
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Implementing EM and Viterbi algorithms for Hidden Markov Model
in linear memory
Alexander Churbanov*1 and Stephen Winters-Hilt1,2

Address: 1The Research Institute for Children, 200 Henry Clay Ave., New Orleans, LA 70118, USA and 2Department of Computer Science,
University of New Orleans, New Orleans, LA, 70148, USA

Email: Alexander Churbanov* - achurbanov@yahoo.com; Stephen Winters-Hilt - winters@cs.uno.edu

* Corresponding author

Abstract
Background: The Baum-Welch learning procedure for Hidden Markov Models (HMMs) provides
a powerful tool for tailoring HMM topologies to data for use in knowledge discovery and clustering.
A linear memory procedure recently proposed by Miklós, I. and Meyer, I.M. describes a memory
sparse version of the Baum-Welch algorithm with modifications to the original probabilistic table
topologies to make memory use independent of sequence length (and linearly dependent on state
number). The original description of the technique has some errors that we amend. We then
compare the corrected implementation on a variety of data sets with conventional and
checkpointing implementations.

Results: We provide a correct recurrence relation for the emission parameter estimate and
extend it to parameter estimates of the Normal distribution. To accelerate estimation of the prior
state probabilities, and decrease memory use, we reverse the originally proposed forward sweep.
We describe different scaling strategies necessary in all real implementations of the algorithm to
prevent underflow. In this paper we also describe our approach to a linear memory implementation
of the Viterbi decoding algorithm (with linearity in the sequence length, while memory use is
approximately independent of state number). We demonstrate the use of the linear memory
implementation on an extended Duration Hidden Markov Model (DHMM) and on an HMM with a
spike detection topology. Comparing the various implementations of the Baum-Welch procedure
we find that the checkpointing algorithm produces the best overall tradeoff between memory use
and speed. In cases where sequence length is very large (for Baum-Welch), or state number is very
large (for Viterbi), the linear memory methods outlined may offer some utility.

Conclusion: Our performance-optimized Java implementations of Baum-Welch algorithm are
available at http://logos.cs.uno.edu/~achurban. The described method and implementations will aid
sequence alignment, gene structure prediction, HMM profile training, nanopore ionic flow
blockades analysis and many other domains that require efficient HMM training with EM.

Published: 30 April 2008

BMC Bioinformatics 2008, 9:224 doi:10.1186/1471-2105-9-224

Received: 25 August 2007
Accepted: 30 April 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/224

© 2008 Churbanov and Winters-Hilt; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/224
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18447951
http://logos.cs.uno.edu/~achurban
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
Background
Hidden Markov Models (HMMs) are a widely accepted
modeling tool [1] used in various domains, such as
speech recognition [2] and bioinformatics [3]. An HMM
can be described as a stochastic finite state machine where
each transition between hidden states ends with a symbol
emission. The HMM can be represented as a directed
graph with N states where each state can emit either a dis-
crete character or a continuous value drawn from a Prob-
ability Density Function (PDF).

We are interested in a distributed HMM analysis of the
channel current blockade signal caused by a single DNA
hairpin molecule held in a nanopore detector [4,5]. The
molecules examined frequently produce toggles with sta-
tionary statistical profiles for thousands of milliseconds.
With a sampling rate of 20 μs, processing even a modest
blockade signal of 200 ms duration (10,000 sample
points) becomes problematic, mostly because of the size
of the dynamic programming tables required in the con-
ventional implementations of the HMM's Baum-Welch
and Viterbi decoding algorithms. Since we are also trying
to model durations [6] and spike phenomena [7], by
increasing the number of HMM states, conventional
HMM implementations are found to be prohibitively
expensive in terms of memory use.

The Baum-Welch algorithm is an Expectation Maximiza-
tion (EM) algorithm invented by Leonard E. Baum and
Lloyd R. Welch, and first appears in [8]. A later refine-
ment, Hirschberg's algorithm for an HMM [9], reduces the
memory footprint by recursively halving the pairwise align-
ment dynamic programming table for sequences of com-
parable size. In our application domain, the length of the
observed emission sequence (in the case of nanopore
ionic flow blockade analysis or gene structure prediction)
is prohibitively long compared to the number of HMM
states. Further, Baum-Welch requires multiple paths,
instead of the most likely one, making this strategy less
than optimal.

The checkpointing algorithm [10-12] implements the

Baum-Welch algorithm in memory and in

O(TNQmax + T(Q + E)) processor time, where T is the

length of the observed sequence, Qmax is the maximum

HMM node out-degree, E is the number of free emission
parameters and Q is the number of free transition param-

eters. It divides the input sequence into blocks of
symbols each, and, during the forward pass, retains the
first column of the forward probability table for each
block. When the reverse sweep starts, the forward values
for each block are sequentially re-evaluated, beginning
with their corresponding checkpoints, to update the
parameter estimates.

Further refinement to the algorithm, as described in [13]
and amended here, has rendered the memory demands
independent of the observed sequence length, with
O(N(Q + ED)) memory usage and O(TNQmax(Q + ED))
running time, where D is the dimensionality of a vector
that stores statistics on the emission PDF parameter esti-
mates. Performance of the various algorithms is summa-
rized in Table 1. In this work, we also present a
modification of one of the key HMM algorithms, the
Viterbi algorithm, improving the memory profile without
affecting the execution time.

Methods and Results
HMM definition, EM learning and Viterbi decoding
The following parameters describe the conventional
HMM implementation according to [14]:

• A set of states S = {S1,..., SN} with qt being the state vis-
ited at time t,

• A set of PDFs B = {b1(o),..., bN(o)}, describing the emis-
sion probabilities bj(ot) = p(ot|qt = Sj) for 1 ≤ j ≤ N, where
ot is the observation at time-point t from the sequence of
observations O = {o1,..., oT},

• The state-transition probability matrix A = {ai, j} for 1 ≤
i, j ≤ N, where ai, j = p(qt + 1 = Sj|qt = Si),

• The initial state distribution vector Π = {π1,..., πN}.
O T N()

T T

Table 1: The computational expense of different algorithm implementations running on HMM.

Algorith Canonical Checkpointing Linear

Viterbi Time O(TNQmax) Time O(TNQmax) Time O(TNQmax)

Space O(TN) Space Space O(T)

Baum-Welch Time O(TNQmax + T (Q + E)) Time O(TNQmax + T (Q + E)) Time O(TNQmax(Q + ED))

Space O(TN) Space Space O(N(Q + ED))

O T N T()+

O T N()
Page 2 of 15
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
A set of parameters λ = (Π, A, B) completely specifies an
HMM. Here we describe the HMM parameter update rules
for the EM learning algorithm rigorously derived in [15].
The Viterbi algorithm, as shown in Table 2, is a dynamic
programming algorithm that runs an HMM to find the
most likely sequence of hidden states, called the Viterbi
path, that result in an observed sequence. When training
the HMM using the Baum-Welch algorithm (an Expecta-
tion Maximization procedure), first we need to find the
expected probabilities of being at a certain state at a cer-
tain time-point using the forward-backward procedure as
shown in Table 2. The forward, backward, and Viterbi
algorithms take O(TNQmax) time to execute.

Let us define ξt(i, j) as the probability of being in state i at
time t, and state j at time t + 1, given the model and the
observation sequence

and γt(i) as the probability of being in state i at time t,
given the observation sequence and the model

The HMM maximization step using these probabilities is
shown in Table 3. The conventional EM procedure for
HMM [14] takes O(TN) memory and O(TNQmax + T (Q +
E)) processor time. An HMM containing empty internal
states (see for example [3]) and Hierarchical HMM
(HHMM) could be converted into canonical HMM form
through stack transformation as discussed in [16].

Forward sweep strategy explained
Figure 1 outlines initial, simple transition probability cal-
culations for all possible paths through a "toy" HMM. In
Figure 1, to estimate the probability of transition from
state 1 to state 2 (1 → 2), we calculate the probability of
transition utilization at time intervals 1–2 and 2–3 as:

p(Making transition 1 → 2 at time 1–2) = α1(1) × a1,2 ×
b2(o2) × β2(2), p(Making transition 1 → 2 at time 2–3) =

α2(1) × a1,2 × b2(o3) × β3(2).

In particular, to estimate the probability of transition 1 →
2 at time interval 1–2 we calculate the sum of probabili-
ties of all possible paths that lead to state 1 at time-point
1 (forward probability α1(1)). Then we multiply this
probability of being in state 1 by the transition a1,2 and
emission b2(o2) probabilities.

Further multiplication by the sum of probabilities of all
possible paths from state 2 at time 2 until the end of the
emission sequence (backward probability β2(2)), is the
expected probability of transition use. The sum of these
estimates at time-points 1–2 and 2–3 is equivalent to the
transition probability estimate in Table 3 (prior to nor-
malization).

According to [13] ti, j(t, m) is the weighted sum of proba-
bilities of all possible state paths that emit subsequence
o1,..., ot and finish in state m, taking an i → j transition at
least once where the weight of each state path is the
number of i → j transitions taken. Processing of the entire
ti, j(t, m) recurrence takes memory proportional to O(NQ)
and processor time O(TNQQmax). Initially we have ti, j(1,
m) = 0 since no transitions have been made. After initiali-
zation, we perform the following recurrence operations:

ξ λ
α β

λt t i t ji j p q S q S O
t i ai jb j ot t j

p O
(,) (, | ,)

() , () ()

(|
= = = = + +

+1
1 1
))

,

(1)

γ λ α β
α β

ξt t i t

j

N

i p q S O t i t i

t i t ii
N

i j() (| ,)
() ()

() ()
(,).= = =

=∑
=

=
∑

1 1

(2)

t t m i a b o m ji j t i m m t, ,(,) () () ()= =−α δ1 (3)

Table 2: The Viterbi decoding, forward and backward procedures.

Forward procedure Backward procedure Viterbi algorithm

αt(i) ≡ p (o1,..., ot|qt = Si, λ) βt(i) ≡ p (ot + 1,..., oT|qt = Si, λ) • Initially δ1(i) = πibi(o1), ψ1(i) = 0 for 1 ≤ i ≤ N,

• Initially α1(i) = πibi(o1) for 1 ≤ i ≤ N, • Initially βT(i) = 1 for 1 ≤ i ≤ N, • for t = 2,..., T and

1 ≤ j ≤ N,

•

for t = 2, 3,..., T and 1 ≤ j ≤ N,

•

for t = T - 1,..., 1 and 1 ≤ i ≤ N,

• Finally

for t = T - 1,..., 1 with optimal path .

• Finally is the

sequence likelihood

• Finally .

δ δ

ψ δ
t i N t i j j t

t
i N

t

j i a b o

j i

() max[()] (),

() arg max[(

,=

=
≤ ≤ −

≤ ≤
−

1 1

1
1))],ai j

α αt ti

N
i j j tj i a b o() () (),= ⎡

⎣⎢
⎤
⎦⎥−=∑ 11

β βt i j j tj

N
ti a b o j() () (),= += +∑ 11 1

q i q qT
i N

T t t t
∗

≤ ≤

∗
+ +

∗= =arg max[()], ()
1

1 1δ ψ

Q q qT
∗ ∗ ∗= { ,..., }1

p O iTi

N
(|) ()λ α= =∑ 1

p O b o ii ii

N
(|) () ()λ π β= =∑ 1 11
Page 3 of 15
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
where . Following equation

(1), at a certain time-point t we need to score the evidence
supporting transition between nodes i and j, which is the
sum of probabilities of all possible state paths that emit

subsequence o1,..., ot-1 and finish in state i (forward prob-

ability αt-1(i)), multiplied by transition ai, j and emission

bj(ot) probabilities upon arrival to ot. We extend weighted

paths containing evidence of i → j transitions made at pre-
vious time-points 1,..., t - 1 further down the trellis in sub-
equation (4). Finally, by the end of the recurrence we
marginalize the final state m out of probability ti, j(T, m) to

get a weighted sum of state paths taking transition i → j at
various time-points that is equivalent to the numerator in

+ −
=

∑ t t n a b oi j n m m t

n

N

, ,(,) (),1
1

(4)

δ()
,

,
m j

m j
= =

=⎧
⎨
⎩

1

0

if

otherwise

Time trellis for simple model where possible emissions of 0 and 1 are shown above and below trellisFigure 1
Time trellis for simple model where possible emissions of 0 and 1 are shown above and below trellis. Probabili-
ties of emissions that happen after each transition are shown in bold and transitions of interest taken at certain time-point are
underlined.

0.3

1

0.1

0

0.1

0

0.7

1 0

0.20.2

0

0.9

0.80.8

0.9

0.25 0.75 0.75

0.75 0.25 0.25

1

0.1

0.3

0.8

0.2

2
0.7

0.9

Estimated transitions use

Estimated use of transition a11 at time 1-2

Estimated use of transition a11 at time 2-3

Estimated use of transition a12 at time 1-2

Estimated use of transition a12 at time 2-3

Estimated use of transition a22 at time 1-2

Estimated use of transition a22 at time 2-3

Estimated use of transition a21 at time 1-2

Estimated use of transition a21 at time 2-3

{0.75, 0.25}

{0.25, 0.75}

0.3 × 0.25× 0.1 × 0.75 × 0.1 × 0.75+

0.3 × 0.25× 0.1 × 0.75 × 0.9 × 0.25

0.3 × 0.25× 0.1 × 0.75 × 0.1 × 0.75+

0.7 × 0.75× 0.8 × 0.75 × 0.1 × 0.75

0.3 × 0.25 × 0.9 × 0.25 × 0.8 × 0.75+

0.3 × 0.25× 0.9 × 0.25 × 0.8 × 0.75+

0.3 × 0.25× 0.9 × 0.25 × 0.2 × 0.25

0.3 × 0.25× 0.1 × 0.75 × 0.9 × 0.25+

0.7 × 0.75× 0.8 × 0.75 × 0.9 × 0.25

0.7 × 0.75 × 0.2 × 0.25 × 0.8 × 0.75+

0.7 × 0.75 × 0.2 × 0.25 × 0.2 × 0.25

0.3 × 0.25 × 0.9 × 0.25 × 0.2 × 0.25+

0.7 × 0.75 × 0.2 × 0.25 × 0.2 × 0.25

0.7 × 0.75 × 0.8 × 0.75 × 0.1 × 0.75+

0.7 × 0.75 × 0.8 × 0.75 × 0.9 × 0.25

0.7 × 0.75 × 0.2 × 0.25 × 0.8 × 0.75
Page 4 of 15
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
the transition probability estimate shown in Table 3.
Thus, we estimate transition utilization using:

where out(Si) is the set of nodes connected by edges from
Si.

According to [13] ei(γ, t, m) is the weighted sum of proba-
bilities of all possible state paths that emit subsequence
o1,..., ot and finish in state m, for which state i emits obser-
vation γ at least once where the weight of each state path
is the number of γ emissions that it makes from state i.

The following algorithm updates parameters for the set of
discrete symbol probability distributions.

Initialization step ei(γ, 1, m) = α1(m) δ (i = m) δ (γ = o1).
After initialization we make the recurrence steps, where
we correct the emission recurrence presented in [13] [see
Additional File 1]:

Finally, by the end of the recurrence we marginalize the
final state m out of ei(γ, T, m) and estimate the emission
parameters through normalization

The algorithm for discrete emission parameters estimate B
= {b1(o),..., bN (o)} takes in O(NED) memory and
O(TNEDQmax) time. As discussed [see Subsection HMM
definition, EM learning and Viterbi decoding] the forward
sweep takes O(TNQmax) time, where only the values of αt-

1(i) for 1 ≤ i ≤ N are needed to evaluate αt(i), thus reduc-
ing the memory requirement to O(N) for the forward
algorithm. Computing ei(γ, t, m) takes O(NED) previous
probabilities of ei(γ, t - 1, m) for 1 ≤ m ≤ N, 1 ≤ i ≤ E, 1≤ γ
≤ D. Recurrent updating of each ei(γ, t, m) probability ele-
ments takes O(Qmax) summations, totalling O(TNEDQ-

max).

Theorem 1 ei(γ, t, m) is the weighted sum of probabilities of
all possible state paths that emit subsequence o1,..., ot and finish
in state m, for which state i emits observation γ at least once.

Proof
Initialization The only chance for a path at a time-point
1 to emit symbol γ at least once from state i and finish in
state m is α1(m) in case i = m and γ = o1. Therefore, initial-
ization conditions satisfy definition of ei(γ, t, m).

Induction Suppose ei(γ, t - 1, m) represents correct
weighted sum of probabilities of all possible state paths
that emit subsequence o1,..., ot-1 and finish in state m, for
which state i emits observation γ at least once. We need to
prove the above holds for time-point t. Following equa-
tion (1) in recurrence part (5) we score the evidence of
symbol ot emission from state i at time-point t, which will
be further propagated down the trellis in recurrence part
(6). Chances of such event is αt(m), i.e. sum of probabili-
ties of all possible state paths finishing in state m at time-
point t under conditions i = m and γ = ot. The second part
of the recurrence (6) extends the weighted paths contain-
ing evidence of γ symbol emission from state i at previous
time-points 1,..., t - 1 and finishing in state n further down

t t T m a
ti j
END

ti j
END

j out Si
i j
END

i j

m

N

i j, , ,(,),
,

,()
,= =

∈∑=
∑

1

e t m m i m oi t t(, ,) () () ()γ α δ δ γ= = = (5)

= −
=

∑ e t n a b oi n m m t

n

N

(, ,) ().,γ 1
1

(6)

e e T m b
e j
END

e j
ENDDi

END
i

m

N

j() (, ,), ()
()

()
.γ γ γ

γ

γγ
= =

=∑=
∑

1 1

Table 3: The maximization step in HMM learning. states.

Initial probability estimate Transition probability estimate Emission parameters estimate

 = γ1(i), for 1 ≤ i ≤ N. • Gaussian emission , for 1 ≤ i, j ≤ N.

, for 1 ≤ j ≤ N,

• Discrete emission , for 1

≤ j ≤ N. and 1 ≤ k ≤ K, where v1,..., vK is the set of possible

dircrete observations.

π̂ i ˆ ,
(,)

()
ai j

t i jt
T

t it
T= =
−∑

=
−∑

ξ

γ
1
1

1
1

ˆ () ,

ˆ ()

()

()

(ˆ) ()

b o

b o

j

j

ot t jt
T

t jt
T

ot j t jt

→ =

→ =

=∑

=∑

−=

μ

σ

γ

γ

μ γ

1

1
2

2 11

1

T

t jt
T

∑

=∑ γ ()

ˆ ()
() ()

()
b kj

ot vk t jt
T

t jt
T=

==∑

=∑

δ γ

γ
1

1

Page 5 of 15
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224

Page 6 of 15
(page number not for citation purposes)

The linear memory implementation of Baum-Welch learning algorithm for HMMFigure 2
The linear memory implementation of Baum-Welch learning algorithm for HMM. This algorithm takes set of
HMM parameters λ and sequence of symbols O. Expected HMM parameters are calculated according to formulas [see Subsec-
tion Parameters update].

1 Initialization

2 for 1 ≤ m ≤ N

3 βT (m) = 1, DT = 1∑
N
i=1

βT (i)
, β̃T (m) = DT βT (m)

4 for 1 ≤ i, j ≤ N where i ∈ T

5 T̃i,j(T, m) = 0

6 for 1 ≤ i ≤ N , 1 ≤ γ ≤ D

7 if (i ∈ E) Ẽm(γ, T, m) = β̃T (i)Score(oT , γ)

8 else Ẽi(γ, T, m) = β̃T (i)Score(oT , γ)

9 Recurrence

10 for t = T − 1, . . . , 1

11 for 1 ≤ m ≤ N

12 β̄t(m) =
∑N

j=1 am,j bj(ot+1) β̃t+1(j)

13 dt = 1∑
N
i=1

β̄t(i)

14 for 1 ≤ m ≤ N

15 for 1 ≤ i, j ≤ N where i ∈ T

16 T̄i,j(t, m) = β̃t+1(j) am,j bj(ot+1) δ(i = m) +
∑N

n=1 am,n T̃i,j(t + 1, n) bn(ot+1)

17 T̃i,j(t, m) = dt T̄i,j(t, m)

18 for i ∈ E

19 for 1 ≤ γ ≤ D

20 Ēi(γ, t, m) =
∑N

n=1 bn(ot+1) am,n Ẽi(γ, t + 1, n) + β̄t(m)Score(ot, γ, i) δ(m = i)

21 Ẽi(γ, t, m) = dt Ēi(γ, t,m)

22 β̃t(m) = dt β̄t(m)

23 Termination

24 ẼEND
i (γ) =

∑N
m=1 Ẽi(γ, 1, m)πm bm(o1)

25 T̃END
i,j =

∑N
m=1 T̃i,j(1, m)πm bm(o1)

26 for 1 ≤ i ≤ N

27 α1(i) = πi bi(o1)

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
the trellis through available transitions an, m. Thus the def-
inition of ei(γ, t, m) holds true for the time-point t.

At the end of recurrence we marginalize the final state m
out of probability ei(γ, T, m) to get the weighted sum of all
state paths making observation γ in state i at various time-
points equivalent to the numerator of the discrete emis-
sion parameter estimate in Table 3, which is a weighted
sum of all possible paths that score emissions evidence at
certain time-points. By normalizing these scores we esti-
mate the emission parameters.

The forward sweep strategy was originally formulated in
[13] for HMMs with silent Start/End states, and automat-
ically handles the prior probabilities estimates for the
states as standard transitions connecting Start with other
non-silent states. The prior transition estimates aStart, i are
naturally involved within recurrent updates of ti, j(t, m),
which takes an additional O(N2) memory if all N non-
silent states have non-zero priors with time cost
O(TN2Qmax). In order to compute the prior estimates in
the conventional HMM formulation we need to know the
backward probability at time-point 1, which requires cal-
culation of the entire backward table. Therefore, in the
next section we present a linear memory Baum-Welch
algorithm modification built around a backward sweep
with scaling, which only involves calculation of α1(i) for
1 ≤ i ≤ N to estimate priors in O(N) time and O(N) mem-
ory.

Linear memory Baum-Welch using a backward sweep with
scaling
The objective of the algorithm presented in this section is
equivalent to that discussed previously [see Section For-
ward sweep strategy explained] based on forward probabili-
ties of state occupation. However, by using the backward
probabilities of state occupation we are able to estimate
initial HMM state probabilities much more quickly. In the
description that follows we introduce a new set of proba-
bilities:

Ei(γ, t, m) – the weighted sum of probabilities of all possi-
ble state paths that emit subsequence ot,..., oT and finish in
state m, for which state i emits observation γ at least once,
where the weight of each state path is the number of γ
emissions that it makes from state i.

Ti, j(t, m) – the weighted sum of probabilities of all possi-
ble state paths that emit subsequence ot,..., oT and finish in
state m, taking i → j transition at least once, where the
weight of each state path is the number of i → j transitions
that it takes.

All calculations are based on backward probability βt(i),
but there is inevitably insufficient precision to directly

represent these values for significantly long emission
sequences. Therefore we scale the backward probability
during the recursion.

The linear memory Baum-Welch implementation is
shown in Figure 2, where is a set of nodes with free

emission parameters and is a set of nodes with free
emanating transitions. Scaling relationships used at every
iteration are rigorously proven [see Appendix A]. An alter-
native to scaling is relation (7) presented in [17] showing
how to efficiently add log probabilities

The scoring functions used for the emissions updates are
shown in Table 4. With discrete emission we sum all the
backward probabilities of state occupation given discrete
symbol emission at certain time-points and later we nor-
malize these counts in (8). In the case of a normally dis-
tributed continuous PDF we sum emissions and emission
deviation from state i mean squared. These sums are
scaled by probability of state occupation. We use these
counts to estimate the emission mean (9) and variance
(10) for a given state.

Parameters update
We estimate the initial probability according to equations
presented in Table 3, where D1 is defined in Appendix A

The emissions estimate for the discrete case are

For normally distributed continuous observation PDF

log log log log logp p ei

t

N
p p

i

N
i

=

−
−

=

−

∑ ∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= + +
⎛

⎝
⎜
⎜

⎞

⎠
⎟

0

1

0

1

1

1 0

⎟⎟
.

(7)

ˆ () ()

() ()

() ()

()
π α β

α β
α β

α βi
i i

ii
N i

i D i

i Di
N

=
=∑

=
=∑

1 1

11 1
1 1 1

1 11 1(()

() ()

() ()
.

i

i i

ii
N i

=
=∑
α β

α β
1 1

11 1

ˆ ()
()

()

()

()
b

E j
END

E j
ENDD

D E j
END

D E j
ENDD

E
j γ

γ

γγ

γ

γγ
=

=∑
=

=∑
=

1

1

1 1

jj
END

E j
ENDD

()

()
.

γ

γγ =∑ 1

(8)

Table 4: The scoring functions for discrete and continuous
emissions.

Discrete emission Continuous Gaussian emission

Score (ot, γ, i) Score (ot, γ, i)
return δ(ot = γ) if (γ = 1) return ot,

if (γ = 2) return [ot - (bi(o) → μ)]2,
if (γ = 3) return 1.
Page 7 of 15
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
The transition estimate is calculated as following

Viterbi decoding in linear memory

In this section we describe results when using a "linear
memory" modification of the original Viterbi algorithm
that was introduced in [18] by Andrew J. Viterbi. As men-
tioned previously, the Viterbi algorithm is a dynamic pro-
gramming algorithm for finding the most likely sequence
of hidden states, called the "Viterbi path", corresponding
to the sequence of observed events in the context of an
HMM. Viterbi checkpointing implementation introduced

in [11] divides input sequence into blocks of
symbols each and during the first Viterbi pass keeps only
the first column of the d table for each block. The recon-
struction of the most probable state path starts with the
last block, where we use the last checkpointing column to

initialize recovery of the last states of the most likely
state path and so on, until the entire sequence decoding is
reconstructed. The algorithm requires memory space pro-

portional to and takes computational time

O(TNQmax) twice as much as conventional implementa-

tion would take because of multiple sweeps. Additional
computations could be easily justified by the lower mem-
ory use, which in practice leads to substantial speedup.

Only two columns are needed for the δ array that stores
maximum probability scores for a state at a given time-
point for the algorithm to run (referring to the relation-
ship shown in Table 2). We replace the array, needed to
store the dynamic programming backtrack pointers, by a
linked list. Our approximately linear memory implemen-
tation follows the observation that the backtrack paths
typically converge to the most likely state path and travel
all together to the beginning of the decoding table.
Although the approximate linearity depends on model
structure and emission sequence decoded, and is not guar-
anteed, this behavior is typical for the HMM topologies
we use. The possibility of using O(N log(T)) space (in case
we write to disk the most likely path before the coalescence
point, i.e. the first state on the backtrack path where only a
single candidate is left for the initial segment of the most
probable state path) has only been rigorously proven for
simple symmetric two-state HMM [19].

The modified Viterbi algorithm is shown in Figure 3. It
runs in the same O(TNQmax) time as a conventional
Viterbi decoder, but takes the amount of memory O(T) as
has been demonstrated by our simulations [see Section
Computational performance].

This approach has proven to be useful in decoding the
explicit Duration Hidden Markov Model (DHMM) topol-
ogy introduced in [6], as can be seen in Figure 4. Although
this implementation closely follows the originally pro-
posed non-parametric duration density [20] design, the

ˆ ()
()

()

()

()

()
b o

E j
END

E j
END

D E j
END

D E j
END

E j
END

E
j → = = =μ

1

3

1 1

1 3

1

jj
END()

,
3

(9)

ˆ ()
()

()

()

()

()
b o

E j
END

E j
END

D E j
END

D E j
END

E j
END

j → = = =σ 2
2

3

1 2

1 3

2

EE j
END()

.
3

(10)

a
Ti j

END

Ti j
END

j out Si

D Ti j
END

D Ti j
END

j out Si
i j,

,

,()

,

,(
=

∈∑
=

∈

1

1))

,

,()
.

∑
=

∈∑
∈

Ti j
END

Ti j
END

j out Si

i for

T T

T

O N T T()+

Viterbi algorithm implementation with linked listFigure 3

Viterbi algorithm implementation with linked list. Here is reference to the previous node.

1. Initially δ1(i) = πi bi(o1), ψ1(i) = 0 for 1 ≤ i ≤ N ,

2. δt(j) = max
1≤i≤N

[δt−1(i) ai,j] bj(ot),

ψt(j) → prev = ψt−1(argmax
1≤i≤N

[δt−1(i) ai,j]) for t = 2, . . . , T and 1 ≤ j ≤ N ,

3. Finally q∗T = argmax
1≤i≤N

[δT (i)], trace back q∗t = ψt+1(q
∗
t+1) → prev for t = T − 1, T − 2, . . . , 1

with optimal decoding Q∗ = {q∗1 , q∗2 , . . . , q∗T }.

ψ t tq prev+ +
∗ →1 1()
Page 8 of 15
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224

Page 9 of 15
(page number not for citation purposes)

Explicit DHMM topologyFigure 4
Explicit DHMM topology. Here the first aggregate state emits 0 with probability 0.75 and 1 with probability 0.25 and the
second aggregate state emits 0 with probability 0.25 and 1 with probability 0.75. Duration histograms are shown for each
aggregate state.

0.0067

0.035

0.1

0.3

0.44

0.12

1.0

{0.75,0.25}

0.0033

1.0

{0.75,0.25}

0.018

1.0

{0.75,0.25}

0.051

1.0

{0.75,0.25}

0.15

1.0

{0.75,0.25}

0.22

1.0

{0.75,0.25}

0.06

1.0

{0.25,0.75}

0.11

1.0

{0.25,0.75}

0.22

1.0

{0.25,0.75}

0.12

1.0

{0.25,0.75}

0.04

1.0

{0.25,0.75}

0.012

1.0

{0.25,0.75}

0.002

0.004

0.024

0.078

0.24

0.43

0.22

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6

Series1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6

Series1

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
advantage is that we no longer have to use highly modi-
fied Forward-Backward and Viterbi algorithms [21]. This
topology directly corresponds to the Generalized Hidden
Markov Model (GHMM) used in GENSCAN [22], one of
the most accurate gene structure prediction tools. The
potential for a very large number of nodes in our pro-
posed topology is compensated by introducing the linear
memory Viterbi and Baum-Welch implementations with
unaltered running time O(STM), where M is the maxi-
mum duration of an aggregate state and S is the number
of aggregate states. An example of backtracking path com-
pression for such a topology with discrete emissions can
be seen in Figure 5, where the most likely trail of states
quickly combines with all the alternative trails. Another
interesting topology used by our laboratory for "spike"
detection is shown in Figure 6, where the spikes are mod-
elled as a mixture of two trajectories interconnected with
an underlying set of ionic flow blockade states. The Viterbi
decoding trail for this topology, detecting two sequential
spikes in samples from the real continuous ionic flow
blockade, is shown in Figure 7. Again, the backtracks
quickly converge to the most likely state sequence.

Our particular implementation relies on the Java Garbage
Collector (GC), which periodically deletes all the linked
list nodes allocated in the heap that are no longer refer-
enced by the active program stack as shaded in light gray
color in Figures 5 and 7. On multiple core machines the
GC could run concurrently with the main computational
thread thus not obstructing execution of the method. In

the lower level languages (like C/C++) "smart pointers"
could be used to deallocate unused links when their refer-
ence count drops to zero, which is in some ways even
more efficient than Java's garbage collection.

Computational performance
We conducted experiments on the HMM topologies men-
tioned above [see Section Viterbi decoding in linear memory]
with both artificial and real data sets, and evaluated per-
formance of the various implementations of the Viterbi
and EM learning algorithms. We describe the performance
of the Java Virtual Machive (JVM) after the HotSpot Java
byte code optimizer burns-in, i.e. after it optimizes both
memory use and execution time within EM cycles. The lin-
ear memory, checkpointing and conventional algorithm
implementations are thereby streamlined to avoid an
unfair comparison due to obvious performance bottle-
necks.

For the DHMM topology shown in Figure 4 we have cho-
sen to systematically alter the size of two aggregate states
from 50 to 500 when learning on an artificially generated
sequence of 10,000 discrete symbols to see how the
number of free learning parameters affects the perform-
ance of the EM learning algorithms. In Subfigures 8(a) –
8(c) we see that the running time of the linear implemen-
tation grows dramatically compared to conventional and
checkpointing implementations, making it a very slow
alternative for such a scenario. Although the linear imple-
mentation memory profile is low, as expected, for high

Explicit Duration HMM trellis for the observation string shown belowFigure 5
Explicit Duration HMM trellis for the observation string shown below. The most likely sequence of states for the
observation string shown below is shaded. The lightly grayed states will be deallocated by garbage collector.

1001 0 010001110001101

1

0

2

3

4

5

6

7

8

9

10

11
Page 10 of 15
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
values of D, the checkpointing algorithm claims the least
memory. This is because the table sizes in the linear mem-
ory EM implementation grow quickly as the number of
states and transitions in the model increases. Garbage col-
lection for large D is the lowest for the checkpointing EM
compared to other implementations.

In experiments on EM learning on a spike detection HMM
topology, shown in Figure 6, we have systematically var-
ied the ionic flow duration from 1,000 ms to 64,000 ms.
Although in Subfigures 8(d) – 8(f) duration of the time
cycle of the linear memory implementation is not so
inflated in this situation, it is still many times higher than
for conventional and checkpointing algorithms. Please
note that conventional and checkpointing algorithms
spend almost identical time per cycle. The conventional
implementation still takes the largest amount of memory
and once again checkpointing takes less memory com-

pared to the linear memory implementation in the case of
long signal duration. Garbage collection in the case of the
conventional implementation starts taking a substantial
fraction of the CPU time for maximum signal duration,
which advocates against using the conventional imple-
mentation for the analysis of long signals.

Theoretically, for the linear memory algorithm to run faster
than checkpointing alternative the following condition
should hold true 2TNQmax + T (Q + E) > TNQmax(Q + ED)

which reduces to the condition, unrealistic for any practical
model 2 > Q + ED. Thus, the linear memory algorithm will
always run slower than checkpointing. The memory condi-
tion for the linear memory EM algorithm implementation

to run in less space is 2N > N(Q + ED), which reduces

to 2 > Q + ED condition – quite realistic for sufficiently

T

T

Spike detection loop topologyFigure 6
Spike detection loop topology.

N (13.0, 17.1)

N (11.0, 11.9)

N (18.9, 24.3)

N (19.8, 2.2)

N (10.6, 10.1)

N (15.6, 20.7)

N (19.9, 21.4)

N (19.6, 2.9)

N (18.4, 3.0) N (18.8, 1.6)

N (17.7, 3.5)N (17.9, 2.6)

N (22.2, 1.8)

0.76

N (17.9, 21.2) 0.14

0.015

0.005

0.09

N (14.3, 19.2)

N (11.8, 12.9)

N (16.9, 24.1)

0.028

0.58

0.98

0.39

N (19.5, 20.4)
1.0
Page 11 of 15
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
large values of T. The memory advantage is the key attribute
since efforts are underway (Z. Jiang and S. Winters-Hilt) to
perform segmented linear HMM processing on a distrib-
uted platform, where the speed deficiency is offset by M-
fold speedup when using M nodes.

In both test scenarios shown in Figure 8 we see that con-
ventional implementation of Baum-Welch aggressively
claims very large amounts of heap space, even for mod-
estly sized problems (in some applications, such as the
JAHMM package [23], it allocates the probabilistic table ξ
of size N2 × T, although we do it in N × T through progres-
sive summation of forward-backward tables), where both
modified EM algorithm implementations have a very
compact memory signature. An HMM algorithm imple-
mented based on forward sweep strategy with silent Start/

End states runs slower and takes more memory compared
to the proposed backward sweep strategy in case of
DHMM topology. This is because prior probabilities of
the states are estimated as regular transitions from the
Start state, thus substantially increasing ti, j(t, m) table size
and time required for a recurrent step.

In Tables 5 and 6 we list the ratio of memory used by the
linked list nodes referenced from the active program stack
to the sequence length T. As could be seen, it quickly
becomes proportional to 1.0 in both spike detection and
the explicit DHMM topologies as the decoded sequence
length grows.

Discussion and Conclusion
We have discussed implementation of Baum-Welch and
Viterbi algorithms in linear memory. We successfully used

Table 6: Memory use for Viterbi decoding on explicit DHMM
with D = 60 and two aggregate

Observation sequence size Ratio of number of referenced
links to sequence size

1,000 2.565
10,000 1.134
50,000 1.032
100,000 1.017
200,000 1.007

Trellis for loopy topology used for spikes detection where shallow spike (states 1–6) and deep spike (states 7–17) are conse-quently decodedFigure 7
Trellis for loopy topology used for spikes detection where shallow spike (states 1–6) and deep spike (states 7–
17) are consequently decoded. The most likely sequence of states for the sequence of observed ionic flow current block-
ades (in pA) shown below is shaded. The lightly grayed states will be deallocated by garbage collector.

1

2

4

5

15

0

3

6

7

8

9

10

11

12

13

14

16

17

20.38 19.47 19.04 21.91 22.09 21.61 8.54 22.70 22.2219.23 23.01 23.31 21.24 20.02 19.04 19.53 21.24 22.52 22.03 22.52 17.70 12.51 9.15 11.35 15.38 19.23 21.18 21.48 22.34 22.5

Table 5: Memory use for Viterbi decoding on spike topology with
loop sizes 6 and 11.

Ionic flow samples Ratio of number of
referenced links to sequence
size

819 1.1173
10,319 1.0084
26,233 1.0042
51,233 1.0017
101,233 1.0015
151,232 1.0007
Page 12 of 15
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224

Page 13 of 15
(page number not for citation purposes)

In subfigures 8(a) – 8(c) performance of Baum-Welch used on DHMM topology with two aggregate states of various maximum duration DFigure 8
In subfigures 8(a) – 8(c) performance of Baum-Welch used on DHMM topology with two aggregate states of
various maximum duration D. In subfigures 8(d) – 8(f) performance of Baum-Welch algorithm used on spike topology for
various ionic flow durations is shown.

0 100 200 300 400 500
0

500

1000

1500

2000

2500

Aggregate state size

S
ec

on
ds

Duration of one EM learning cycle

Checkpointing
Linear memory
Linear memory with empty
Conventional

(a) Duration time cycle

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Aggregate state size

M
b

Used Heap size

Checkpointing
Linear memory
Linear memory with empty
Conventional

(b) Duration memory use

0 100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Aggregate state size

(%
)

Percentage of time spent by Garbage Collector

Checkpointing
Linear memory
Linear memory with empty
Conventional

(c) Duration garbage collection

0 1 2 3 4 5 6 7

x 10
4

0

50

100

150

200

250

Signal duration (msec)

S
ec

on
ds

Duration of one EM learning cycle

Checkpointing
Linear memory
Linear memory with empty
Conventional

(d) Spikes time cycle

0 1 2 3 4 5 6 7

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Signal duration (msec)

M
b

Used Heap size

Checkpointing
Linear memory
Linear memory with empty
Conventional

(e) Spikes memory use

0 1 2 3 4 5 6 7

x 10
4

0

5

10

15

20

25

Signal duration (msec)

(%
)

Percentage of time spent by Garbage Collector

Checkpointing
Linear memory
Linear memory with empty
Conventional

(f) Spikes garbage collection

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
these implementations in analysis of nanopore blockade
signals with very large sample sizes (more than 3,000 ms)
where the main limitation becomes processing time
rather than memory overflow. We are currently working
on efficient distributed implementations of the linear
memory algorithms to facilitate quicker, potentially "real-
time" applications.

In both of the test scenarios considered, the linear mem-
ory modification of the EM algorithm takes significantly
more time to execute compared to conventional and
checkpointing implementations. Despite being the fastest
in many realistic scenarios, the conventional implementa-
tion of the EM learning algorithm suffers from substantial
memory use. The checkpointing algorithm alleviates both
of these extremes, sometimes running even faster than the
conventional algorithm due to lower memory manage-
ment overhead. The checkpointing algorithm seems to
provide an excellent tradeoff between memory use and
speed. We are trying to understand if the running time of
our linear memory EM algorithm implementation can be
constrained in a way similar to the checkpointing algo-
rithm. A demo program featuring the canonical, check-
pointing and linear memory implementations of the EM
learning and the Viterbi decoding algorithms is available
on our web site (see Availability & requirements section
below).

Availability & requirements
University of New Orleans bioinformatics group: http://
logos.cs.uno.edu/~achurban

Authors' contributions
AC conceptualized the project, implemented and tested
the Baum-Welch and Viterbi linear memory procedures.
SW–H suggested focus on linear memory algorithms and
outlined the idea for the Viterbi linear memory. SW–H
helped with writing up the manuscript and provided
many valuable suggestions throughout the study. All
authors read and approved the final manuscript.

Appendices
Appendix A – Proofs of scaling relationships
The scaling steps in Figure 2 need additional rigorous jus-
tification. Our proofs are partially inspired by recurrences
presented in [24] with further clarifications.

Theorem 2 t(m) = dt t(m)

Proof Let us define

,

Here we observe useful relationships Dt = dt Dt + 1 and

t(m) = Dt + 1βt(m) necessary in follow-up proves.

Theorem 3 i, j(t, m) = dt i, j(t, m)

Proof Let us define i, j(t, m) = DtTi, j(t, m),

Theorem 4 i(γ, t, m) = dt i(γ, t, m)

Proof Let us define i(γ, t, m) = DtEi(γ, t, m),

Additional material

β β

D
t ii

N
d

t ii
N

m D mt t t t t=
=∑

=
=∑

=1

1

1

1b b
b b

()
,

()
, () ()

Additional File 1
Supplementary materials. Contains previously derived recurrences for
linear memory HMM implementation with forward sweep and empty
start/end states along with corrected recurrences.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-224-S1.pdf]

β β

β

t m j j t t

j

N

t m j j t t

j

m a b o j

D a b o j

() () ()

() ()

,

,

=

=

+ +
=

+ + +
=

∑ 1 1

1

1 1 1

1

NN

t t

t

t t t

D m

d
t ii

N Dt t ii
N

m d m

∑
=

=
=∑

=
+ =∑

=

+1

1

1

1

1 1

β

β β

β β

(),

() ()
,

() ()) ()
()

() ().= =
+ =∑ + =+d D m

Dt t ii
N

Dt t m Dt t mt t t1
1

1 1
1β

β
β β

β

T T

T

T t m d T t m

d j a b o i m a T

i j t i j

t t m j j t m n

, ,

, ,

(,) (,)

() () ()

=

= = ++ +β δ1 1 ii j n t

n

N

t t t m j j t

t n b o

d D j a b o

,

,

(,) ()

() ()

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

+
=

+ + +

∑ 1 1

1

1 1 1β δδ

β

() (,) (), ,i m D a T t n b o

d D

t m n i j n t

n

N

t t t

= + +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

+ +
=

+ +

∑1 1

1

1

1

11 1 1

1

1() () () (,) (), , ,j a b o i m a T t n b om j j t m n i j n t

n

N

+ +
=

= + +
⎡

⎣
⎢
⎢

⎤

⎦
∑δ ⎥⎥

⎥

=
=

+d D T t m

D T t m
t t i j

t i j

1 ,

,

(,)

(,).

E E

E

E t m d E t m

d b o a E t n m

i t i

t n t m n i t

(, ,) (, ,)

() (, ,) (),

γ γ

γ β

=

= + ++1 1 SCOORE(,) ()

() (, ,,

o m i

d D b o a E t n

t

n

N

t t n t m n i

γ δ

γ

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +

=

+ +

∑
1

1 1 1)) () (,) ()

()

+ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

+
=

+ +

∑ D m o m i

d D b o

t t t

n

N

t t n t

1

1

1 1

β γ δ SCORE

aa E t n m o m i

d D

m n i t t

n

N

t t

, (, ,) () (,) ()γ β γ δ+ + =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
=

∑ 1
1

 SCORE

++

=
1E t m

D E t m
i

t i

(, ,)

(, ,).

γ
γ

Page 14 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-224-S1.pdf
http://logos.cs.uno.edu/~achurban
http://logos.cs.uno.edu/~achurban

BMC Bioinformatics 2008, 9:224 http://www.biomedcentral.com/1471-2105/9/224
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
Authors are grateful for numerous constructive suggestions made by anon-
ymous reviewers.

References
1. Bilmes J: What HMMs can do. In Tech rep University of Washing-

ton, Seattle; 2002.
2. Rabiner L, Juang BH: Fundamentals of speech recognition Printice Hall;

1993.
3. Durbin R, Eddy S, Krogh A, Mitchison G: Biological sequence analysis

Cambridge University press; 1998.
4. Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D,

Akeson M: Rapid discrimination among individual DNA hair-
pin molecules at single-nucleotide resolution using an ion
channel. Nature Biotechnology 2001, 19:248-252.

5. Vercoutere W, Winters-Hilt S, DeGuzman V, Deamer D, Ridino S,
Rodgers J, Olsen H, Marziali A, Akeson M: Discrimination among
individual Watson-Crick base pairs at the termini of single
DNA hairpin molecules. Nucleic Acids Research 2003,
31(4):1311-1318.

6. Churbanov A, Baribault C, Winters-Hilt S: Duration learning for
analysis of nanopore ionic current blockades. BMC Bioinformat-
ics 2007. [MCBIOS IV supplemental proceedings].

7. Winters-Hilt S, Landry M, Akeson M, Tanase M, Amin I, Coombs A,
Morales E, Millet J, Baribault C, Sendamangalam S: Cheminformat-
ics methods for novel nanopore analysis of HIV DNA ter-
mini. BMC Bioinformatics 2006, 7(Suppl 2):S22.

8. Baum L, Petrie T, Soules G, Weiss N: A maximization technique
occurring in the statistical analysis of probabilistic functions
of Markov chains. Ann Math Statist 1970, 41:164-171.

9. Hirschberg D: A linear-space algorithm for computing maxi-
mal common subsequences. Communications of the ACM 1975,
18:341-343.

10. Grice J, Hughey R, Speck D: Reduced space sequence alignment.
CABIOS 1997, 13:45-53.

11. Tarnas C, Hughey R: Reduced space hidden Markov model
training. Bioinformatics 1998, 14(5):401-406.

12. Wheeler R, Hughey R: Optimizing reduced-space sequence
analysis. Bioinformatics 2000, 16(12):1082-1090.

13. Miklós I, Meyer I: A linear memory algorithm for Baum-Welch
training. BMC Bioinformatics 2005, 6:231.

14. Rabiner L: A tutorial on hidden Markov models and selected
applications in speach recognition. Proceedings of IEEE 1989,
77:257-286.

15. Bilmes J: A gentle tutorial of the EM algorithm and its applica-
tion to parameter estimation for Gaussian mixture and hid-
den Markov models. In Tech Rep TR-97-021 International
Computer Science Institute; 1998.

16. Wierstra D, Wiering M: Master's Thesis Volume chap. 5. IDSIA;
2004:36-40. [A New Implementation of Hierarchical Hidden Markov
Models].

17. Kingsbury N, Rayner P: Digital filtering using logarithmic arith-
metic. Electronics Letters 1971, 7(2):56-58.

18. Viterbi A: Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE Transactions on
Information Theory 1967, 13(2):260-269.

19. Šrámek R, Brejová B, Vinař T: On-line Viterbi algorithm and its
relationship to random walks. Tech rep 2007 [http://arxiv.org/
abs/0704.0062v1]. Comenius and Cornell Universities

20. Ferguson J: Variable duration models for speech. Proc Sympo-
sium on the application of Hidden Markov Models to text and speech
1980:143-179.

21. Mitchell C, Helzerman R, Jamieson L, Harper M: A parallel imple-
mentation of a hidden Markov model with duration mode-
ling for speech recognition. Digital Signal Processing, A Review
Journal 1995, 5:298-306 [http://citeseer.ist.psu.edu/
mitchell95parallel.html].

22. Burge C, Karlin S: Predictions of complete gene structures in
human genomic DNA. Journal of Molecular Biology 1997,
268:78-94.

23. François JM: Jahmm – Java Hidden Markov Model (HMM).
[http://www.run.montefiore.ulg.ac.be/~francois/software/jahmm/].

24. Rahimi A: An erratum for "A tutorial on Hidden Markov Mod-
els and selected applications in speech recognition". 2000

[http://alumni.media.mit.edu/~rahimi/rabiner/rabiner-errata/rabiner-
errata.html].
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18047713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18047713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17118144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9088708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16171529
http://arxiv.org/abs/0704.0062v1
http://arxiv.org/abs/0704.0062v1
http://citeseer.ist.psu.edu/mitchell95parallel.html
http://citeseer.ist.psu.edu/mitchell95parallel.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149143
http://www.run.montefiore.ulg.ac.be/~francois/software/jahmm/
http://alumni.media.mit.edu/~rahimi/rabiner/rabiner-errata/rabiner-errata.html
http://alumni.media.mit.edu/~rahimi/rabiner/rabiner-errata/rabiner-errata.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods and Results
	HMM definition, EM learning and Viterbi decoding
	Forward sweep strategy explained
	Proof
	Linear memory Baum-Welch using a backward sweep with scaling
	Parameters update
	Viterbi decoding in linear memory

	Computational performance

	Discussion and Conclusion
	Availability & requirements
	Authors' contributions
	Appendices
	Appendix A - Proofs of scaling relationships

	Additional material
	Acknowledgements
	References

