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Abstract
Background: Haplotype reconstruction is important in linkage mapping and association mapping
of quantitative trait loci (QTL). One widely used statistical approach for haplotype reconstruction
is simulated annealing (SA), implemented in SimWalk2. However, the algorithm needs a very large
number of sequential iterations, and it does not clearly show if convergence of the likelihood is
obtained.

Results: An evolutionary algorithm (EA) is a good alternative whose convergence can be easily
assessed during the process. It is feasible to use a powerful parallel-computing strategy with the EA,
increasing the computational efficiency. It is shown that the EA can be ~4 times faster and gives
more reliable estimates than SimWalk2 when using 4 processors. In addition, jointly updating
dependent variables can increase the computational efficiency up to ~2 times. Overall, the
proposed method with 4 processors increases the computational efficiency up to ~8 times
compared to SimWalk2. The efficiency will increase more with a larger number of processors.

Conclusion: The use of the evolutionary algorithm and the joint updating method can be a
promising tool for haplotype reconstruction in linkage and association mapping of QTL.

Background
Haplotypes can give useful information about patterns of
inheritance for genomic regions. For each region, the
probability of sharing founder genes through segregation
in a recorded pedigree can be estimated based on the hap-
lotypes, i.e. identity by descent (IBD) probability based
on linkage (e.g. [1-3]). The probability of sharing the
genes from a common ancestor before the recorded pedi-
gree can also be estimated based on the haplotypes, i.e.
IBD probability based on linkage disequilibrium (LD)
(e.g. [4-7]). Those probabilities derived from the haplo-

types are essential information for linkage mapping and
association mapping.

Since haplotypes would not be directly observed from
genotypic data, they need to be inferred based on
observed pedigree information and marker genotypes.
This would often result in a large state space of possible
haplotype configurations especially with general pedi-
grees and incomplete genotypic data for multiple markers.
Exact likelihood methods using pedigree peeling [8],
chromosome peeling [9] or a combination of both algo-
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rithms often have problems dealing with the large state
space and therefore have difficulties in finding the opti-
mal haplotypes.

Alternatively, combinatorial optimization algorithms can
be used. These are able to deal with problems that are hard
to solve in polynomial time (NP hard). One strategy used
in such algorithms is to search for haplotype configura-
tions that require a minimum number of recombination
events [10-12] or no recombination events [13]. These
approaches are rule-based and do not make any assump-
tions about genetic distances between markers. Another
approach is statistically based and would search for hap-
lotype configurations with the highest likelihood, given
all observed variables and known marker distances [14-
16].

A widely used statistical approach for haplotype recon-
struction is simulated annealing (SA) [17] which has been
implemented in the linkage software, SimWalk2 [15,18].
SimWalk2 uses a random walk approach [19] to find can-
didates and an annealing process to develop the consecu-
tive solutions to reach the optimal haplotypes. SimWalk2
constitutes a flexible and efficient algorithm for haplotyp-
ing and probably the only one used for a general complex
pedigree with incomplete genotypes. However, it needs a
very large number of sequential evaluations and it is not
always guaranteed that the most likely solutions are found
within the arbitrarily determined number of evaluations.

Evolutionary algorithms (EA) [20] constitute an efficient
tool for solving combinatorial optimization problems. A
number of parallel solutions are respectively updated
(evolved) by changing the variables within each solution
(EA-mutation), or recombining them from different solu-
tions (EA-recombination), and the most favorable solu-

tions are selected (EA-selection). Compared to SA, EA may
be competitive in efficiently finding an optimal solution.
An important advantage of EA is its potential to parallel-
lise computations because the algorithm can be divided
across multiple CPUs. This would substantially reduce
computing time. Moreover, the search mechanism in EA
can make it easier to diagnose convergence compared to
that in SimWalk2. It is well known that EA can be easily
designed and parameterised for a specific problem, and
standard values for EA-parameters usually give reasonably
good results [21].

In addition, jointly updating the set of dependent varia-
bles can increase the computational efficiency although
not all sets of dependent variables may be found. It is
noted that SimWalk2 attempts to update multiple varia-
bles together, but the set that is updated is randomly cho-
sen (random walk approach). Because dependent
variables are not necessarily within the same set, the
acceptance rates are generally low.

An evolutionary algorithm has not been implemented
before in statistical approaches for haplotyping. The aim
of this study is to investigate the use of an evolutionary
algorithm and joint updating strategy for haplotyping,
and compare its efficiency with SimWalk2.

Results
Likelihood pattern with simulated data
Table 1 compares the likelihood of the best haplotypes
found by SimWalk2, EA1 and EA2 for consecutive num-
bers of likelihood evaluation when using simulated data
with 10 multiallelic markers positioned at 10 cM inter-
vals. The results are averaged over 10 replicates (each
result for each replicate is shown in additional file 1).
When using complete genotypic data, the values for

Table 1: Log likelihood of the best haplotypes found by SimWalk2, EA1 and EA2 with simulated data

Complete genotypic data

no. evaluations‡: 20000 100000 500000 16000000*

SimWalk2 -1960.81 -1827.53 -1804.93 -1801.7 (32 minutes)¶

EA1 -2197.17 -1852.43 -1802.16 -1800.55 (9 minutes)
EA2 -2299.78 -1848.51 -1802.39 -1800.55 (10 minutes)

Incomplete genotypic data

no. evaluations‡: 40000 400000 4000000 16000000

SimWalk2 -943.83 -791.41 -769.97 -767.43 (12 minutes)
EA1 -1108.24 -791.18 -766.74 -764.66 (6 minutes)
EA2 -1112.86 -782.19 -765.59 -764.43 (7 minutes)

‡number of evaluations of the likelihood function, *16000000 is from the default annealing schedule of SimWalk2
¶Computing time for SimWalk2, EA1 and EA2 (EA-population size N = 10 with 4 CPUs)
Page 2 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:189 http://www.biomedcentral.com/1471-2105/9/189
SimWalk2, EA1 and EA2 are not yet converged after
100,000 evaluations. The likelihood values for SimWalk2,
EA1 and EA2 start to converge after 500,000 evaluations,
and the values for EA1 and EA2 are higher than the value
for SimWalk2. After 16,000,000 evaluations (this value is
from the default annealing schedule of SimWalk2), the
likelihood values may reach the global or nearly global
maximum where the values for EA1 and EA2 are slightly
higher than the value for SimWalk2. When comparing
EA1 and EA2, the values are very similar after apparent
convergence.

When using incomplete genotypic data, the likelihood
values are not yet converged after 40,000 evaluations.
After 400,000 evaluations, the likelihood values appear to
be fairly close to the global maximum where the value for
EA2 is the highest among the three methods (the values
for EA1 and SimWalk2 are similar). After 4,000,000 eval-
uations, the likelihood reaches stable values with appar-
ent convergence where the value for EA2 is the highest and
the value for SimWalk2 is the worst. It is noted that the
convergence patterns and the evaluation numbers are dif-
ferent between complete and incomplete genotypes.

Likelihood pattern with real data
Table 2 shows the likelihood of the best haplotypes found
by SimWalk2, EA1 and EA2 for consecutive numbers of
likelihood evaluation when using the real data. The likeli-
hood pattern for three methods is similar to that with sim-
ulated data however it is more clearly shown that EA2
outperforms SimWalk2 and EA1. After 520,000 evalua-
tions, the configurations found by SimWalk2, EA1 and
EA2 are far from the global maximum. The likelihood
starts to reach stable values after 1,050,000 evaluations
where the likelihood value for EA2 is higher than the val-
ues for EA1 and SimWalk2. It is shown that SimWalk2
gets a similar value at the evaluation number of 2,100,000
(Table 2). After 2,100,000 evaluations, the likelihood val-
ues are converged for three methods, and EA2 gives the
highest value.

Computing time for a fixed number of evaluations with 4 
processors
The relative computing time between SimWalk2, EA1 and
EA2 with 4 processors varies depending on data structure.
When using simulated data with complete genotypes, the

computing time completing 16,000,000 evaluations for
EA1 and EA2 was 3.5 times and 3.2 times faster than
SimWalk2 (Table 1). However, when using simulated
data with incomplete genotypes, the relative computing
efficiency for EA was decreased; EA1 was 2 times and EA2
was 1.7 times faster than SimWalk2 (Table 1). When using
the real data, the computing time completing 21,000,000
evaluations for EA 1 and EA2 was 4.1 times and 3.5 times
faster than SimWalk2 (Table 2). The larger advantage for
EA for a larger data set is probably due to the fact that the
proportion of transferring time over whole computing
time increases when using a data set of small size with a
few genotypes, e.g. simulated data with incomplete geno-
types.

Convergence diagnosis and computational efficiency
Figure 1 shows the likelihood pattern of SimWalk2, EA1
and EA2 plotted against the actual computing time with
the real data when using 4 processors simultaneously. EA2
reaches its maximum at ~10 minutes with an apparent
convergence afterwards. EA1 reaches a similar likelihood
value at ~20 minutes and shows a clear convergence.
However, SimWalk2 is slower to reach convergence and
still improving the likelihood. As shown in Figure 1, the
computational efficiency for EA2 is up to ~2 times greater
than EA1, and up to ~8 times greater than SimWalk2.

Discussion
The EA1 and EA2 reach the global or nearly global maxi-
mum quicker than SimWalk2 both with simulated and
real data. This was probably due to the fact that EA1 and
EA2 used a number of parallel configurations which
apparently is a more efficient searching mechanism,
resulting in a wider range of variables updated during the
cycles. Using an efficient joint updating strategy com-
bined with the random walk, EA2 significantly outper-
formed SimWalk2 with a simultaneous use of multiple
processors.

Convergence for EA1 (EA2) or SimWalk2 can be assessed
by comparison of the likelihood values between different
parts to check if the likelihood reaches a stable value (e.g.
Figure 1). When the likelihood value is not converged,
SimWalk2, as currently implemented, requires another
complete run with a new annealing schedule which
would need to be longer than the previous run. Therefore,

Table 2: Log likelihood of the best haplotypes found by SimWalk2, EA1 and EA2 with real data

No. evaluations: 260000 520000 1050000 2100000 21000000

SimWalk2 -24439.02 -23551.84 -23312.14 -23193.18 -23159.19 (434 minutes)¶

EA1 -25992.16 -24258.61 -23368.69 -23164.58 -23158.60 (106 minutes)
EA2 -25900.78 -23871.49 -23194.87 -23158.39 -23158.39 (126 minutes)

¶Computing time for SimWalk2, EA1 and EA2 (EA-population size N = 10 with 4 CPUs)
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SimWalk2 may need multiple runs with a large number of
evaluations. However, in the EA, the convergence of the
likelihood value can be checked at any time and any point
during the run without any rescheduling or rerun. For
convergence diagnosis shown in Figure 1, SimWalk2
needed to run more than 4 times because of rescheduling
of the annealing process for each point (Figure 1). How-
ever, EA1 and EA2 needed only a single run for the same
convergence assessment.

The EA population size was arbitrarily set at N = 10. The
chance of operating EA-recombination or EA-mutation
was randomly equal, i.e. the probability of EA-recombina-
tion (or EA-mutation) was ~0.5. Different EA-parameters
did not dramatically affect the results unless the values
were extreme, e.g. outside the range 4 – 30 for N or out-
side the range 0.25~0.75 for the probability of EA-recom-
bination (or EA-mutation). If there are hundreds of CPUs
available (possibly in the near future), then N should not
be less than the number of CPUs used, to maximize the
efficiency of parallel computing. Such large values for N
for large scale parallel computing should be tested with
regard to optimal performance. However, it is possible to
set N considerably higher than optimal, and computa-
tional efficiency is still increased.

In the real data, we used 13 microsatellites on the same
chromosome positioned at 12 cM intervals on average.
However, a much larger number of markers is expected to
be used soon, e.g. thousands of single nucleotide poly-
morphisms (SNP) at << ~1 cM intervals on a single chro-
mosome. The EA with hundreds of CPUs may be able to
parallelize and solve the increased size of the problem
within a reasonable time. Haplotypes for dense markers

might be resolved using population LD without pedigree
information [22-24]. However, when population LD is
not significant over the average marker distance, the
methods may perform poorly [25]. Therefore, when LD is
not sufficient or one may not be sure whether there is
enough LD, our approach will be an efficient tool for hap-
lotyping for most types of data.

When using multiple CPUs and multiple machines, data
transfer between machines took a large part of the overall
computing time. Therefore, the EA was slightly modified
in order to save on transfer time. There were N nodes for
EA-members parallelised between machines. We made
each node have two EA-members (two sets of solutions).
EA-mutation and EA-recombination were carried out in
each node, and the solutions were evolved. One set of
solutions in each node was moved to the next node (the
order of the nodes was randomly determined) every n
cycles, therefore a complete evolutionary mechanism was
performed with periodic isolation of islands (nodes). The
number for n was chosen as n = total number of itera-
tions/k, which resulted in k transfers between nodes in an
analysis. It is noted that n should be a sufficient number
for EA-mutation and EA-recombination within each
node, and k should be a sufficient number for communi-
cating between the nodes. In this study, we chose a large
number k = 800 which would be sufficient for n as well
because we usually used the total number of iterations ≥
number of meiosis × number of markers × 800. Such a
strategy becomes more important when using many dif-
ferent machines.

We used data sets having complex relationships with
incomplete genotypes. Such data sets are quite common
in natural and outbred populations [26]. Complex pedi-
grees with incomplete genotypes will generally generate a
too large state space for haplotying, which cannot be han-
dled by exact methods [8,9,27]. However, SimWalk2 has
been successfully and widely used for such data sets
although the size of data should be small or moderate. We
showed that our approach could handle such data sets,
and the computational efficiency for our approach was
much higher than that for SimWalk2.

Conclusion
The difference between EA and SA is mainly determined
by the parameters used in their search mechanism, which
affect the number of configurations considered in the
cycles and updating strategies, and how information from
different solutions is used to generate new candidate solu-
tions. The EA algorithm has a substantial advantage in
convergence assessment and parallel computing, which
would much increase the efficiency of haplotype recon-
struction (up to ~4 times with 4 CPU). Moreover, with the
joint updating scheme, EA2 significantly outperformed

Convergence and computational efficiencyFigure 1
Convergence and computational efficiency. Log likeli-
hood pattern of SimWalk2, EA1 and EA2 along with the 
actual computing time when using 4 processors simultane-
ously
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SimWalk2 (up to ~8 times with 4 CPU). With more CPU,
the computational efficiency of EA2 would be increased.
In addition, our implementation of EA1 and EA2 for this
application is likely to leave much room for increased per-
formance, given the wide range of structural and parame-
terization strategies that could be invoked. Further study
would be required to investigate such potential.

Methods
Distribution of segregation states given marker data and 
pedigree
A configuration of segregation states (S) given marker data
in a pedigree can be expressed as an M × L matrix whose
elements are 0 or 1, where M and L is the number of mei-
osis and marker loci, respectively. If the gene in the mth

meiosis at the lth locus receives the paternal parental allele,
the segregation indicator Sml = 0, and Sml = 1 for the mater-
nal parental allele. The maximum number of possible
configurations for S is 2M × L when none of pedigree mem-
bers are genotyped. Probability of S given marker data in
a pedigree can be written as,

where G represents the observed marker data, pr(S) is
prior probability of the segregation indicators and haplo-
type configuration, pr(G|S) is the probability of the
observed marker data given S, and the denominator is
summed over the probabilities of all possible configura-
tions of S.

Haplotyping
There can be a large number of combinations for allele
assignment to founder genes. A specific assignment of
alleles to each founder gene combined with S defines the
haplotype for each individual in the pedigree. The most
likely haplotype configuration can be determined based
on its likelihood [15,18].

Likelihood estimation
The likelihood for observed marker data given a segrega-
tion state (S) and the most likely haplotype configuration
given the segregation state (H|S) is a function of the prob-
abilities of all recombinations in every meiosis and of the
configuration of an ordered genotype assignment to the
founders consistent with the segregation indicators.

where Sij is the segregation indicator for the ith meiosis at
the jth locus, θj is the recombination rate between marker j
and j+1 and gk is the most probable founder genotype

given the segregation state at the kth marker locus. Note
that non-founder genotypes and haplotypes are totally
dependent on the founder's genotypes and the segrega-
tion state at each marker. The computation of the first
term in (2) is the function of all recombinations given S
and is therefore relatively straightforward (|Sij- Sij+1| = 1
with recombination, and |Sij- Sij+1| = 0 with no recombi-
nation between Sij and Sij+1). For the second term, all pos-
sible genotype configurations for founders should be
evaluated and the most likely configuration is chosen
based on the likelihood given the segregation indicators
(see [15,28]).

SA for obtaining optimal haplotypes
Simulated annealing is a generic stochastic algorithm for
optimization problems and it is analogous in operation to
the annealing process in metallurgy [17]. There is one
sequential haplotype configuration developed in consec-
utive iterations by temperature parameters with the
Metropolis mechanism [29], applied to the random walk
[15,19]. The probability of accepting a proposed value is
given by

In the first stage of simulated annealing, the temperature
is very high. Therefore any legal configuration can be
broadly sampled. In the annealing process, the tempera-
ture gradually decreases and more likely configurations
are more often taken than less likely configurations. The
process reaches the lowest energy state that represents the
optimal configuration [30,31].

EA for obtaining optimal haplotypes
An evolutionary algorithm is a stochastic optimization
algorithm based on the theory of evolution [20]. An EA-
population consists of N individuals (or solutions), each
representing a potential haplotype configuration, i.e. a
possible S matrix. The parameters to be optimised by the
EA are the individual segregation indicators. To generate a
new solution in the next iteration, the parent is either
mutated or recombined with another randomly chosen
parent with 50% chance of each. EA-mutation follows 1/
2t chance of t transitions of switching segregation indica-
tors with the random walk [15]. EA-recombination fol-
lows EA-mutation, but a transition is executed by copying
the S values from another randomly chosen solution,
rather than switching states (0,1) under mutation, e.g.
randomly chosen variables in one solution (e.g. ith EA-
individual) are substituted with those in another solution
(e.g. jth EA-individual). As an objective function, the like-
lihood of the haplotype set determined by the proposed
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variables from the EA-mutation or EA-recombination is
evaluated (2). The EA-individual will acquire the updated
variables if the new variables have a higher likelihood
(EA-selection). With these processes in sequential steps,
all EA-individuals are evolved toward the state of the glo-
bal maximum.

Joint updating schemes and the random walk for 
segregation indicators
In the process of updating segregation indicators, there are
sets of variables that require simultaneous updating, i.e.
the variables within the set are dependent on each other,
therefore independent change of each variable is con-
strained by other variables in the set. However, it would
be possible to find the set of dependent variables, tracing
the change of allele assignments to founder gametes
according to updated segregation indicators (Appendix).
Then, joint updating for the set of dependent variables can
be carried out, which will increase the acceptance rates for
the proposal variables. Because of complex pedigree and
genotype structure, not all sets of updated variables may
be found. The random walk approach can be applied to
those variables that have not been updated. This will
make sure that the search covers all possible states, i.e.
irreducibility.

Initial legal configurations for N EA-members
Each EA-member requires a starting configuration, con-
sistent with observed pedigree and marker data. The gen-
otype elimination through inheritance constraint (GEIC)
algorithm [32] is suitable for finding a legal configuration
of segregation indicators at a single locus. This algorithm
finds a legal configuration for each locus independently.

Brief summary of the process
An evolutionary algorithm with the random walk
approach alone (EA1), or an evolutionary algorithm with
the joint updating method and the random walk
approach (EA2) is briefly summarized below.

Obtaining starting configuration for each EA-individual

Do cycles

Do i = 1 ~ N EA-individuals

Do j = 1 ~ no. meiosis × no. markers

Joint updating (EA-mutation)

Evaluate likelihood (EA-selection)

End do (this loop is only for EA2)

Do j = 1 ~ no. meiosis × no. markers × 10

The random walk approach (EA-mutation or EA-recom-
bination)

Evaluate likelihood (EA-selection)

End do (this loop is for both EA1 and EA2)

End do

Collect the updated solution from each EA-individual

Evaluate the solution and save the best

Simple example pedigreeFigure 2
Simple example pedigree. Five founders with their num-
bered gametes (f1~ f10) and 5 descendents with their num-
bered meiosis (m1~m10). Unordered genotypes for the first 
and second marker are in the brackets underneath the ani-
mal ID5, ID9 and ID10 (other animals are not genotyped).

       ID1                                 ID2                                 ID3 f1 | f2 f3 | f4 f5 | f6

 ID4                        ID5                             ID6                               ID7 

                                              (a, a) 

                                              (x, y) 

             ID8                                                                 ID9 

f7 | f8 m1 | m2 f9 | f10 

m5 | m6 m7 | m8 

m3 | m4 

                                                                                                     (a, c) 

                                                                                                     (x, y) 

m9 | m10                                            ID10 

                                                               (a, c) 

                                                               (y, y) 

Table 3: A legal configuration of segregation indicators for the 
meiosis, and allele assignment to the founder gametes given the 
segregation indicators at the first and second marker

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

marker 1 0 1 0 1 0 1 1 0 1 0
marker 2 1 0 1 0 1 0 0 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

marker 1 a - - a - c - - a -
marker 2 - y x - - - - y x -

Log likelihood = -46.143
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Convergence assessment

End cycles

Simulation study
An effective population size of 100 was simulated for 10
multiallelic marker loci for 100 generations to ensure that
the population would have an equilibrium distribution of
alleles at all loci after 100 generations. In each generation,
the number of male and female parents was 50 and their
alleles were transmitted to descendents on the basis of
Mendelian segregation using the gene-dropping method
[33].

The number of alleles assumed at each marker locus was
4 for multiallelic markers (e.g. microsatellites) and the
starting allele frequencies were 0.25 in generation 0. The
marker allele was mutated at a rate of 4 × 10-4 per genera-
tion [34-36] where a new allele was added for mutated
loci. Note that pedigree and genotype information was
deemed not available for these 100 generations.

At generation 101, an effective population size of 20 was
simulated for 5 generations with pedigree recording, and
used for analysis. The total number of individuals used for
analysis was 100. In each generation, the number of male
and female candidate parents was 10 and they were ran-
domly selected and mated such that the number of prog-
eny for each parent was Poisson distributed with a mean
of 2. Therefore, the recorded pedigree would have com-
plex relationships between animals. Complete and
incomplete genotypic data were simulated. In complete
genotypic data, genotypes from all hundred pedigreed
individuals were available for analysis. In incomplete gen-
otypic data, genotypes were available for progeny in the
last generation and ancestral and parental genotypes were
all missing but their relationships were used.

Real data
In addition to the simulation data, a real data set was also
used. This consists of four half sib families with ancestral
pedigree spanning approximately four to five generations.
The four sires and some dams were related through the
ancestral pedigree. Base animals were assumed unrelated.
The number of individuals in this pedigree was 1010. The
number in each half sib group varied from 50 to 200. The
offspring were genotyped for 13 microsatellites on the
same chromosome positioned at 12 cM intervals on aver-
age. However, ~40% of the genotypes were missing
among the offspring. The ancestors and parents were not
genotyped but their pedigree information was used. All
individuals were related through complex relationships.

Methods comparison
The performance of SimWalk2, EA1 and EA2 was com-
pared. The number of evaluations of the likelihood func-
tion in each iteration round was one for SimWalk2, and N
for EA1 and EA2. Therefore, the total number of likeli-
hood evaluations is the same as the number of iteration in
SimWalk2, and N times larger than the number of itera-
tions in EA1 and EA2. N was set to 10. A parallel comput-
ing program, Parallel Virtual Machine (PVM) version 3
[37], was used for parallel computation of EA1 and EA2.

Availability
A binary executable file for Linux operating system will be
given on request.

Appendix
Methods for updating segregation indicators (SI)
As a simple example, it is assumed that a pedigree has 5
founders and 5 descendents (Figure 2). There are 10
founder gametes (f1~f10) and 10 meioses (m1~m10).
The animal ID5, ID9 and ID10 are genotyped for two
markers, e.g. unordered genotypes for ID5, ID9 and ID10
are (a, a), (a, c) and (a, c) for the first marker and (x, y),
(x, y) and (y, y) for the second marker (Figure 2). Each
marker has 3 alleles coded as a, b and c for the first marker
and x, y and z for the second marker. The population fre-
quency for a, b and c is 0.3, 0.2 and 0.5 in the first marker,
and that for x, y and z is 0.1, 0.2 and 0.7 in the second
marker. The distance between two markers is 10 cM
(recombination rate = ~0.09).

A legal configuration of SI for the meioses (from m1 to
m10) and allele assignment to the founder gametes (from
f1 to f10) are shown for each marker in Table 3. The allele
assignments for the founder gametes are derived from the
SI and genotypic data (see [15,28,38]). In equation (2),
the first term in the right hand side can be calculated from
the SI, and the second term can be calculated from the
allele assignments to the founder gametes (for non-
informative founder gametes (-), the most frequent allele
can be assigned for maximizing the likelihood). The log
likelihood is -46.143.

Single site updating
This strategy switches segregation indicator for a meiosis
at a marker locus (single site) subsequently, with the like-
lihood evaluation to lead to a state with higher likelihood.
Table 4 shows the SI updated site by site with the likeli-
hood evaluation. Switching the first meiosis (m1) at the
first marker results to a different set of allele assignments
for the founder gametes, and the number of recombina-
tion events decreases (Table 4I). This gives an improved
likelihood (-43.837) and the first meiosis at the first
marker is updated. Subsequently, the second meiosis is
switched and the calculated likelihood is -41.531 (Table
Page 7 of 10
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Table 4: Updating segregation indicators for a meiosis at a marker subsequently, and the change of allele assignment to the founder 
gamete given the updated segregation indicators

I. Log likelihood = -43.837

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

Marker 1 1 1 0 1 0 1 1 0 1 0
Marker 2 1 0 1 0 1 0 0 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Marker 1 - a - a - c - - a -
Marker 2 - y x - - - - y x -

II. Log likelihood = -41.531

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

marker 1 1 0 0 1 0 1 1 0 1 0
marker 2 1 0 1 0 1 0 0 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

marker 1 - a a - - c - - a -
marker 2 - y x - - - - y x -

III. Log likelihood = -39.225

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

marker 1 1 0 1 1 0 1 1 0 1 0
marker 2 1 0 1 0 1 0 0 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

marker 1 - a a - - c - - a -
marker 2 - y x - - - - y x -

IV. Log likelihood = -36.919

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

marker 1 1 0 1 0 0 1 1 0 1 0
marker 2 1 0 1 0 1 0 0 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

marker 1 - a a - c - - - a -
marker 2 - y x - - - - y x -

V. Log likelihood = -34.614

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
marker 1 1 0 1 0 1 1 1 0 1 0
marker 2 1 0 1 0 1 0 0 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

marker 1 - a a - c - - - a -
marker 2 - y x - - - - y x -

VI. Log likelihood = -32.308

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

marker 1 1 0 1 0 1 0 1 0 1 0
marker 2 1 0 1 0 1 0 0 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

marker 1 - a a - c - - - a -
marker 2 - y x - - - - y x -

VII. State is illegal

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

marker 1 1 0 1 0 1 0 0 0 1 0
marker 2 1 0 1 0 1 0 0 0 0 0
Page 8 of 10
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4II). It is noted that the switched site is updated only
when the likelihood improves. The following meiosis is
subsequently switched and evaluated in the same manner.
The SI, the allele assignments to the founder gametes
given the SI, and the calculated likelihood is shown in
Table 4 (III, IV, V and VI for m3, m4, m5 and m6 at the
first marker). However, when m7 at the first marker is
switched from 1 to 0, two different alleles are simultane

ously assigned to the same founder gamete (f2), which is
an illegal state (Table 4VII).

Joint update with dependent variables
Table 5 shows the segregation state of founder gametes for
genotyped animals and the changes due to switching m7
at the first marker. After switching the m7 (Table 4VII), the
founder gamete 5 is changed to the founder gamete 2 for
the paternal allele of the animal 9 and the maternal allele
of the animal 10. However, the founder gamete 2 is
already assigned to the paternal allele of the ID10, there-
fore, two different alleles (a and c) have to be simultane-
ously assigned to the founder gamete 2 (illegal state). In
order to avoid an illegal state, the paternal gamete for
ID10 should be simultaneously changed to other legal
founder gametes. For this, three sets of joint updating can
be found, i.e. joint updating of m1 and m7, m7 and m9,
and m7 and m10 (Table 6).
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Table 6: Joint updates

With joint update for m1 and m7 (log likelihood = -32.308)

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

Marker 1 0 0 1 0 1 0 0 0 1 0
Marker 2 1 0 1 0 1 0 0 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

marker 1 a c a - - - - - a -
marker 2 - y x - - - - y x -

With joint update for m7 and m9 (log likelihood = -27.185)

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

marker 1 1 0 1 0 1 0 0 0 0 0
marker 2 1 0 1 0 1 0 0 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

marker 1 - a a - - - - c c -
marker 2 - y x - - - - y x -

With joint update for m7 and m10 (log likelihood = -31.797)

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

marker 1 1 0 1 0 1 0 0 0 1 1
marker 2 1 0 1 0 1 0 0 0 0 0

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

marker 1 - a a - - - - - c -
marker 2 - y x - - - - y x -

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

marker 1 - a and c a - - - - - a or c -
marker 2 - y x - - - - y x -

Table 4: Updating segregation indicators for a meiosis at a marker subsequently, and the change of allele assignment to the founder 
gamete given the updated segregation indicators (Continued)

Table 5: Segregation state of founder gametes for genotyped 
animals and the changes due to switching m7 at the first marker

Genotyped animal paternal maternal

ID5 f2 f3
ID9 F5 -> f2 f9
ID10 f2 F5 -> f2
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