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Abstract

Background: At intermediate stages of genome assembly projects, when a number of contigs have
been generated and their validity needs to be verified, it is desirable to align these contigs to a
reference genome when it is available. The interest is not to analyze a detailed alignment between
a contig and the reference genome at the base level, but rather to have a rough estimate of where
the contig aligns to the reference genome, specifically, by identifying the starting and ending
positions of such a region. This information is very useful in ordering the contigs, facilitating post-
assembly analysis such as gap closure and resolving repeats. There exist programs, such as BLAST
and MUMmer, that can quickly align and identify high similarity segments between two sequences,
which, when seen in a dot plot, tend to agglomerate along a diagonal but can also be disrupted by
gaps or shifted away from the main diagonal due to mismatches between the contig and the
reference. It is a tedious and practically impossible task to visually inspect the dot plot to identify
the regions covered by a large number of contigs from sequence assembly projects. A forced global
alignment between a contig and the reference is not only time consuming but often meaningless.

Results: We have developed an algorithm that uses the coordinates of all the exact matches or
high similarity local alignments, clusters them with respect to the main diagonal in the dot plot using
a weighted linear regression technique, and identifies the starting and ending coordinates of the
region of interest.

Conclusion: This algorithm complements existing pairwise sequence alignment packages by
replacing the time-consuming seed extension phase with a weighted linear regression for the
alignment seeds. It was experimentally shown that the gain in execution time can be outstanding
without compromising the accuracy. This method should be of great utility to sequence assembly
and genome comparison projects.
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Background

Genome sequencing is the process to determine the exact
sequential order in which a target organism's DNA is
made up by the building blocks, called bases and abbrevi-
ated A, C, T, G. This process is carried out in two phases.
The first phase is shotgun sequencing phase where the
DNA molecule of the organism is randomly sheared into
a large number of small fragments and the ends of the
fragments are read base by base using a chemical proce-
dure introduced by Sanger [1]. The second phase is assem-
bly phase where the resulting sequences of these
fragments are put together by a program (called the
assembler) that attempts to join these fragments by their
overlapping sequences in order to restore the entire target
genome. In an ideal case, the assembly phase would yield
one single long string in the alphabet {A, C, T, G}, but this
is far from being the reality, even when the sequencing
phase is careful enough to cover the whole genome by sev-
eral fold factors. Typically two issues prevent this ideal sit-
uation from happening: non-random shearing and
repeats. Non-random shearing occurs because all organ-
isms have in their DNA sequence regions that are more
difficult to be sequenced than others, which in some cases
transcends into gaps that are not sequenced at all. On the
other hand, repeats are sequences extracted from different
regions of the genome that have a near identical primary
structure. When fragments from these regions are
sequenced, the assembler is not able to differentiate them,
and most likely joins them as if they came from a com-
mon region, a mistake that is hard to avoid. As a conse-
quence of these two challenging situations, the assembler
cannot piece these fragments to restore the entire target
genome as a single sequence; instead, it assembles the
fragments into some long contiguous sequences, called
contigs. These contigs are separated by gaps, namely, they
do not share overlapping flanks, which are necessary in
order to further piece these contigs together. Even the rel-
ative order of these contigs in the genome is not known.
The next stage in the assembly phase is to identify the rel-
ative order.

A typical technique for ordering the contigs is called scaf-
folding which uses paired reads. It is worth noting that the
scaffolding by paired reads does not guarantee a complete
ordering (see [2] for details). Once the contigs are
ordered, the gaps that separate them can be identified and
associated to the fragments (clones) that are not
sequenced properly in the shotgun sequencing phase. Gap
closure will involve resequencing these fragments and/or
acquiring new fragments of DNA in the corresponding
regions. Scaffolding and gap closure are tedious and labo-
rious processes, hard to be automated. However, when
the genome of a closely related organism has already been
sequenced, it can then be used as a reference, i.e., the con-
tigs of the target genome can be matched against the refer-
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ence genome. The alignments of these contigs onto the
reference genome can potentially produce an informative
overall picture of the ordering of the contigs, and there-
fore greatly facilitate the scaffolding and gap closure.
Using reference genomes in sequence assembly has
become increasingly feasible as more genomes have been
sequenced and therefore become available as potential
references.

Many software packages are available for doing pairwise
sequence alignments, including Fasta [3], Blast [4], BLAT
[5] and MUMmer [6]. Fasta and Blast compare two
sequences to discover regions of high similarity while
allowing insertions, deletions and point mutations. BLAT
is inspired in Blast, but introduces several changes to
speed up the alignment process. MUMmer looks for the
kinds of large-scale changes that can be discovered in
whole-genome comparisons. Nonetheless all of these
algorithms operate in a similar way; they initially find
local exact matches (called "seeds") between the two
sequences, and then the seeds are extended to fill the gaps
using constrained versions of the Smith-Waterman algo-
rithm [7].

In assembly projects, when a set of contigs is compared
against a reference genome, the interest is to find out
whether each contig is potentially an actual segment of
the target genome and to establish the positional order of
all the contigs in the target genome. For these purposes, a
detailed base to base alignment is not needed. It suffices
to find only exact match regions, therefore the seed exten-
sion procedure can be skipped. MUMmer, which uses a
suffix tree approach to directly find exact matches between
the two sequences, is a tool best suited for this task due to
its efficiency in both time and space, as a result of using
the suffix tree data structure.

The exact matches that MUMmer extracts can be repre-
sented in a dot plot as shown in Figure 1. When the
aligned contig is a good prospect, i.e. the contig accurately
reconstructs a region in the target genome that also exists
in the reference, the seeds of the alignment should be
approximately collinear (Figure 1, left). On the other
hand, the seed alignments, as shown in Figure 1 (right),
can be skewed and shifted away from the main diagonal,
indicating some significant mismatches between the con-
tig and the reference. These mismatches may represent
genuine genetic variances, such as translocation, inversion
and insertion between the target and reference genomes,
but they can also be due to sequence errors in the contig
arising in misassembly. In both cases, the alignment pro-
vides less useful information to the assembly process.
Also, since there is no reliable way to differentiate these
two cases, these contigs should be flagged for further anal-
ysis.
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The dot plot of the alignment of two different contigs to a reference sequence. The dot plot of two different con-
tigs as they are aligned to a reference genome. Contig | (left) strongly aligns to the region between x, and x,, but Contig 2

(right) does not align as a whole.

In many cases, a visual assessment of the dot plot of the
seeds of an alignment is enough to judge the reliability of
a contig. However, more exact numerical figures are often
needed to validate a contig. Besides, it is common to have
sets of thousands (and even hundreds of thousands) of
contigs to be matched against a reference, in which case
the graphical method is ruled out. In this work, we pro-
pose a simple yet powerful algorithm that takes as input
the set of exact matches (seed alignments) between a con-
tig and a reference genome, and produces as output the
starting and ending coordinates of the most likely global
alignment that exists between the two sequences. In Fig-
ure 1 (left), the output would be (x;, x,). The method also
assigns each alignment a score to assess its goodness so
that non reliable contigs can be easily flagged for further
analysis or even discarded directly. The method is based
on clustering the seed alignments using a weighted linear
regression, which is presented in the next two sections.

Methods

Motivation for a Weighted Pairwise Linear Regression

Assume we run MUMmer to align a given contig to a ref-
erence genome. MUMmer can be tuned to find only exact
matches and filter out those matches that do not occur in
the same order in both sequences. If the contig has a
strong alignment to the reference, the seeds should line up
in a collinear manner in the dot plot like what is shown in
Figure 2. Each seed is characterized by its slope w; (since
these seeds are for exact matches, slopes can only be -1 or
1) and a y-intercept b;. Our goal is to identify a strong

alignment between the contig and reference, cluster the
seeds that would belong to such an alignment, and filter
out the "outliers" (those matches that are far away from
the diagonal region that characterizes the global align-
ment, see Figure 2). Therefore, we want to find a straight

line with slope w and y-intercept b that can serve as a
collinear axis for these segments representing the seeds, in
such a way that the seeds not in line and/or far way from
the axis can be identified as outliers and be excluded.
Once the axis is determined and segments are aligned to
it, the boundary coordinates of the global alignment can
be easily found.

One way to approach this problem is by standard linear
regression for all the starting and ending points of the
seeds. However this solution does not take into account
the fact that we are trying to align segments, not individ-
ual points. So we propose a slightly different modification
of linear regression that not only accounts for the pairing
of points, i.e., as both ends of a segment, but also weighs

in the length of segments. In order to find w and b, we
minimize the following metric:
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Set of exact matches corresponding to a contig that
aligns to a region in a reference sequence. Each exact
match (seed) in an alignment can be characterized by its
slope w;and its y-intercept b,

where I;is the length (in bases) of each match. It is reason-
able to assign this weight to each seed, since the longer a
match is, the more significant weight it should be given in
determining the collinear axis.

Differentiating the metric with respect to i and b we get:

N
Z;:Z%:—z.;u-((wi—wh(b,.—b))

which is made equal to zero to solve for w and b, hence
we finally obtain:

oI oo SN Db
AR AR

Eq. (3) suggests that the optimal w and b for this
weighted pairwise linear regression can be obtained as
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arithmetic average over the slopes and the y-intercepts,
respectively. It is interesting to note that this solution is
surprisingly simpler than that of a standard linear regres-
sion, which involves computation equivalent to matrix
inversion. The implementation of Eq. (3) is straightfor-
ward, and the results have an accuracy of about 70% as
compared to a large set of human curated alignments.

This initial idea served as an inspiration for an improved
algorithm, more adapted to the nature of the problem.
Because of the very nature of linear regression, be it a
standard one or a modified one like ours, the solution is
necessarily a kind of compromise, which means that it can
be skewed if many small scattered outliers exist. To miti-
gate such a problem, a further modification to the algo-
rithm is presented in the next section.

The modified algorithm

Following is a description in pseudo-code of the final
algorithm that we developed to process the seed align-
ments (i.e.,, matched segments) between a contig and a
reference sequence. Each seed alignment is described by a
4-tuple (s, s, e, e,), where s, and e, are the starting and
ending coordinates on the reference sequence, and s, and
e, are the starting and ending coordinates on the contig
sequence. As mentioned before, the goal is to find the
boundary coordinates (x;, x,) of the region in the refer-
ence (as x-axis) that more strongly aligns to the contig (as
y-axis), as shown in Figure 1 (left).

Input:
S={S;,i=1,2,.. N}, aset of N matched segments, each
is a 4-tuple (s, s, e, ¢,); and v, a window size given as a
percentage of the contig length.
Algorithm:
1. Compute the accumulated lengths Lyand L, for matched
segments on forward strand and on reverse strand respec-
tively.

FOREACH S, € S

IF (slope(S;) > 0)

THEN L;+= ||S/]|

ELSE L, += ||S}||.

2. Decide on the dominant strand by the maximum of L;
and L,.

IF (L;> L,)
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THEN DS = +1
ELSE DS = -1.

3. Project the segments on the dominant strand onto the
Y-axis and assign them each a weight A defined as the total
length of segments whose y-intercept is within a window
of size 2v.

FOREACH S, € S
IF (slope(S;) = DS)

THEN ;= 2, [[S[|, for all segments S; whose y-inter-
cept b satisfies b;- v < b; < b; + v.

4. Find the segment, indexed as i*, that has the maximum
weight. That is to say, segment S;. has most long segments
within the window of the given size centering at it.

i* = arg max;(4;) and b* = b;..

5. Use the segment S;. as a centroid to cluster all segments
whose y-intercept falls within the window of size 2v
centering at b*. Find the indexes j* and k* for the two
boundary segments of the region where the contig and the
reference are strongly aligned.

j* =arg minsl_ (sfc + si ), for all segments S]- whose y-

intercept b; € [b* -v, b* +v[;

k" =arg maxg, (e,zc + ef ), for all segments S, whose y-

intercept by, € [b* - v, b* + v].
Output:

(%1, x,) = (s, e,), where s, is the starting coordinate of
segment ;. and e, is the ending coordinate of segment S,
all with respect to the reference sequence.

(y1,¥2) = (s, ¢,), wheres, is the starting coordinate of seg-
ment S;. and e, is the ending coordinate of segment S, all
with respect to the contig sequence.

It is noted that the length of the alignment |y, - y,| can be
compared with the contig length, and a significant differ-
ence between the two can be used to flag problematic con-
tigs for further analysis.

Specifically, each contig is assigned a score based on its
alignment with the reference defined as follows:
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min(|x—x2]ly1-v2l)

Score(S) = max(|x1-x2].ly1-y2|)
maX(Lerr)
L maxlydr)
(=N, lsil)
maX(Lerr)’

The right hand side of this equation has four terms. The
first term is a ratio between the lengths of the estimated
alignment on the contig and the reference, with the
denominator always being the bigger of the two. This ratio
therefore gives a sense of insertions and deletions within
the estimated alignment; a perfect alignment without any
insertion and deletion receives a value of 1, and the lower
value implies more deletions and insertions. The second
term is a ratio between the accumulated length of seeds
and the contig length. The third term is a ratio of the accu-
mulated length of seeds in the dominant strand over the
total seeds length. In the fourth term, £ is the subset of
seeds that were clustered, namely, ¢ consists of all seg-
ments S; whose y-intercept b; € [b* - v, b* + v], as was
defined in step 5 of the algorithm. Therefore, the fourth
term is the ratio of the total length of seeds in the domi-
nant strand and clustered over the total length of seeds in
the dominant strand. All these ratios are valued theoreti-
cally in the range [0, 1], with 1 corresponding to a perfect
alignment between contig and reference. For convenience,
the score is then scaled to the range [0, 100] by multiply-
ing the right hand side of Eq. 4 by 25.

As for the time complexity, after the y-intercepts are
sorted, all steps except step 3 run in time obviously as a
linear function of N, which is the number of matched seg-
ments. The complexity for step 3 is also linear with the fol-
lowing refined implementation. By keeping two pointers,
one to the low intercept value and one to the high value,
the sum of lengths can be computed for the next match by
advancing both pointers, subtracting out low values that
are now too low and adding in new high values. Both
pointers scan linearly through the data for total linear
time. It is noted that, even with the less refined implemen-
tation, which can be O(N2) as suggested in the pseudo
code, step 3 runs effectively in linear time when the win-
dow size is kept small.

Now we present a simple example to help illustrate the
mechanics of the algorithm. Suppose MUMmer found six
exact matches in the forward strand, as shown in Figure 3,
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Matches in the forward strand, and their correspond-
ing weights according to the proposed algorithm.
Matches in the forward strand, their y-intercepts and the
weight (length) of each match. The algorithm maximizes the
discrete plot shown in green.

where each seed has been numbered (in circled red num-
bers). The length of each seed in the reference sequence is
also shown (black horizontal lines). The algorithm
should be able to cluster all matches but match No. 3 (an
outlier).

Assume a window of size 4 for this example. Forward
strand is chosen as the predominant strand of the align-
ment. Then the y-intercept and the weight vectors are

foundtobe b =(14,2,0,-2)and I =(2,17,23,12).In

Figure 3, a discrete plot with b in the horizontal and
in the vertical axis is shown in green. For instance, for y-
intercept 14 only match No. 3 is within its window range,
hence a weight of 2 was assigned. For y-intercept 2,
matches No. 1, 2, 5 and 6 are inside its window range,
then a weight 4 + 8 + 2 + 3 = 17 was assigned. By finding

the maximum of I, which is 23, we conclude that b = 0.
Then all the matches whose y-intercepts are inside the

window range of b are clustered, and the ones outside
this region are declared outliers.

Results and Discussion

We present in this section alignment results from real
assembly data. In our attempt to assemble a region of the
genome of several rice species, sets of contigs of varied car-
dinality and average length are produced and aligned to
an available reference genome, namely the sequence of O.
sativa var. japonica. Our algorithm was implemented in a
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perl script that takes as input the alignments generated
from MUMmer. The pipeline consists of two steps: run-
ning MUMmer to find the seed alignments, and clustering
these seed alignments by the weighted linear regression
method to identify the mapping region. MUMmer's
parameters can be tuned up such that only a consistent
sequence of seeds is found, avoiding the extension phase
in MUMmer that tries to fill the gaps between seeds using
Smith-Waterman algorithm (this phase is the most time
consuming part of the whole MUMmer pipeline). Our
perl script parses MUMmer output file, and for each con-
tig in the set it produces the two boundary coordinates of
the region in the reference where the contig most likely
aligns. We also give a score (from 0 to 100) to each pro-
jected mapping coverage based on the statistics and aggre-
gate length of the set of seeds that compose each
alignment as compared to the actual contig's length.

On the other hand, it is also possible to force MUMmer to
make aggressive efforts to fill all the gaps and give as a
result one extended alignment between the contig and the
reference. Notice this is the goal of the weighted linear
regression algorithm, but as will be seen, MUMmer takes
much longer while trying to align the gapped regions base
by base.

The first thing to decide before running the algorithm is
the window size. When long contigs are being aligned, a
considerable number of insertions, deletions and miss-
matches are expected, so the width of the diagonal region
of the clustered matches should be widen. It is for this rea-
son that we choose the size of the window to be propor-
tional to the contig's length. This size is input to the
program as a percentage that can go from 1% (the window
size is 1/100 of the contig's length) to 100% (the window
size is the whole contig's length).

We tested the performance of the algorithm as a function
of window size (seen as percentage of contig's length) and
the results were plotted in Figure 4. To evaluate the win-
dow size effect, we created artificial contigs picked ran-
domly from regions in the reference chromosome, which
itself is a randomly generated sequence of about 35 Mb
long. Use of this long artificial chromosome allows for
sufficient sampling and low rate of repeats. A total of 300
contigs were produced and were grouped based on their
lengths into three subsets: 1 kb, 10 kb, and 100 kb, with
100 contigs in each subset. Each contig was sprinkled ran-
domly with regions of mutations, insertions and deletions
according to a given percentage of the contig length. For
instance, a Mut-Ins-Del percentage of 10% indicates that
the initial contig was first contaminated randomly with
regions of mutations whose accumulated length amounts
to 10% the length of the contig. Then regions of insertions
under the same principle were introduced, and likewise
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Performance comparison using different levels of MUT-INS-DEL
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Performance curve with respect to window size. Per-
formance curve with respect to window size with different
levels of Mut-Ins-Del.

with deletion regions. Since the location of the contig in
the reference is known a priori, after these contigs are
aligned to the reference using MUMmer and the predom-
inant alignment region is predicted using our proposed
algorithm, we can measure the percentage of the overlap
(POV) between the two regions (predicted and real). We
did so for all window sizes from 1% to 20%, as shown in
Figure 4. Different levels of Mut-Ins-Del were tested.
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Figure 5
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As expected, when mutations, insertions and deletions are
low, a small window size is sufficient to maximize the
POV between real and predicted regions, and as they are
increased, longer windows are needed to accurately cluster
all the exact matches of the alignment. Notice that this
window size is desired to remain as low as possible to
improve the speed of the algorithm. Our analysis suggests
that a window size of 12% works well in all cases.

Table 1 shows the execution time of MUMmer when it is
forced to find one solid alignment per contig as compared
to the execution time of MUMmer (tuned up to find only
exact matches). For comparison, the last column shows
the time our algorithm takes clustering the seeds and cal-
culating the boundary coordinates of the alignment.
Seven sets of contigs are analyzed, and the number of con-
tigs along with the average contig length is shown for each
set. Figure 5 shows the seeds (left) and the solid alignment
(right) of the contigs from Set 2 (second row in Table 1).
Although outliers (matches outside the diagonal region)
are not seen, they do exist, but the length of the reference
chromosome (around 35 Mb) makes it prohibitive to
show the complete picture of the alignment. Table 1
shows that the weighted linear regression was much faster
in all the sets, being 145 and 2 times faster in the best (Set
2) and the worst (Set 7) cases, respectively. The weighted
linear regression script accurately found the boundary
coordinates of the alignment for 100% of the contigs
shown in Table 1 verified visually by analyzing the dot
plot of all the alignments. It is worth noting that, although
MUMmer has been used in this study, other software
packages like BLAT can be used in its place in generating

contigd |-

wwoam sease | Kisess

Comparison of dot plots generated by MUMmer. Dot plot after aligning a set of three contigs against chromosome 3 of
japonica rice. In the left, MUMmer was tuned up to find only exact matches between the contigs and the chromosome. A zoom
in of certain region of the dot plot is shown. In the right MUMmer was forced to fill all gaps between seeds to yield one solid

alignment per contig.

Page 7 of 8

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:102

Table I: Comparison of results.
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No. of contigs

Average contig length

Time in MUMmer

Time using linear

regression
Set | 2 60848 102.003 s 0.922 +0.037 = 0.959 s
Set 2 3 43489 124.064 s 0.823 +0.034 = 0.857 s
Set 3 3 41227 108.776 s 0.889 +0.034 =0.923 s
Set 4 9 14389 39470 s 0.881 +0.047 = 0.928 s
Set 5 44 2621 5.182s 0.881 +0.127 = 1.008 s
Set 6 36 2210 2963 s 0.884 + 0.102 = 0.986 s
Set 7 18 1810 1.772 s 0.861 +0.053 =0.914s

Comparing alignment of several sets of contigs (assembled from a BAC in O. glaberrima) to a reference chromosome (in O. sativa) using only
MUMmer and using MUMmer with weighted linear regression. The time using linear regression is shown as the sum between the time MUMmer

takes to find the set of seeds plus the execution time of the weighted linear regression algorithm. (See the text for detailed discussion).

the seed alignments. In fact, BLAT runs faster than MUM-
mer in our testing for generating the seed alignments,
though it does not seem to produce long extension as
MUMmer does.

Conclusion

We presented a method to cluster exact matches of pair-
wise sequence alignments by weighted linear regression
which can be of great utility for genome assembly
projects. This algorithm complements existing pairwise
sequence alignment packages by avoiding their seed
extension phase and replacing it with a weighted linear
regression in the seeds of the alignment. It was experimen-
tally shown that the gain in execution time can be out-
standing without necessarily compromising the accuracy.
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