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Abstract
Background: Cellular metabolism is one of the most investigated system of biological
interactions. While the topological nature of individual reactions and pathways in the network is
quite well understood there is still a lack of comprehension regarding the global functional behavior
of the system. In the last few years flux-balance analysis (FBA) has been the most successful and
widely used technique for studying metabolism at system level. This method strongly relies on the
hypothesis that the organism maximizes an objective function. However only under very specific
biological conditions (e.g. maximization of biomass for E. coli in reach nutrient medium) the cell
seems to obey such optimization law. A more refined analysis not assuming extremization remains
an elusive task for large metabolic systems due to algorithmic limitations.

Results: In this work we propose a novel algorithmic strategy that provides an efficient
characterization of the whole set of stable fluxes compatible with the metabolic constraints. Using
a technique derived from the fields of statistical physics and information theory we designed a
message-passing algorithm to estimate the size of the affine space containing all possible steady-
state flux distributions of metabolic networks. The algorithm, based on the well known Bethe
approximation, can be used to approximately compute the volume of a non full-dimensional convex
polytope in high dimensions. We first compare the accuracy of the predictions with an exact
algorithm on small random metabolic networks. We also verify that the predictions of the
algorithm match closely those of Monte Carlo based methods in the case of the Red Blood Cell
metabolic network. Then we test the effect of gene knock-outs on the size of the solution space
in the case of E. coli central metabolism. Finally we analyze the statistical properties of the average
fluxes of the reactions in the E. coli metabolic network.

Conclusion: We propose a novel efficient distributed algorithmic strategy to estimate the size and
shape of the affine space of a non full-dimensional convex polytope in high dimensions. The method
is shown to obtain, quantitatively and qualitatively compatible results with the ones of standard
algorithms (where this comparison is possible) being still efficient on the analysis of large biological
systems, where exact deterministic methods experience an explosion in algorithmic time. The
algorithm we propose can be considered as an alternative to Monte Carlo sampling methods.
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Background
Cellular metabolism is a complex biological problem. It
can be viewed as a chemical engine that transforms avail-
able raw materials into energy or into the building blocks
needed for the biological function of the cells. In more
specific terms a metabolic network is indeed a processing
system transforming input metabolites (nutrients), into
output metabolites (amino acids, lipids, sugars etc.)
according to very strict molecular proportions, often
referred as stoichiometric coefficients of the reactions.

Although the general topological properties of these net-
works are well characterized [1-3], and non-trivial path-
ways are well known for many species [4] the cooperative
role of these pathways is hard to comprehend. In fact, the
large sizes of these networks, usually containing hundreds
of metabolites and even more reactions, makes the com-
prehension of the principles that govern their global func-
tion a challenging task. Therefore, a necessary step to
achieve this goal is the use of mathematical models and
the development of novel statistical techniques to charac-
terize and simulate these networks.

It is well known that under evolutionary pressure,
prokaryote cells like E. coli behave optimizing their
growth performance [5]. Flux Balance Analysis (FBA) pro-
vides a powerful tool to predict the optimal growth and
production fluxes, but is not reliable about phenotypic
state the cell will acquire. This is mainly due to the fact
that among the infinitely many potential network states
compatible with the stoichiometric constraints, FBA
chooses a single one whose biological meaning is at least
questionable under generic external conditions. FBA max-
imizes a linear function (usually the growth rate of the
cell) subject to biochemical and thermodynamic con-
straints [6]. On the other hand, cells with genetically engi-
neered knockouts or bacterial strains that were not
exposed to evolution pressures, need not to optimize their
growth. In fact, the method of minimization metabolic
adjustment [7] has shown that knockout metabolic fluxes
undergo a minimal redistribution with respect to the flux
configuration of the wild type. Yet, in more general situa-
tions, the results are unpredictable, therefore, a tool to
characterize the shape and volume of the whole space of
possible phenotypic solutions must be welcome.

So far, apart from exact algorithms evaluating the volume
of the space of possible solutions, that are unsuitable for
analyzing metabolic networks larger than some dozens
metabolites [8,9], the best technique allowing for such a
characterization is based on Monte Carlo sampling (MCS)
of the steady-state flux space [10-14]. This method is
known to perform very well on intermediate size meta-
bolic networks (up to a hundred of metabolites) [10,11]
where different strategies of MCS have been implemented

giving comparable results. Some improved variant of MCS
seems to perform well also on organism-wide where the
number of variables is in the range order of a thousand
[13,14]. Although MCS has in general some intrinsically
associated problems, mainly due to the fact that the con-
vergence (or mixing) time is hard to assess and often is
exponential, in the case of polytope volume estimations it
turns out that sampling strategies such as hit and run have
mixing times that scale only polynomially with system
size [15]. However in many concrete cases a practical
problem is to give a precise condition for convergence
therefore we believe that an alternative independent tech-
nique could be more than welcome even in the cases
where MCS is applicable.

As a concrete step toward an efficient characterization of
the set of fluxes compatible with the stoichiometric con-
straints, we propose a novel message-passing technique
derived from the field of statistical physics and informa-
tion theory.

Mathematical Model
As already mentioned, a metabolic network is an engine
that converts metabolites into other metabolites through
a series of intra-cellular intermediate steps. The funda-
mental equation characterizing all functional states of a
reconstructed biochemical reaction network is a mass
conservation law that imposes simple linear constraints
between the incoming and outcoming fluxes at any chem-
ical reaction:

where ρ is the vector of the M metabolite concentrations
in the network. i (o) is the input (output) vector of fluxes,

and ν are the reaction fluxes governed by the × N stoi-

chiometric linear operator  (usually named stoichio-
metric matrix) encoding the coefficient of the M intra-
cellular relations among the N fluxes.

As long as just steady-state cellular properties are con-
cerned one can assume that a variation in the concentra-
tion of metabolites in a cell can be ignored and considered
as constant. Therefore in case of fixed external conditions
one can assume metabolites (quasi) stationarity and con-
sequently the lhs of 1 can be set to zero. Under these
hypotheses the problem of finding the metabolic fluxes
compatible with flux-balance is mathematically described
by the linear system of equations

∂
∂

= + ⋅ −ρρ νν
t

Si oˆ

Ŝ

Ŝ ⋅ = − ≡νν o i b (2)
Page 2 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:240 http://www.biomedcentral.com/1471-2105/9/240
b is the net metabolite uptake by the cell. Without
loss of generality we can assume that the stoichiometric

matrix  has full rows rank, i.e. that rank( ) = M, since
linearly dependent equations can be easily identified and
removed. Given that the number of metabolites M is
lower than the number of fluxes N the subspace of solu-
tions is a (N-M)-dimensional manifold embedded in the
N-dimensional space of fluxes. In addition, the positivity
of fluxes, together with the experimentally accessible val-
ues for the maximal fluxes, limit further the space of feasi-
ble solutions. This fact may be expressed by the following
inequalities:

0 ≤ ν ≤ νmax (3)

in such a way that together, 2 and 3, define the convex set
of all the allowed time-independent phenotipic states of a
given metabolic network.

Sub-dimensional volumes
Mathematically speaking, the space of feasible solutions
consistent with the Equations 2 is an affine space V ⊂ N

of dimension N - M. The set of inequalities 3 then defines
a convex polytope Π ⊂ V that, from the metabolic point
of view, may be considered as the allowed configuration
space for the cell states. The main goal of this work is com-
putation of the volume of this space of solutions and of
certain subspaces of it. Although conceptually simple, the
notion of sub-dimensional volume like that of Π requires
some new definitions.

Consider any linear parameterization ϕ : N-M → V ⊂ N

(see explicative scheme in Figure 1). A popular choice for

ϕ is, for instance, the inverse of the so called lexicographical
projection i.e., the projection over the first N-M coordi-

nates such that its restriction to V has an inverse. Being ϕ

linear, the (N - M) × N Jacobian matrix  is constant and

coincides with the matrix of ϕ in the canonical bases.

Denoting λ = det , the Euclidean metric in N

induces a measure on V (which does not depend on ϕ):

allowing to compute the volume of our polytope

where 1Π (·) is the indicator function of the set Π. It is
worth pointing out that given the linear structure of the
metabolic equations, the determinant of the mapping is a
(scalar) constant. Although the coefficient λ could be
explicitly calculated, it turns out that as far as only relative
volume quantities are concerned, as in the case of the in
silico flux knock-outs introduced below, this term factors
out and therefore we will drop it from the rest of the com-
putation.

Probabilistic framework

The problem of describing the polytope Π can be cast into
a probabilistic framework. We define the probability den-
sity  as:

Marginal flux probabilities over a given set of fluxes are
obtained by integrating out all remaining degrees of free-
dom. In particular we can define single flux marginal
probability densities as integrals on the affine subspace W

= V ∩ {νi = }

Ŝ Ŝ

λ̂

( )λ λ†
1
2

f d f d
V

( ) ( ( ))νν νν ≡∫ ∫λ φ u u (4)

vol 1 1V
V

d d( ) ( ) ( )
( )

Π Π Π≡ =∫ ∫ −νν νν λ φ 1 u u (5)



( ) ( ) ( )νν νν= −vol 1V Π Π
1 (6)

ν

P d W W

V
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ν ν= = ∩

≠
∏∫  νν vol

vol
Π

Π (7)

EmbeddingFigure 1
Embedding. Sketch of the the parameterization ϕ = N - M 

→ V ⊂ N, in a simple case where N = 3 and M = 1. The 
mass balance equations defined in Equation 2 define the 
hyperplane V and the set of inequalities defined in Equation 3 
restrict V to polytope Π indicated as the grey triangle in the 
left part of the figure. The application ϕ map the full-dimen-
sional counter-image of Π (the grey triangle on the right indi-
cate with U) onto Π.
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where the normalization term volW (Π ∩ W) is the (sub

dimensional) volume of the intersection between the pol-

ytope Π and the hyperplane {νi = } as displayed sche-

matically in Figure 2 where the marginal probability at

point νi =  is proportional to length of the blue segment

which is the intersection between the polytope Π and the

plane νi = 

Approximate volume computation
¿From a computational point of view, the problem of the
exact computation of the volume of a polytope with cur-
rent methods requires the enumeration of all its vertexes.
The vertex enumeration problem is #P-hard [16,17], but
even the problem of computing the volume, given the set
of all vertexes is a big computational challenge. Various
algorithms exist for calculating the exact volume of a pol-
ytope from its vertexes (for a review see [18]), and many
software packages are available in the Internet. Computa-
tional limitations restrict however exact algorithmic strat-
egies to cope with polytopes in relatively few dimensions
(e.g. N - M around 10 or so). To overcome such severe lim-
itations we will introduce a very efficient approximate
computational strategy that will allow us to compute the
volume and the shape of the space of solutions for real-
world metabolic networks.

We will adopt the following three steps strategy:

• We discretize the problem a la Riemann considering an a
N-dimensional square lattice whose elementary cell is of
size εN. The approximated volume is then proportional to
the number of cells intersecting the polytope Π. Of course
the smaller ε the better is the approximation.

• We consider an integer constraint satisfaction problem
where each of the mass-balance equations set a hard con-
straint over the involved discretized fluxes.

• We solve the constraint satisfaction problem using a
message-passing algorithm called Belief Propagation.

Discretization

Consider the regular orthogonal grid Λε of side ε partition-

ing N as in the simple sketch of Figure 3. This grid maps

via ϕ-1 into a partition Γε of ϕ-1(Π). The number of cells

ε of Λε intersecting Π is proportional to the numbers of

cells of Γε intersecting ϕ-1(Π). Finally, the volume in Eq. 5

is proportional to limε → 0εN-M
ε . For any given ε one we

have then defined discrete variables νi ∈ {0,1,..., },

for  equal to the integer part of , where

the integer qmax is the granularity of the approximation.

ν

ν

ν

ε

ε

qi
max

qi
max q i

max max×ν

TilingFigure 3
Tiling. Discretization of the volume: in the left part of the 
figure we display the the regular orthogonal grid Λε of side ε 
partitioning N. The counter-image of Λε via ϕ is given by the 
the grid Γε . Let number of Γε squares intersecting ϕ-1(Π) is 
proportional to the number of Λε cubes intersecting Π. The 
smaller the ε the better the intersection of the grid Λε with 
the polytope Π will approximate Π.

Marginal probabilityFigure 2
Marginal probability. Geometrical interpretation of the 
marginal probability distributions: the marginal probability at 
point νi =  is proportional to length of the blue segment 

which is the intersection between the polytope Π (the grey 
triangle) and the plane νi = .

ν

ν
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The constraint satisfaction problem
When dealing with integer coefficients si, a, as the ones
appearing in normal stoichiometric relations, the discrete
version of Eqs. 2 close in the set of positive integers defin-
ing a constraint satisfaction problem. The ε-approxima-
tion of the volume is then the number of elementary cells
that are solution to the discretized mass-balance equa-
tions. It is interesting to note that in the case of fractional
stoichiometric relations one can multiply all terms for the
minimum common multiple of all denominators, getting
an equivalent mass-balance equation with integer coeffi-
cients.

Belief Propagation
The integer constraint satisfaction is solved using Belief
Propagation (BP), a local iterative algorithm that allows
for the computations of marginal probability distribu-
tions. BP is exact on trees, and perform reasonably well on
locally tree-like structures [19-22]. This approximation
scheme allows for the computation of the logarithm of
the number of solutions via the entropy that can be
expressed in terms of flux marginals. We will give a
detailed derivation of the equations in section Methods.

Results and Discussion
Performance on low dimensional systems
In this section we will analyze the performance of our
algorithm against an exact algorithm on low dimensional
polytopes. Among the different packages available in the
Internet, we have chosen LRS [8], a program based on the
reverse search algorithm presented by Avis and Fukuda in
[9] that can compute the volume of non-full dimensional
polytopes. Actually, it computes the volume of the lexico-
graphically smallest representation of the polytope, that
for the benchmark used below, coincides with the con-
ventional volume estimated by our algorithm.

We have devised a specific benchmark generating random
diluted stoichiometric matrices at a given ratio α = M/N
and fixed number of terms different from zero K in each
of the reactions. All fluxes were constrained inside the
hypercube 0 ≤ νi ≤ 1. As a general strategy we have calcu-
lated several random instances of the problem and meas-
ured the volume (entropy) of the polytope using the LRS
and BP algorithm. In particular, we have first generated
1000 realizations of random stoichiometric matrices with
N = 12, M = 4. Note that N = 12 is around the maximum
that allows simulations with LRS in reasonable time
(around one hour per instance). For each polytope then
we have computed the two entropies SLRS and SBP with
both algorithms, fixing the same maximum value for the
discretization qmax = 1024 for all fluxes.

In Figure 4 we show how the quality of the BP measure is
affected by the discretization, by displaying the histogram

of the relative differences  with an increas-

ing number of bins per variable qmax = 16 , 64, 256, 1024.
One can see how a finer binning of messages improves the
quality of the approximation, seemingly converging to a
single distribution of errors. It is expected that for larger N
the histograms would peak around the true value: upon
increasing the number of fluxes, loops become larger and
the overall topology of the graph becomes more locally
tree-like, validating the hypothesis behind the Bethe
approximation. Unfortunately, the huge increase of com-
puter time experimented in the calculation of the volumes
using LRS made impossible to test systems large enough
to make any reasonable scaling analysis.

Finally we address the issue of the computational com-
plexity of the algorithm which is a crucial one if one is
interested in approaching real world metabolic networks
whose size typically is at least 50 times the size of the larg-
est network that can be analyzed with exact algorithms. In
Figure 5 we display the running time of both LRS and BP
as a function of the number of fluxes N. Interesting, LRS
outperforms BP up to sizes N ~12 where the running time

δ S SBP SLRS
SLRS

= −

Discrepance histogramFigure 4
Discrepance histogram. Histograms of δS = (SBP - SLRS)/
SLRS, where SLRS and SBP are the estimates of the logarithm of 
the volume computed using respectively the program LRS 
[8], and our message-passing algorithm. The measurement if 
δS are taken over a set of 1000 random realizations of a N = 
12 and M = 4 stoichiometric matrix where each of the 
metabolites participates to K = 3 different reactions. The 
four histograms represent the distribution of the experimen-
tal frequencies of the measured δS. Measurements were 
taken at different values of of the discretization parameter 
qmax = 16, 64, 256, 1024. For larger values of q the distribu-
tions of the measured δS peak around zero.
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of LRS explodes exponentially while BP maintains a mod-
est almost-linear behavior.

Distribution of fluxes in Red Blood Cell

We used our BP algorithm and MCS [11] to obtain the
marginal flux distributions for each of the reactions in the
Red Blood Cell (RBC) metabolism taking the same stoi-
chiometric matrix presented in [10,11] (see Additional
file 1). The network contains 46 reactions and 34 metab-
olites. The first comparison of MCS with our BP algorithm

is done setting all  to 1 (the resulting marginal prob-

ability distribution for the fluxes are displayed in Figure

6). The second comparison is done by setting all  to

the values used in [10] (results are displayed in Figure 7).
In both settings we compared BP with a set of 5000 feasi-
ble solutions generated by MCS, while for the BP algo-
rithm we used a qmax = 2048. As it can be seen in the two
cases, the predictions of both methods compare rather
well. Assuming the accuracy of MCS, differences are prob-
ably due to small loops structures in the graph. We leave
for a future work the issue of a more detailed comparison
of both methods. However we really think that the emerg-
ing scenario of RBC metabolism captured by BP is analo-
gous to that obtained by MCS both quantitatively and
qualitatively.

The MCS method appears to be quite efficient (the
authors of [11] reported in a similar network less then 30
seconds of computer computation in a Dell Dimension
8200 to obtain their distributions) while our algorithm
converged to the same result in less than 3 seconds on a
similar machine (Intel CPU 6600 2.40 GHz). Of course,
no stringent statement can be done at this level about the
comparative performance of the two algorithms. This pos-
itive result encourages us to face the problem of metabo-
lism at organism-wide scale.

Analysis of gene knock-out in E. coli central metabolism
In this section we study the influence of partial flux knock-
out on the volume of the solution space. We concentrate
on E. coli central metabolism [23]. The network has 62
metabolites, 104 reactions (75 internal reactions and 29
exchange fluxes). All reactions were considered irreversi-
ble following their nominal directions, and maximum
flux rates were set to 1.

In this numerical experiment we first run BP on the unper-
turbed system measuring the volume of the space of solu-
tion S0. Then the maximum flux values are kept constant

and equal to 1 for all the reactions but one (say reaction

νi). The partial knock-out effect on flux i is then obtained

reducing repeatedly  and computing again the vol-

ume SKO( ) at each time until  = 0. In principle

at each reduction step of  one should converge again

the BP equations. In practice for most of the fluxes conver-

gence is very fast since at each reduction of  the new

stationary point will be in general close enough to the old
one. However we have experimentally noted that the
larger is the impact of a given flux on the volume of the
space of solutions, the longer is the convergence time at
each reduction step. Let us point out that doing so we are
tacitly assuming that each knock-out is independent from
the others although it is known that some reactions might
be associated with the same enzyme. However there is no
computational restriction to analyze multiple knock-outs.
An analogous technique was presented in [11], where
maximal fluxes were reduced to the value of 75% of their
original maximal allowed flux to mimic enzymopathies.

In Figure 8 we display the whole set of S0 - SKO( ) vs.

knock-out percentage curves. We can observe how hetero-
geneous is the impact of the different fluxes on the vol-
ume. Moreover one can observe how different curves may
cross depending on the knock-out percentage displaying
thus an intriguing scenario of differential flux-reduction

ν i
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ν i
max

ν i
max

ν i
max ν i

max

ν i
max

ν i
max

ν i
max

Running timeFigure 5
Running time. Logarithm of the running time τ expressed 
in seconds vs. N for LRS algorithm, and BP algorithm. Aver-
ages are taken over 5000 realizations of random stoichiomet-
ric matrices at each value of N except in the N = 12 case 
where we analyzed 500 realizations. LRS outperforms BP up 
to sizes N ~12 where the running time of LRS explodes 
exponentially while BP maintains a modest almost-linear 
behavior.
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impacts. Let us now concentrate on the 20 fluxes having
larger impact on the space of solutions: in Figure 9 we dis-

play complete knock-outs values S0 -SKO(  = 0).

Focusing only on internal fluxes (the first two fluxes are
indeed exchange fluxes of water and protons), one can
observe that the first half of them basically compose the
backbone of glycolysis showing little pathway redun-
dancy in the network, while reactions like FUM, ACONT,
SUC and SUCCD1i appear in the Krebs cycle and again
show little pathway redundancy in the network (see Addi-
tional file 2).

Finally in Figure 10 we display the correlations between
the changes in the entropy for different reaction knock-

outs and the average flux νi  = ∫Pi (ν)νdν in the unper-
turbed network. At 75% knock-out, two kinds of regimes

are divided by a clear threshold at ν ~ 0.6: (i) for νi  < 0.6,

S0 - SKO( ) has a small positive correlation with ν ,

(ii) at larger average fluxes, correlations increase rapidly
but with larger fluctuations. The presence of this threshold
can be understood noting that reactions belonging to the
linear (glycolysis) an circular (Krebs cycle) pathways are,
in the wild cell, fast flux reactions, with average flux values

larger than 0.5. An analogous scenario emerges in the case
of a 100% knock-outs, but now fluctuation are wider, and
also fluxes with intermediate average value start becoming
important. This is the case for instance of the 6 large
impact fluxes having average flux around 0.3. A closer
inspection reveals that among them there is an exchange
fluxes (glycogen) and 5 internal fluxes (G1PP, GLCP,
HEX1, CS, PDH). The first three (G1PP, GLCP, HEX1) are
the first steps of glycolysis, while PDH is the input of the
Krebs cycle, and CS is a segment of the cycle strictly related
to PDH. It is interesting that this peculiar behavior (large
impact and relatively small average flux) are related to key
check-points of central metabolism.

E. coli metabolism at organism-wide scale
Finally we analyze the average fluxes distribution function
in the metabolic network of E. coli. The network used con-
tains, in its original format, 1035 reactions and 626
metabolites [23]. The network has been preprocessed
using Gaussian elimination procedure: when a trivial
mass-balance equation of the type νi = νj is present we
eliminate variable νi using elementary row operations.
Doing so new trivial mass balance equations appear, an
then we iterate the eliminations until all trivial mass-bal-
ance equations disappear. During Gaussian elimination,

ν i
max

ν i
max

Distribution of fluxes in Blood CellsFigure 6
Distribution of fluxes in Blood Cells. Marginal probability distributions of the flux values for each of the 46 reaction in the 
red blood cell network computed using our message-passing algorithm (filled area) and the MC method (lines). Panels are 

arranged following the same sequence of figure 5 in [10]. The maximum values of the fluxes are all identical,  = 1.
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some mass balance equations become effective dead-end
metabolite (i.e metabolites that are only consumed or
produced). Fluxes participating to dead-end metabolites
are set to zero at the beginning and removed from the sys-
tem. The new set of equations is equivalent to the original
one but with a lower number of fluxes. Reversible reac-
tions have been considered using bidirectional signed
fluxes. Using BP we are able to compute the marginal flux
distributions in around 40 minutes, using qmax = 64.

We ran our algorithm on this network and computed the
average fluxes in each reaction. We have performed a sta-
tistical analysis of these averages in the spirit of
[14,24,25]. The probability distribution function (pdf) of
these average values is displayed in Figure 11. As can be
clearly seen the distribution is large and may be fitted with
a power law distribution of P(ν) ∠ (ν + ν0)-γ. The fit gives
an exponent γ around 1.5, a result that compares very well
with previous simulations found in: (i) [14] where FBA
optimal fluxes were averaged over many different external
condition, (ii) [24] where a maximal local-output strategy
is used, and (iii) [25] where a Gaussian approximation for
the marginal flux distributions is used. It is claimed in
[14] that the robustness of this value γ is a signature of
universality in cell's metabolism.

A more careful analysis of the data may reveals however
that the distribution of averages fluxes has a richer struc-

ture. In Figure 12 we present the cumulative distribution

function  of theaverage fluxes of the

reactions and a clear jump appears for ν ≈ 0.5, and smaller

ones for ν ≈ 0.4 and μ ≈ 0.6. At present we do not know
whether these jumps are just due to statistical fluctuations
(and are correctly smeared out in the usual binning proc-
ess done to plot the pdf in double logarithmic scale) or
they reflect relevant biological or structural information
about the network.

Conclusion
We proposed a novel algorithm to estimate the size and
shape of the affine space of a non full-dimensional convex
polytope in high dimensions. The algorithm was tested in
specific benchmark, i.e. random diluted stoichiometric
matrices at a given ratio α = M/N and fixed number of
terms different from zero K, in each of the reactions, with
results that compare very well with those of exact algo-
rithms. Moreover, we show that while the running time of
exact algorithms increases more than exponentially for
already moderate sizes, our algorithm is polynomial. The
program was run on the Red Blood Cell metabolism pro-
ducing with shorter computational time results that are in
both quantitatively and qualitatively in good agreement
with those obtained by MCS presented in [10,11].

P P y dy< −∞
≡ ∫( ) ( )ν

ν

Distribution of fluxes in Blood CellsFigure 7
Distribution of fluxes in Blood Cells. Marginal probability distributions of the flux values for each of the 46 reaction in the 
red blood cell network computed using our message-passing algorithm (filled area) and the MC method (lines). Panels are 
arranged following the same sequence of figure 5 in [10]. The maximum values of the fluxes were taken from [10].
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Then, our program was used to study the E. coli central
metabolism, and as expected, reactions with little redun-
dancy turned out to be the ones with larger impact in the
size of the space of the metabolic solutions. Specifically,
most of the reactions associated with the transformation
of glucose in pyruvate, belong to this set, as well as some
reactions in the citric cycle. In addition we show strong
correlations between the characteristics of the flux distri-
butions of the wild type network and the changes in size
of the space of solutions after reaction knock-outs. Finally,
we calculate the distribution of the average values of the
fluxes in the metabolism of the E. coli and present results
that are consistent with those of the literature. In the
present approach we have mainly followed a discretiza-
tion strategy that although polynomial, becomes compu-
tationally rather heavy for mass balance equation
containing a large number of fluxes. We are currently
investigating other representation schemes for the mes-

sages. The final hope is to obtain an algorithm that allows
for on-line analysis of organism-wide metabolic net-
works.

Let us conclude by noting that in principle the presented
approach can be extended to deal with constraints whose
functional form is more general than linear, provided that
the number of variables involved in each of the con-
straints remains small, as in the case of inequalities
enforcing the second law of thermodynamics for the con-
sidered reactions [26]. Work is in progress also in this
direction.

Methods
Belief Propagation

In the previous section we have seen how the metabolic
problem can be cast into a constraint satisfaction frame-
work where each of M mass-balance equations imposes a

Flux knock-out curvesFigure 8
Flux knock-out curves. Flux knock-out impact on the volume of the space of solutions in E. coli central metabolism. On the 
x-axis we display the percentage of reduction of any given flux, and on the y-axis the relative volume difference with respect to 
the unperturbed system. We use upper-case keys for internal fluxes, and lower-case to exchange fluxes. We indicate keys only 
for the 20 fluxes having larger impact on the volume (dots) and we display the rest fluxes with thin scattered lines.
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constraint onto a subset of the metabolic fluxes. Let A be
the set of equations and I the set of fluxes. Consider the a-

th row of , and let {i ∈ a} ≡ {i1, ..., } ⊂ I be the labels

of the fluxes involved in the considered equation having
stoichiometric coefficients different from zero. Let also {a

∈ i} ≡ {a1, ..., } ⊂ A be the labels of the equations in

which flux i participates. The emerging structure is a bipar-
tite graph, with two types of nodes: variable nodes repre-
senting the fluxes of the reactions and factor nodes
imposing mass conservation. In this case marginals
become q-modal probability densities that for large values

of  will approximate better and better the continu-

ous set of probabilities.

Under the hypothesis that the factor graph is a tree it can
be shown [19,27] that a given flux vector ν satisfying all
flux-balance constraints can be expressed as a product of
flux and reaction marginals [19-21]:

where di is the number of equations in which flux νi par-
ticipates (i.e. the degree of site i). The marginal probabili-
ties are defined as:

One can then define an entropy in terms of the marginal
probability distributions which amounts to the logarithm
of the number of solutions of the associated constraint
satisfaction problem. From a more geometrical point of
view, this entropy is a count of the (logarithm of) the
number of elementary ε-cells intersecting the polytope Π
(see Figure 3).

One may wonder how such an approach could be useful
in a real-world situation where the graph is not a tree. One
can hope that typical loop length are large enough to
ensure weak statistical dependence of neighboring sites
which lay at the heart of the Bethe approximation [28,29].
It is interesting to note that the Bethe approximation is
successfully used in many different problems with loopy
graph topologies. This is for instance the case for LDPC
error correcting codes in Information Theory [30] used in
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Correlation of impact and valueFigure 10
Correlation of impact and value. Change in entropy S0 - 
SKO after reaction knockouts and the average as a function of 
the average flux value ν  of the unperturbed system. Red 
dots are relative to 75% knock-out and blue one to complete 
knock-out. The six red dots with average flux ~0.3 and 
entropy change larger than 0.15 are G1PP, GLCP, HEX1, CS, 
PDH, glycogen which are key check-points of central metab-
olism.
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wireless Internet transmission technologies such as
WiMAX, or in many inference problems such as graphical
models [31], binary perceptron learning [32], and in con-
straint satisfaction problems such as Satisfiability or
Coloring [33,34]. In all these cases although there is no
mathematically rigorous proof about the quality of the
solution, whenever the algorithm converges, the result
generally provides a good estimate of marginal probabil-
ity distributions.

The algorithm is based on two type of messages
exchanged from variable nodes to functional nodes, and
vice versa:

• μi → a(ν): the probability that flux i takes value ν in the
absence of reaction a.

• ma → i(ν): the non-normalized probability that the bal-
ance in reaction a is fulfilled given that flux i takes value ν.

The two quantities satisfy the following set of functional
equations:

where  means the sum over all values of fluxes

around metabolite a but i, b ∈ i\a, is the set of metabolites
in reaction i but a, Ci → a is a constant enforcing the nor-

malization of the probability μi → a(ν), and δ (·; ·) is the

Kronecker delta function (δ (a; b) is 1 if a = b and 0 other-
wise). The set of Equations 11 can be solved iteratively
and upon convergence of the algorithm one can compute
the marginal flux distributions as:

A brute force integration of the discrete set of equation
would be much too inefficient for analyzing large net-
works, due to the multiple dimensional sum over

 in the previous equation. The first of

Equations 11 includes the computation of the convolu-

tion of all μj → a messages except one, an expression of the

form  (where  denotes convolution)

and requires normally na - 1 convolutions for each output-

ting message, i.e. na (na - 1) convolutions in total for con-

straint a. In the case of the complete E. coli network we
have mass-balance equations with na as large as 500, then

m s b ua i i a l l a

l a

l a l

l a i

i

l l a i

→
∈

→
∈

→

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∑∑ ∏

∈

( ) ; ( ),

{ } \\

ν δ ν ν

μ

ν

aa i i a b i i

b i a

C m( ) ( )
\

ν ν= → →
∈
∏

(11)

{ } \ν l l a i∈
∑

P C s b u

P

a l l a a a l l a

l a

l a l

l a

i

l l a

({ } ) ; ( ),

{ }

ν δ ν ν
ν

∈
∈

→
∈

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∑∑ ∏

∈

(( ) ( )ν ν= →
∈

∏C mi l i

l i

(12)

{ ,..., }max
\0 ql l a i∈

Ca i j a i j a→ ∈ →= ⊗ \ μ
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Integrated distribution of average fluxes.Integrated dis-
tribution P<of average fluxes ν  of reactions in E. coli metabo-
lism obtained from the marginal probability distributions 
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reducing the computational complexity of the iteration
has a cogent practical implication on the performance of
the proposed algorithm. There is a way to reduce this
quadratic load to just O (na) convolutions. The method

we propose is not confined to convolutions and works
generally for any associative operation. Note that for oper-
ations that are efficiently invertible and commutative, one
could just operate all na terms (na initial operations) and

then for each outputting message operate with the inverse
of the undesired element (just one more operation for
each message, totalizing just 2na operations for constraint

a plus invertions) i.e. . When

elements are not invertible, nor conmutative or are just
difficult to invert, the following more general scheme can
be applied. Let us concentrate for instance on metabolite
a and let us assume that na is a power of two, say 2n (this

assumption can be easily relaxed). We will iteratively

build a n × na auxiliary matrix  setting as initial condi-

tion  and then building the following

sequence:  for d = 1, ..., n - 1. This is

equivalent to operate consecutive pairs of fluxes over
metabolite a, then consecutive quadruples and so on. One
needs just 2na operations for computing the full matrix at

this stage.

To compute Ca → i one needs additionally n = log2 na oper-

ations: we just have to operate the complement of i in its
pair with the complement of this pair in its quartet and so

on on all levels, i.e. in a compact form 

(See Figure 13). The total number of operations for all out
messages becomes then 2na + nalog2 na. Moreover, if all

messages are to be computed sequentially this number
can be further reduced to O (na).
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