions E1A, E1B and high levels for conditions E9A,
E9B, E10A and E10B, and see which biclusters contain
them all and how they are related within the TRN network
(see Fig. 14). In addition to this multiple-view filtering,
the overlapper visualization alone allows the setting of
internal thresholds that also help to simplify the visuali-
zation and to focus on bicluster subsets. Three kind of
thresholds are available to modify the display:

e Querlap threshold: when this node-oriented threshold is
set to n, only genes and conditions grouped in more than
n biclusters are drawn.

e Size threshold: when this bicluster-oriented threshold is
set to n, only biclusters with at least n nodes (counting
genes and conditions) are drawn.
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Figure 13

Gene lacl represented in the framework. The gene lacl has been selected in TRN network (the example corresponds to
the same data in Fig. 9). The selection propagates to other views, highlighting the corresponding profile in the heatmap and par-
allel coordinates. The overlapper display is greatly simplified with respect to Fig. 9, and reveals that lacl is grouped with six
other genes and two conditions in five biclusters. This group of eight nodes recurrently grouped together may be worth fur-

ther study if lacl is important for the analyst.

e Constance threshold: if this threshold is set to n, only
biclusters with standard deviation less than n are drawn.
Note that some biclustering algorithms do not use con-
stance as a criterion to find biclusters, so this threshold
will disfavor them.

Both filters and thresholds are useful to focus on specific
subgroups of genes or conditions, but without them the
overlapper is still capable of visualizing several biclusters
and allowing the user to draw conclusions about the
behavior of biclustering algorithms and the biological
data grouped by them, as is discussed in the Result sec-
tion.

Implementation

The visual analysis approach described has been imple-
mented as a Java framework called BicOverlapper. The
overlapper technique was initially designed as a sketch in
Processing [35], and later was translated to pure Java [36].
Heatmap, TRN network and bubble map implementa-
tions make use of the Prefuse library [37].

A public version of BicOverlapper is available, and can be
executed in any operating system that supports Java 1.6.
The framework makes use of three different sources of
data:

e The bicluster results, which contain all the biclusters to
be visualized in the overlapper.

e The microarray data matrix, necessary for the visualiza-
tion of heatmaps and parallel coordinates.

¢ The TRN network with information about transcription
regulations and necessary for the TRN visualization.

Although these data sources are fundamentally different,
they all share genes and conditions as elementary entities,
so the different visualizations in the framework can be
linked by them. Basically, this is done by a session manager
that separates the different data sources from the visuali-
zations, filtering the relevant data entities (see Fig. 15).
When a change happens in one of the visualizations
because of the user interaction, the session manager
detects and translates it to the associated changes in the
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Figure 14

Selection of transcription levels in the framework. In the same example as Fig. 13, now parallel coordinates are used to
select the genes with high transcription levels in the conditions E9A, E9B, EI0A and E/0B and also low transcription levels for
conditions EIA, EIB. The result are eleven genes that form the core of several biclusters. All these genes have a high correla-
tion under all the conditions, as shown by the parallel coordinates and the heatmap. If we analyze the TRN network, we see
that this occurs because all of them correspond to the same activation branch of the network.

p. coordinates
TRN graph bubble map overlapper visualization
layer
heatmap
““““““““““““ - session manager
/
/ data
TRN Bicluster Microarray layer
network results data matrix
Figure |5

Framework architecture. Diagram for the structure of the framework. Three data sources can be used in the visualization
of different displays, by means of a session manager that interconnects them all.
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rest of linked visualizations. More technical information
about the framework, their options and implementation
details can be found in the following documents:

e A user's guide with installation instructions, further
information about usage of the software, interaction
options and a complete case study.

e A developer's guide explaining details about the archi-
tecture and design of the Java implementation.

¢ A technical report with a review of the state of the art and
details on the visualization technique and the framework.

All these files, along with the open source and a ready to
use distribution of the framework are available at the
BicOverlapper development site [38]. The framework and
the user's guide are also available for download [39].
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Additional material

Additional file 1

Shockwave Flash (swf) video showing overlapper interaction.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
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Additional file 2

Shockwave Flash (swf) video showing Bimax biclusters in overlapper.
Click here for file
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Additional file 3

Shockwave Flash (swf) video showing OPSM biclusters in overlapper.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-247-S3.swf]
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