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Abstract
Background: A widely-used approach for discovering functional and physical interactions among proteins involves
phylogenetic profile comparisons (PPCs). Here, proteins with similar profiles are inferred to be functionally related under
the assumption that proteins involved in the same metabolic pathway or cellular system are likely to have been co-
inherited during evolution.

Results: Our experimentation with E. coli and yeast proteins with 16 different carefully composed reference sets of
genomes revealed that the phyletic patterns of proteins in prokaryotes alone could be adequate enough to make
reasonably accurate functional linkage predictions. A slight improvement in performance is observed on adding few
eukaryotes into the reference set, but a noticeable drop-off in performance is observed with increased number of
eukaryotes. Inclusion of most parasitic, pathogenic or vertebrate genomes and multiple strains of the same species into
the reference set do not necessarily contribute to an improved sensitivity or accuracy. Interestingly, we also found that
evolutionary histories of individual pathways have a significant affect on the performance of the PPC approach with
respect to a particular reference set. For example, to accurately predict functional links in carbohydrate or lipid
metabolism, a reference set solely composed of prokaryotic (or bacterial) genomes performed among the best compared
to one composed of genomes from all three super-kingdoms; this is in contrast to predicting functional links in translation
for which a reference set composed of prokaryotic (or bacterial) genomes performed the worst. We also demonstrate
that the widely used random null model to quantify the statistical significance of profile similarity is incomplete, which
could result in an increased number of false-positives.

Conclusion: Contrary to previous proposals, it is not merely the number of genomes but a careful selection of
informative genomes in the reference set that influences the prediction accuracy of the PPC approach. We note that the
predictive power of the PPC approach, especially in eukaryotes, is heavily influenced by the primary endosymbiosis and
subsequent bacterial contributions. The over-representation of parasitic unicellular eukaryotes and vertebrates
additionally make eukaryotes less useful in the reference sets. Reference sets composed of highly non-redundant set of
genomes from all three super-kingdoms fare better with pathways showing considerable vertical inheritance and strong
conservation (e.g. translation apparatus), while reference sets solely composed of prokaryotic genomes fare better for
more variable pathways like carbohydrate metabolism. Differential performance of the PPC approach on various
pathways, and a weak positive correlation between functional and profile similarities suggest that caution should be
exercised while interpreting functional linkages inferred from genome-wide large-scale profile comparisons using a single
reference set.
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Background
Recent advances in whole-genome sequencing have gen-
erated an avalanche of genomic sequences from diverse
species. Major challenges in the post-genomic era include
discovering the function of proteins, and determining
how proteins interact with each other (either physically or
functionally) in the context of cellular pathways and net-
work modules. Various high-throughput experimental
methods [1-9] have been used to infer functional linkages
and biological interactions among proteins. In addition,
several computational approaches for predicting protein
functions and interactions (such as gene fusion[10,11],
gene neighbors [12-14], gene co-occurrence [15-18],
sequence co-evolution [19-28], co-evolution of gene
expression [29,30], and correlated evolutionary events
[31,32]) have been proposed in an effort to complement
experimental methods.

Among computational methods available for discovering
functional linkages, one simplest yet elegant approach
involves phylogenetic profiles comparisons (PPCs)
[17,18]. In this approach, patterns of presence or absence
of protein families across multiple genomes are used to
infer functional linkages between proteins. The phyloge-
netic profile of a protein is a vector of length n, which con-
tains the presence or absence information of homologs of
that protein (represented as ones and zeroes, respectively)
in n different genomes of interest. Proteins having match-
ing or similar profiles are inferred to be functionally
linked [33-70] under the assumption that proteins
involved in the same pathway or functional system are
likely to have been co-inherited during evolution. PPCs
allow us to predict the function of uncharacterized pro-
teins [37,71] by simply relating profiles of proteins with
known function to those of proteins whose function is
unknown. Moreover, clustering protein profiles based on
their similarity enables us to discover uncharacterized cel-
lular pathways and functional network modules [71-80],
and sub-cellular locations of proteins [81].

In this work, we perform a comprehensive assessment of
functional linkage inference using PPCs. Our goal is to
measure the approach's accuracy and coverage as well as
to identify its biases, strengths and weaknesses. We stud-
ied E. coli and S. cerevisiae (yeast) proteins through com-
parative analysis of 894,522 known proteins from 95
different organisms. Sun et al [82] had previously
reported that the choice of the reference set of genomes
(genomes in which a given protein is profiled) affects pre-
dictive power of the PPC approach, albeit with no clear
explanation in the evolutionary context. Results from our
experiments using 16 different carefully composed refer-
ence sets of genomes show that the extent of enrichment
of functionally related protein pairs among those with
high similarity score is dependent on the evolutionary his-

tory of individual pathways to which the proteins belong,
and thus the choice of genomes included in the reference
set. For example, to accurately predict functional links in
carbohydrate or lipid metabolism, a reference set solely
composed of prokaryotic (or bacterial) genomes per-
formed among the best compared to a reference set com-
posed of genomes from all three super-kingdoms; this is
in contrast to predicting functional links in translation for
which a reference set composed of prokaryotic (or bacte-
rial) genomes performed the worst.

We show that selection of genomes for the reference set
both at the super-kingdom level as well as within the
eukaryotic kingdom affects the predictive power of the
PPC approach. In particular, our results on the E. coli and
yeast proteins reveal that profiling evolutionary traits of
protein families in prokaryotic genomes alone could be
adequate to infer reasonably accurate functional linkages
between proteins. Adding a few eukaryotic genomes (serv-
ing as an out-group) into the reference set results in an
improved performance. However, adding too many
eukaryotes into the reference set decreases the perform-
ance. We provide evolutionary explanations for the
observed trend, and propose simple guidelines for the
selection of reference set of genomes for phylogenetic pro-
file analysis.

We also show that the widely used random null hypothe-
sis, which involves comparison of the performances of the
actual and the shuffled profiles, to assess the statistical sig-
nificance of profile similarity scores in genome-wide
large-scale functional linkage predictions could lead to a
significant number of unrelated proteins pairs being pre-
dicted as functionally related. In particular, we show that
using distribution of similarity scores of shuffled profiles
to model functionally unrelated proteins pairs could
result in a large fraction of predicted functional linkages
being false-positives. In other words, we show that using
shuffled profiles to evaluate the tendency of protein pro-
files to be similar by chance underestimates the probabil-
ity of an unrelated protein pair having a certain similarity
score, thereby increasing the chances of predicting false
functional linkages.

Results and discussion
Phylogenetic profiles of all E. coli and yeast proteins were
constructed by searching for their homologs in 95 differ-
ent diverse organisms representing all three super-king-
doms of life (41 Bacteria, 11 Archaea, and 43 Eukaryotes).
Sixteen different sets of reference genomes from 95 organ-
isms (Figure 1 and Table 1) were carefully chosen to inves-
tigate the impact of reference set of genomes on
functional linkage prediction capabilities. The Basic Local
Alignment Search Tool (BLAST) [83] from NCBI was used
to compare the protein sequences against each other.
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Every protein i is searched against the set of proteins from
each organism j, and the presence/absence of the query
protein's homolog in organism j is recorded in the form of
BLAST e-value Eij. Phylogenetic profiles were then con-
structed as follows: for each protein i, a vector P was gen-
erated with each entry Pij = -1/logEij in the vector
corresponding to presence/absence information of i's
homolog in organism j. To avoid logarithm-induced arti-
facts, values of Pij > 1 are truncated to 1 [64,65,71,72].
Although, earlier works on phylogenetic profile analysis
have used binary values (1/0) to record presence/absence
of a protein in a given organism [18,32,33,78,84-87],
using real values (0.0–1.0), as defined here, provides for
different levels of sequence divergence [11,38,72,81].

We compared phylogenetic profiles of all pairs of 1347 E.
coli and 1191 yeast proteins, whose functions and path-
way affiliations are recorded in the KEGG pathway data-
base [88]. We decided to use KEGG pathway maps as our
gold standard set of functional linkages for the following
two reasons: (i) to enable fair comparison of our results
with those from Date et al [72], Sun et al [82], and Snitkin
et al [89], who used KEGG pathway affiliations in their
analyses, and (ii) the fact that KEGG is one of the most
widely used database for verifying large-scale functional
linkage predictions [42,72,82,89]. A detailed summary of
the dataset used in this study is given in Table 2. The

degree of similarity between two profiles was assessed by
measuring the mutual information score between the pro-
files. The higher the mutual information score, the higher
the profile similarity. Using mutual information to assess
the correlation between profiles constructed using BLAST
E-values is a standard practice and a well established pro-
cedure [43,64,65,72,82,89,90]. Since the relationship
between profile entries is nonlinear, application of a nor-
mal correlation (such as Pearson's) to compute the profile
similarity is not appropriate as it assumes that the profile
entries are linearly related. For a detailed report on the use
of various metrics to measure the profile similarity, we
refer the reader to Glazko and Mushegian's study on phy-
logenetic profiles [74].

General observations
We examined a total of 708,645 possible functional link-
ages in E. coli, and 635,628 possible functional linkages in
yeast using each of the 16 different reference sets of
genomes. We considered two proteins to be functionally
related (or linked) if they co-occur in at least one KEGG
pathway [42,72]. Two proteins are inferred to be function-
ally related if their mutual information score is above a
certain threshold. For each of 16 reference sets of
genomes, performance measures for various mutual infor-
mation thresholds were recorded. The overall perform-
ances using all 16 reference sets of genomes are depicted

Table 1: Summary of genomes in the reference sets

Bacteria Eukaryotes

Profile 
Architecture

Actino Firmicutes Spirochaetes Proteo Others Archaea Metazoans Fungi Plants Apicomplexa Others Number 
of 

Genomes

B 3 10 2 17 9 0 0 0 0 0 0 41
BA 3 10 2 17 9 11 0 0 0 0 0 52

BAE1 3 10 2 17 9 11 0 1 1 1 0 55
BAE2 3 10 2 17 9 11 2 1 1 1 0 57
BAE3a 3 10 2 17 9 11 3 2 1 1 1 60
BAE3b 3 10 2 17 9 11 3 2 1 1 1 60

NR 2 9 2 14 7 11 3 2 1 1 1 53
NR-3 1 9 2 12 7 11 3 2 1 1 1 50
NR-8 1 8 2 10 6 10 3 2 1 1 1 45
LA 1 5 2 10 6 10 3 2 1 1 1 42
LAc 2 5 0 7 3 10 3 2 1 1 1 35

BAE4 3 10 2 17 9 11 19 16 1 5 2 95
BAE5 1 1 1 1 3 11 19 16 1 5 2 61
BAE6 1 2 1 3 5 3 2 2 1 1 2 23
AE 0 0 0 0 0 11 19 16 1 5 2 54
E 0 0 0 0 0 0 19 16 1 5 2 43

Notes: B – All 41 bacterial genomes; BA – 41 bacterial and 11 archaeal genomes; BAE1 – BA genomes plus 3 eukaryotic genomes (S. cerevisiae, A. 
thaliana, P. falciparum); BAE2 – BA genomes plus 5 eukaryotic genomes (D. melanogaster, C. elegans, S. cerevisiae, A. thaliana, and P. falciparum); BAE3a 
– BA genomes plus 8 eukaryotic genomes (M. musculus, D. melanogaster, C. elegans, S. cerevisiae, S. pombe, D. discoideum, A. thaliana, and P. falcifarum); 
BAE3b – BA genomes plus 8 eukaryotic genomes (C. familiaris, A. mellifera, C. elegans, C. albicans, S. pombe, D. discoideum, A. thaliana, and P. vivax); NR 
– BAE3a minus 7 bacterial strains; NR-3 – NR minus 3 bacterial genomes (M. leprae, R. prowazekii, and X. fastidiosa); NR-8 – NR-3 minus 4 bacterial 
genomes (M. pulmonis, C. trachomatis, Buchnera sp. APS, and P. multocida) and 1 archaeal genome (P. abyssi); LA – NR-8 minus 3 bacterial genomes (S. 
pyogenes SF370, M. genitalium, and M. pneumoniae); LAc – Set of eukaryotic and archaeal genomes used in LA along with the set of bacterial genomes 
not included (complementary set) in LA; BAE4 – All 95 genomes under consideration (41 bacteria, 11 archaea, and 43 eukaryotes); BAE5 – All 
Archaeal and eukaryotic genomes plus a selected set of 7 bacterial genomes; BAE6 – A selected of 23 genomes (12 bacteria, 3 Archaea, and 8 
eukaryotes); AE – All Archaeal and eukaryotic genomes; E – All 43 eukaryotic genomes.
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Reference sets of organismsFigure 1
Reference sets of organisms. The relationships and divergence times (Mya – million years ago) of 95 organisms (41 bacterial, 11 
archaeal, and 43 eukaryotic genomes) are based on recent studies [95]. The tree branch lengths are not proportional to time.
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in Figures 2 and 3 for E. coli and yeast proteins, respec-
tively.

We performed t-tests to determine which of the reference
sets of genomes results in a statistically significant enrich-
ment for functionally related protein pairs among all pro-
tein pairs ranked by their mutual information score. For
this test, we defined pathway similarity scores (as defined
in [72]) for all pairs of E. coli and yeast proteins, measur-
ing the degree of functional similarity between two pro-
teins. Pathway similarity between two proteins was
computed by taking the Jaccard coefficient of their KEGG
database pathway memberships (see Materials and Meth-
ods for details). Informally, two proteins A and B having
a pathway similarity score of s indicates that A is present
in at least s% of the pathways that B is present in, and vice-
versa. For every reference set of genomes, we computed
the mean mutual information score for all pairs of pro-
teins, and pairs of proteins with ≥ 50% pathway similarity
score. We then computed the t-score, which determines
whether the difference in the two mean values is statisti-
cally significant. The t-score needed to be >3.29 (for risk
level 0.001) in order for the difference in the mean values
to be statistically significant. The test results showed that
the differences in mean values for all 16 reference sets of
genomes are statistically significant (Figure 4). However,
the t-scores spanned a wide range, suggesting dramatic
differences in the performance of individual reference
sets.

Comparison of the results for E. coli and yeast proteins
showed that the relative performances of all but one
(BAE4) reference set of genomes were consistent (Figures
2 and 3). BAE4 did particularly poorly in yeast in the high-
specificity range (insets in Figure 3) as against E. coli where
it ranked close to the best performing reference sets (insets
in Figure 2; see below for further discussion). The curves
show that the ratios of false positives to true positives dra-
matically differ even in the high-specificity range of the

curve (insets in Figures 2a and 3a). For example, for a true
positive count of 500, the number of false positives
ranged anywhere from a few hundreds to few thousands
for different reference sets of genomes.

It is true that most curves in the sensitivity versus specifi-
city plot (Figures 2b and 3b) seem to lie just above the
diagonal. However, the zoomed-in inset (high specificity
region, which represents only 0.4% of the y-axis in the
bigger plot) shows that there is at least a 10-fold enrich-
ment of correctly identifying a positive over incorrectly
predicting a negative to be a positive. For example, recov-
ering 4–5% of positives will result in incorrectly classify-
ing 0.4% of negatives to be positives. The superior
performance of PPC in the high-specificity regions of the
plot (inset) is clearly evident. While PPC is a good predic-
tor of functional linkages, especially in cases where the
similarity score between functionally related profiles is
very high, it may not be a great predictor. Highly accurate
predictions (high specificity) using PPC can be made at
the cost of low coverage (low sensitivity, insets in Fig 2
and 3). PPCs are poor tools for function prediction only if
accuracy is compromised for coverage.

We investigated in detail the predictive power of the PPC
approach and found that it was greatly influenced by the
selection of reference set of genomes. In itself this obser-
vation is quite intuitive, and has been previously made,
albeit with no clear explanation in evolutionary terms. For
instance, Sun et al. [82] showed that increased number of
genomes in the reference set correlates well with
improved performance, and Snitkin et al [89] reported
that phylogenetic profile analysis using profiles generated
from the current set of completely sequenced eukaryotic
organisms yields extremely poor results. Our results indi-
cate that it is not merely the number of genomes, but a
careful selection of informative genomes that is essential
for an improved performance. A carefully chosen set of
non-redundant genomes (NR, NR-3, NR-8, LA) results in

Table 2: Description of the dataset.

Number of Proteins (in KEGG) Number of possible functional linkages examined Number of positives

Pathways E. coli Yeast E. coli Yeast E. coli Yeast

All Pathways 1,347 1,191 708,645 635,628 43,968 35,674
Carbohydrate metabolism 292 241 33,153 26,565 5,450 4,859
Energy metabolism 135 134 8,128 8,001 2,113 3,060
Lipid metabolism 83 100 2,080 4,656 602 1,232
Nucleotide metabolism 108 113 5,050 5,995 3,686 5,082
Amino acid metabolism 237 216 20,100 19,900 3,328 3,620
Metabolism of cofactors and vitamins 146 113 7,875 5,253 1,085 740
Translation 80 185 3,081 15,400 1,761 10,792
Membrane transport 259 24,531 16,834
Folding, sorting, and degradation 82 2,926 809
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a performance as good as if not better than the one
obtained from using a larger or all-inclusive sets of
genomes (BAE3a, BAE3b, BAE4; see below for further dis-
cussion).

The wide range of t-scores for different reference sets of
genomes (Figure 4) prompted us to examine the role
played by the reference set of genomes in the performance
of PPCs. We also investigated the performance of different

reference sets on proteins belonging to specific KEGG
pathways. We present below a summary of findings
emerging from these considerations.

Selection of reference set genomes at the super-kingdom 
level is crucial
Using reference sets entirely composed of genomes from
individual super-kingdoms, like bacteria (B) or eukarya
(E), or the archaeo-eukaryotic (AE) lineage taken as a

Results from phylogenetic profile comparison of 635,628 pairs of proteins chosen from among a subset of 1,191 yeast proteinsFigure 3
Results from phylogenetic profile comparison of 635,628 
pairs of proteins chosen from among a subset of 1,191 yeast 
proteins. Plot representations are same as in Figure 3. (a) 
Predictive power of pyholgenetic profile analysis. The relative 
performances of all but one (BAE4) reference sets of 
genomes for yeast are almost the same as that for E. coli. A 
gradual decrease in performance can be noticed as the frac-
tion of eukaryotic genomes in the reference set increases 
(BAE4, BAE5, BAE6, AE, E), which is counter-intuitive con-
sidering the fact that one would hope to see an improved 
performance on adding more eukaryotic genomes. This sug-
gests that the diverse physiology of eukaryotes could be add-
ing substantial noise to the protein profiles making it difficult 
for the method to separate functionally related protein pairs 
from unrelated protein pairs. Use of bacterial and archaeal 
genomes (BA) alone results in a good performance, a result 
that lends support to serial endosymbiosis theory. (b) Sensi-
tivity versus specificity plot.

 

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

True Positives (in thousands)

F
a
ls

e
 P

o
s

it
iv

e
s

 (
in

 t
h

o
u

s
a
n

d
s
)

B

BA

BAE1

BAE2

BAE3a

BAE3b

NR

NR-3

NR-8

LA

LAc

BAE4

BAE5

BAE6

AE

E

0

1000

2000

3000

4000

5000

0 500 1000 1500 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sensitivity

S
p

e
c
if

ic
it

y

B

BA

BAE1

BAE2

BAE3a

BAE3b

NR

NR-3

NR-8

LA

LAc

BAE4

BAE5

BAE6

AE

E

0.996

0.997

0.998

0.999

1

0 0.01 0.02 0.03 0.04 0.05

(a)

(b)

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

True Positives (in thousands)

F
a
ls

e
 P

o
s

it
iv

e
s

 (
in

 t
h

o
u

s
a
n

d
s
)

B

BA

BAE1

BAE2

BAE3a

BAE3b

NR

NR-3

NR-8

LA

LAc

BAE4

BAE5

BAE6

AE

E

0

1000

2000

3000

4000

5000

0 500 1000 1500 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sensitivity

S
p

e
c
if

ic
it

y

B

BA

BAE1

BAE2

BAE3a

BAE3b

NR

NR-3

NR-8

LA

LAc

BAE4

BAE5

BAE6

AE

E

0.996

0.997

0.998

0.999

1

0 0.01 0.02 0.03 0.04 0.05

(a)

(b)

Results from phylogenetic profile comparison of 708,645 pairs of proteins chosen from among a subset of 1,347 E. coli proteinsFigure 2
Results from phylogenetic profile comparison of 708,645 
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proteins. (a) Predictive power of pyholgenetic profile analy-
sis. Each point in this plot represents a specific mutual infor-
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Reference sets with diverse bacterial genomes along with a 
few archaeal and/or eukaryotic genomes (BA, BAE1, BAE2, 
BAE3a, BAE3b, NR, NR-3, NR-8, LA, and BAE4) perform 
well over a reference set (B), which comprises just the bacte-
rial genomes. The performances of BAE3a and NR are 
almost the same in the zoomed-in high specificity region 
(inset), which suggests that adding redundancy (different 
strains of the same organism) to the reference set does not 
improve the performance. The removal of evolutionarily 
closely-related (uninformative) genomes from the best per-
forming BAE3a (NR-3, NR-8) decreases the performance, 
but to a small extent. (b) Sensitivity versus specificity plot.
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whole, results in a performance much worse than that
obtained using a set that includes genomes from only the
bacterial and archaeal super-kingdom (BA). The
improved performance of the latter set (BA) suggests that
phyletic patterns of proteins in bacterial and archaeal
genomes alone provide sufficient information for reason-
ably accurate functional linkage predictions (also sup-
ported by statistically significant t-scores, Figure 4). Any
further improvements to this performance necessarily
require additions of a few eukaryotic genomes (e.g.
BAE3a, BAE3b, NR, NR-3, NR-8, LA, LAc). The best per-
formance was obtained for reference set BAE3a, which
contained all bacterial and archaeal genomes included in
our set and a single representative from each of the major
eukaryotic lineages. However, further additions of eukary-
otic genomes have little or no effect on the performance
in E. coli, while they actually reduced the performance in
yeast (BAE4 in Figures 2 and 3).

Genome choice within the super-kingdoms is a notable 
determinant of PPC performance
There are numerous parasitic or pathogenic representa-
tives found amongst the currently available eukaryotic
and bacterial genomes. These organisms typically lack
many metabolic pathways found in their sister clades, and
in the extreme case are reduced to minimal genomes that
mainly support only highly conserved house-keeping
processes (e.g. Mycoplasmas in bacteria and Encephalito-
zoon in eukaryotes). It should also be noted that the
sequencing efforts to date have been biased towards these
parasitic or pathogenic organisms resulting in their over-
representation in the public sequence databases. We

hence decided to evaluate the effects of their inclusion
(into the reference set) on the performance of the PPC
approach, and observed that the inclusion or non-inclu-
sion of such parasitic or pathogenic genomes in the refer-
ence set did not alter the performance significantly. This
suggested that these genomes do not code enough pro-
teins of various metabolic pathways to provide useful
information to have a notable effect on the performance
of the PPC approach. The eukaryote Giardia lamblia is a
facultative parasite, but its genome is comparable to that
of free-living unicellular eukaryotes in size and, in certain
models of eukaryotic phylogeny, is considered a repre-
sentative of an early branch of the eukaryotic tree.
Sequence analysis of the G. lamblia genome also suggests
a relatively robust representation of diverse functions.
Interestingly, its inclusion in the best performing refer-
ence set BAE3a did not notably improve the predictive
performance (not shown). This might imply that the rela-
tive time of branching of the extant eukaryotic tree does
not have an influence on the predictive performance of
the PPC approach.

It is also known that current databases contain numerous
representatives of closely related taxa. For example, there
are several representative strains of E. coli and numerous
species of Mycoplasmas in the case of bacteria, and several
Plasmodium and Saccharomyces species in the case of
eukaryotes (Figure 1). Likewise, the 13 vertebrate species
represented in the tree in Figure 1 do not differ signifi-
cantly in most aspects of the cellular pathways considered
in the KEGG database. Alternative reference sets (BAE3a,
BAE3b, NR, NR-3, NR-8, LA, LAc) composed of either all
the taxa or merely single representatives from each species
or lineage (in the case of vertebrates) did almost as well or
better than the set (BAE4) composed of all genomes
(insets in Figures 2 and 3). In fact, reference set NR that
contained only one representative strain for each species
in bacteria did as well as the best performing BAE3a. These
results indicate that different bacterial strains, closely
related species, and the entire vertebrate lineage are largely
redundant in terms of the information they provide for
phylogenetic profile analysis.

In order to assess the possible effects arising from incom-
plete genome assembly and sequencing, and poor gene-
predictions, we used a reference set (BAE3b) composed of
poorly annotated genomes in place of their better anno-
tated relatives. Reference set BAE3b is essentially the same
as the best performing BAE3a except that we replaced
Homo sapiens with Canis familiaris, Saccharomyces cerevisiae
with Candida albicans, Drosophila melanogaster with Apis
melifera, and Plasmodium falciparum with Plasmodium
vivax. These replacements resulted in a slight drop-off in
the predictive performance (insets in Figures 2 and 3),
suggesting that the genomes that have been relatively not-

Results from the t-tests measuring the statistical significance of the difference in the means of the distributions of mutual information scores of random protein pairs and protein pairs with pathway similarity ≥ 50%.Figure 4
Results from the t-tests measuring the statistical significance 
of the difference in the means of the distributions of mutual 
information scores of random protein pairs and protein pairs 
with pathway similarity ≥ 50%. The t-scores for all 16 refer-
ence sets of genomes are statistically significant for both the 
E. coli and the yeast proteins.
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so-well annotated vis-à-vis those well-annotated classical
model organisms contain sufficient information to be of
value in large-scale predictive experiments, at least for the
current assembly of metabolic pathways from the KEGG
database.

Another interesting effect on the performance of the PPC
approach was seen specifically in eukaryotes – addition of
more eukaryotes to the reference set (BAE4) did not
improve the performance in the case of yeast, instead
resulting in a significant drop off (Figures 3 and 4). At first
sight this observation is counterintuitive, but a more care-
ful examination of the metabolic capabilities of the
genomes under consideration suggests a possible explana-
tion for this. Most eukaryotes in this set belong to rather
diverse metabolic categories, whose main "metabolic ten-
dencies" may be very different from that of yeast. For
example, the plants are photosynthetic autotrophs, ani-
mals and Dictyostelium are predatory deriving most nutri-
ents by directly ingesting other eukaryotes or prokaryotes,
apicomplexa are parasites deriving a greater fraction of
their essential metabolites from animal hosts, whereas
fungi are saprophytic or fermentative heterotrophs. As a
result, there is a strong tendency for the metabolic path-
ways to be entirely distinct within these eukaryotes. Addi-
tionally, due to their following of different convergent
paths to similar metabolic tendencies, there are widely
different patchy-retentions of components of various
pathways even between groups with similar overall
metabolism (this is accentuated by the relative over-repre-
sentation of various parasitic eukaryotes amongst the
sequenced genomes). This results in distinct patterns of
various protein components that might show a low degree
of phylogenetic congruence. As a result, having these
eukaryotic genomes together is equivalent to having a ref-
erence set in which individual proteins have been
removed in an uncorrelated fashion. Thus, the addition of
more such eukaryotic genomes decreases the predictive
power of PPCs for functional linkage discovery in yeast
(BAE4 in Figures 3 and 4).

Structure and evolutionary history of individual pathways 
influence performance of PPCs
A KEGG pathway or a map is an ensemble of many
smaller pathways that are typically centered on a particu-
lar metabolite (e.g. DNA or RNA) or a distinct class of
related molecules (e.g. carbohydrate or amino acids). It is
a well-known fact that different pathways differ vastly in
terms of the conservation patterns of their components.
Most genome-wide large-scale functional linkage predic-
tions using PPCs have largely ignored this intrinsic diver-
sity in the behavior of individual biological functional
systems. To evaluate the role of this diversity in conserva-
tion across different functional systems, and its effects on
the accuracy of functional linkages predicted from PPCs,

we considered a set of nine such systems as defined in the
second level of KEGG orthology [91] (Table 2; seven are
seen in both test species, while one each are found only in
E. coli and yeast), each with 80 or more protein compo-
nents. We then repeated the same analysis (as done for the
complete protein set) for proteins in each of these KEGG
pathways using seven of the 16 reference sets (Figures 5
and 6). For our analysis on individual pathways, we con-
sidered a pair of proteins to be a positive if they co-occur
in the pathway under consideration. Otherwise, we con-
sider the pair to be a negative (with respect to the pathway
under consideration), although they may co-occur in
some other pathway. This is different from our overall
analysis where a pair of proteins is a positive if they co-
occur in any pathway and a negative if they do not co-
occur at all.

Sensitivity versus specificity plots for protein pairs in various E. coli pathways based on the 2nd level of KEGG orthologyFigure 5
Sensitivity versus specificity plots for protein pairs in various 
E. coli pathways based on the 2nd level of KEGG orthology. 
Performances were measured at different mutual information 
thresholds. (a) Carbohydrate metabolism. (b) Energy metab-
olism (c) Lipid metabolism (d) Nucleotide metabolism (e) 
Amino acid metabolism (f) Metabolism of cofactors and vita-
mins (g) Translation (d) Membrane transport.
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The translation apparatus is the most conserved of all
pathways in the cell, with the majority of its components
displaying what has been termed the "standard model"
topology. In this topology, the archaeo-eukaryotic lineage
is monophyletic to the exclusion of the bacteria. This phy-
logenetic topology is also reflected in the structure of the
ribosome and principal translation switches (the GTPase
complexes). Interestingly, comparisons of the prediction
capabilities (sensitivity versus specificity) of the PPC
approach, using various reference sets, for translation in
isolation (Figures 5g and 6g) showed that neither in E. coli
nor in yeast did the overall-best-performing reference set
BAE3a fared the best. Instead, the most non-redundant
reference set NR-8, comprising 15 less genomes compared
to BAE3a, performed the best. The reference set composed
entirely of genomes from the super-kingdom to which the
test organism belonged (set B for E. coli, and set E for

yeast) performed the worst for the translation system (Fig-
ures 5g and 6g). However, at least in the case of E. coli, set
B fared amongst the best in 5 out of the 8 KEGG pathways
(Figure 5a, b, c, f, and 5h). This observation indicated that
the nature of conservation of components indeed has a
notable effect on the performance of PPCs with respect to
a particular reference set. In a system like translation, the
phyletic pattern of a protein within a super-kingdom is
rather uniform due to high degree of vertical conservation
of components. Hence, profiles constructed using a refer-
ence set, composed entirely of genomes from the super-
kingdom to which the test organism belongs, are likely to
contain low information content and offer no predictive
value. Again, due to the high degree of conservation, the
phyletic pattern of a protein from a set of diverse and non-
redundant genomes (NR-8) is likely to capture all the use-
ful evolutionary information necessary for a successful
functional linkage inference.

A very different picture is seen in the case of what have
been described as functions associated with the "variable
shell" or those functions that show great phylogenetic
diversity across bacteria (e.g. carbohydrate, lipid and
cofactor metabolisms). In these cases, the reference set
comprised entirely of genomes from the super-kingdom
to which the test organism belongs (B in the case of E. coli)
usually performs well, though the best reference set is typ-
ically BAE3a or NR-8 (Figure 5). Given the relatively high
membership of these pathways (Table 2), the dominating
performance of BAE3a for the overall set of E. coli proteins
(Figure 2) is not surprising. The more puzzling observa-
tion is the relative success of B, compared to other refer-
ence sets, in these pathways as opposed to that for the
overall set. However, when the performances of various
reference sets in yeast are compared, we invariably find E,
and even AE, to be performing the worst for the equivalent
metabolic pathways (Figure 6). Consistent with the over-
all results (Figure 3), like in E. coli, we observed that BA
was close to the best even in yeast (Figure 6). Taken
together, these observations suggest, that the evolutionary
history of these pathways strongly affects how the proteins
within them might behave as targets for function predic-
tion using phylogenetic profiles.

Within the prokaryotes, many metabolic pathways, espe-
cially those related to carbohydrate, lipid and cofactor
metabolism, are modular in structure. This feature has
allowed dispersal of individual modules of the systems
due to lateral gene transfer of operons, resulting in suffi-
ciently informative phyletic patterns to provide informa-
tion for predictive success (B and BA in Figures 5 and 6).
There is also considerable evidence that eukaryotes
acquired many of their basic metabolic abilities from bac-
teria, during the primary endosymbiosis (from the mito-
chondrial progenitor) and secondarily in some lineages

Sensitivity versus specificity plots for protein pairs in various yeast pathways based on the 2nd level of KEGG orthologyFigure 6
Sensitivity versus specificity plots for protein pairs in various 
yeast pathways based on the 2nd level of KEGG orthology. 
Performances were measured at different mutual information 
thresholds. (a) Carbohydrate metabolism. (b) Energy metab-
olism (c) Lipid metabolism (d) Nucleotide metabolism (e) 
Amino acid metabolism (f) Metabolism of cofactors and vita-
mins (g) Translation (h) Folding, sorting, and degradation.
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due to photosynthetic endosymbiosis or via the sporadic
uptake of bacteria due to phagocytosis. As a result, it is not
surprising that phyletic patterns of proteins in prokaryotic
genomes alone (reference sets B and BA) are sufficient to
provide a high fidelity prediction of eukaryotic metabolic
systems. As explained earlier, the metabolic situation of
the current set of eukaryotes makes reference sets E and AE
unsuitable for function prediction.

Weak positive correlation between profile similarity and 
functional similarity
Date and Marcotte [72] reported that higher mutual infor-
mation scores, measuring the profile similarity, correlate
well with increasing pathway similarity scores. Using
exactly the same reference set of genomes and dataset, we
observed that there is only a weak correlation between the
two measures (0.14 foe E. coli, and 0.16 for yeast; Figure
7). While very high mutual information scores certainly
correlate well with high pathway similarity scores, high
pathway similarity scores do not, however, correlate with
high mutual information scores. The main reason that
Date and Marcotte observed a higher correlation than
what we observe is the methodology they employed to
compute the correlation. Each data point in our plot (Fig-
ure 7) represents a pair of proteins while each data point
in Date and Marcotte's plot represents the average value
for 1,000 pairs of proteins. They first sorted the mutual
information scores, and then binned them into groups of
1000. Each bin is represented in their plot by a single data
point using the bin's average mutual information score
and pathway similarity score (insets in Figure 7). Conse-
quently, rather than computing the correlation of all data
points, they computed the correlation of the representa-
tive data points (averages), which resulted in an artificial
increase in the correlation.

A weak positive correlation between the profile similarity
score and the pathway similarity score along with substan-
tial differences in the evolutionary modularity of func-
tional modules [80] suggest that although PPCs have been
proven to be extremely useful in inferring functional link-
ages on a case-by-case basis, caution should be exercised
while interpreting functional linkages predicted from
genome-wide large-scale PPCs using a single reference set.

Correct formulation of null hypothesis is vital for increased 
prediction accuracy
In this section, we show that using an incomplete random
null model can artificially boost the statistical significance
of the observed functional linkages. Since choosing the
correct random null model is critical to genome-wide
large-scale functional linkage prediction, it is essential
that one uses a complete null model that considers the
underlying functional and evolutionary constraints. Our
goal was not to suggest a null model that realistically cap-

tures all the issues that may arise, but merely to explore
the implications of choosing an incomplete null model.
Genome-wide prediction of functional linkages or cellular
pathways (by clustering functional linkages) using PPCs
involves selecting a profile similarity score cutoff, which is
usually done by comparing the distribution of similarity
scores of actual profiles to that of shuffled profiles

Relationship between pathaway similarity score, measured as the Jaccard coefficient between the proteins' KEGG pathway memberships, and profile similarity score (using reference set BAE3a), measured as the mutual information score of pro-teins' profilesFigure 7
Relationship between pathaway similarity score, measured as 
the Jaccard coefficient between the proteins' KEGG pathway 
memberships, and profile similarity score (using reference set 
BAE3a), measured as the mutual information score of pro-
teins' profiles. Each data point in the plot represents a pair of 
proteins. (a) 708, 645 pairs of E. coli proteins, out of which 
664,677 had zero pathway similarity score. A weak positive 
correlation (R = 0.14) is found to exist between the pathway 
similarity score and the mutual information score. Rather 
than computing the correlation of all data points, Data and 
Marcotte computed the correlation of "representative" data 
points, each of which represents the average values for 1000 
data points. This results in an artificial increase in the correla-
tion (R = 0.89, inset). (b) 635 628 pairs of yeast proteins, out 
of which 599,954 had zero pathway similarity score. A weak 
positive correlation is observed (R = 0.16) between the path-
way and profile similarity measures. An artificial increase in 
the correlation is observed (R = 0.65, inset) when Date and 
Marcotte's correlation computation strategy is employed.
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(obtained by random shuffling of the profile entries)
[72,75,77,82,92]. A similarity score cutoff is chosen such
that the probability that a pair of shuffled profiles have a
score greater than the cutoff is statistically very low. All
protein pairs whose similarity scores (obtained from
actual profiles) exceed the chosen cutoff are inferred to be
functionally related. This strategy assumes that the distri-
bution of similarity scores of shuffled profiles approxi-
mate the distribution of similarity scores of random (or
unrelated) pairs of proteins.

The approach outlined above can lead to wrong interpre-
tations (increase the fraction of false positives) if the
underlying null hypothesis is not posed carefully. The
shuffling mechanism, which shuffles all entries of a pro-
file, implicitly assumes that the protein family, whose
profile is being shuffled, is present in all the genomes
under consideration. In other words, it is assumed that all
proteins in the test organism date back to the last com-
mon ancestor. This type of shuffling fails to take into
account those proteins that are kingdom (or lineage) spe-
cific. Consider the profiles of two bacterial-specific pro-
teins A and B in Figure 8. Homologs of protein A and B are
present in three and four bacterial genomes, respectively.
Comparison of profiles A and B indicate that they are very
similar, with only one bit difference (Figure 8a). The
widely-used shuffling strategy could shuffle the profiles to
have at most seven bit differences (Figure 8b). However, a
restrictive shuffling (that takes the lineage-specificity of
the proteins into consideration), which shuffles only the
entries corresponding to bacterial genomes, will result in
at most five bit differences (Figure 8c). This example illus-
trates how an unrestricted shuffling process could artifi-
cially reduce the similarity scores of the shuffled profiles,
underestimating the probability of a random protein pair
having a certain similarity score. Consequently, this could
result in choosing a lower similarity score cutoff, thereby
increasing the chances of predicting functional linkages
between unrelated protein pairs. As a result of underesti-
mating the probability of a random protein pair having a
certain similarity score, the statistical significance of actual
profiles having high similarity scores is erroneously over-
estimated.

To demonstrate this point further, we considered a set of
155 bacterial-specific E. coli proteins (see Additional File
1), whose functions and pathway affiliations are known
and recorded in the KEGG pathway database. We desig-
nated an E. coli protein to be bacterial-specific, if a BLAST
search of that protein did not fetch a homolog (with
BLAST e-value < 1e-2) in any of the archaeal or eukaryotic
genomes. Using reference set BAE4 (comprising all 95
organisms), we computed the mutual information scores
of 11,935 pairs of 155 proteins. The distribution of
mutual information scores is shown in Figure 9a. While

the distribution of scores for fully shuffled profiles show
that the probability of obtaining a score > 0.6 is less than
2 × 10-4 (dashed red curve in Figure 9b), the distribution
of scores for restrictively shuffled (only bacterial entries
were shuffled) profiles show that the probability of
exceeding a score of 0.6 is actually less than 2 × 10-2

(dashed blue curve in Figure 9b). Using fully shuffled pro-
files to benchmark a mutual information cutoff for func-
tional linkage prediction would have underestimated the
probability of a random protein pair having a score of 0.6
by two orders of magnitude. If one were to choose a cutoff
of 0.6 to predict functional linkages based on an incom-
plete random model (shuffling all the entries in a profile),
majority (≈65%) of the predictions would have turned
out to be false-positives (Figure 9c). However, a cutoff
(1.1) chosen based on the distribution of partially shuf-
fled profiles would have reduced the percentage of false-
positives by half to about 35%.

In addition to emphasizing the importance of choosing a
correct random model, the above discussed case also
brings to light the limitations of the PPC approach when
it comes to lineage-specific proteins. Especially, when the
proteins under study are observed to occur in only a few
closely-related genomes (say, in gamma-proteobacteria)

Phylogenetic profiles of two bacterial-specific proteins A and BFigure 8
Phylogenetic profiles of two bacterial-specific proteins A and 
B. The presence or absence of homolog in a genome is rep-
resented by white and black squares, respectively. Bit differ-
ences in the corresponding positions of the profiles are 
shown using arrows. (a) The actual profiles of A and B are 
similar, with only one bit difference. (b) A shuffling strategy 
that shuffles all the entries in the profile will result in at most 
7 bit differences. (c) A restrictive shuffling mechanism (which 
takes into account the lineage-specificity of the proteins 
under consideration) that shuffles only the entries corre-
sponding to bacterial genomes will result in at most 5 bit dif-
ferences. For lineage-specific proteins, unrestricted shuffling 
process can artificially reduce the similarity scores of the 
shuffled profiles, thereby underestimating the probability of a 
random protein pair having a certain similarity score.
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Consequences of choosing a mutual information score threshold (for predicting functional linkages among proteins) based on fully shuffled protein profilesFigure 9
Consequences of choosing a mutual information score threshold (for predicting functional linkages among proteins) based on fully shuffled protein profiles. 
Results from phylogenetic profile comparison of 11,935 pairs of 155 bacterial-specific E. coli proteins. (a) Distribution of mutual information scores using 
reference set BAE4. The blue curve represents the distribution of scores for all 11,935 protein pairs (using actual profiles), while the green curve repre-
sents the distribution of scores for 983 protein pairs (using actual profiles) with ≥50% pathway similarity. The dashed curves represent the distribution of 
scores for 11,935 protein pairs using shuffled profiles. The dashed red curve is used for shuffled protein profiles obtained by shuffling all of the entries in 
actual protein profiles. This type of shuffling implicitly assumes that each protein under study is present in all lineages/kingdoms, an assumption that is 
incorrect for lineage-specific proteins. The dashed blue plot is for restrictively shuffled protein profiles that were obtained by shuffling only the profile 
entries corresponding to bacterial genomes. (b) Plots depicting the relationship between the mutual information threshold and the p-value (probability that 
the score for a pair of proteins meets or exceeds the chosen mutual information threshold). The statistical significance for a pair of proteins having a cer-
tain similarity score (using actual profiles) could be overestimated if fully shuffled profiles (dashed red curve) were used to model the behavior of unrelated 
pair of proteins instead of restrictively shuffled profiles (dashed blue curve). (c) Relationships between the mutual information thresholds (for predicting 
positives and negatives) and the positive predictive values (prediction accuracy). This plot illustrates that the commonly used approach of choosing a 
threshold based on the distribution of scores from completely shuffled profiles (0.6 based on the dashed red curve in (a)) may lead to a significant fraction 
of predictions being false-positives. On the contrary, a cutoff chosen based on the distribution of scores from restrictively shuffled profiles (1.1 based on 
the dashed blue curve in (a)) more than doubles the prediction accuracy, albeit decreasing the coverage.
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the profiles of these proteins becomes less-informative,
resulting in an increased likelihood of less-informative
profiles showing high profile similarity [93]. Lineage spe-
cific gains and losses of genes, thought to be pervasive in
microbial evolution [94], could decrease the similarity
between functionally linked genes [74]. Limitations such
as these warrant a careful construction of a random null
model, preferably on a case-by-case basis, to evaluate the
quality of the predicted functional linkages.

Conclusion
While similarities in phylogenetic profiles of proteins pro-
vide helpful clues to functional annotations, there cer-
tainly are limitations when it comes to predicting
functional linkages on a genomic scale. There are substan-
tial differences in the evolutionary modularity of func-
tional modules [80], which makes it difficult to interpret
profile dissimilarity. Recently, several modifications and
augmentations to the PPC approach have been proposed
in light of its limitations. Jim et al [50] combined organ-
ism-to-phenotypic associations with phylogenetic profiles
for de novo identification of protein function, and dem-
onstrated the method's superior performance over the
basic PPC approach. To detect errors in new functional
annotations, Mikkelson et al [55] proposed a probabilistic
model of phylogenetic profiles, trained from a database of
curated genome annotations. Barker and Pagel [31] and
Zhou et al [32] showed that incorporating phylogenetic
information (correlated events of gene loss/gain and hor-
izontal gene transfers) into the PPC approach can help
distinguish gene pairs that have been gained or lost
together on multiple occasions from those that have been
gained or lost together once followed by shared inherit-
ance. It was shown that this approach improves the pre-
diction accuracy considerably, and is unaffected by the
number of related or redundant genomes in the reference
set. However, since this approach relies heavily on the spe-
cies tree to infer evolutionary events, it may not be suita-
ble in situations when the species tree is unknown or
uncertain. To assess the various commonly overlooked
fundamental issues related to the performance of PPCs,
we undertook a comprehensive analysis of the PPC
approach toward functional linkage predictions.

Since not all proteins in an organism date back to the last
universal common ancestor, it is important that a large-
scale analysis involving protein profile comparisons take
into consideration the subsets of proteins showing similar
evolutionary behavior, and use reference sets of genomes
that take into account the evolutionary histories of indi-
vidual subsets. This might improve the prediction accu-
racy given the differential performance of the overall-best
reference set BAE3a with respect to particular pathways
(Figures 5 and 6). The choice of organisms for the refer-
ence set also appears to be an important factor. Sun et al

[82] reported that an increased number of genomes in the
reference set results in an improved performance. Our
results indicate that a carefully chosen set of informative
and non-redundant genomes result in a performance as
good as if not better than the one obtained from using a
larger set of genomes. Simply increasing the number of
genomes in the reference set does not improve the predic-
tion accuracy of the PPC approach. In other words, we
demonstrated that it is not merely the number of genomes
but a careful selection of informative genomes that is
essential for a superior performance. In the worst case, as
we observed in yeast, adding more eukaryotic genomes
only worsens the performance. This result is consistent
with Snitkin et al's study [89] that phylogenetic profiling
using profiles generated from the current set of completely
sequenced eukaryotic organisms yields extremely poor
results.

Through a careful case-by-case analysis of proteins from
individual KEGG pathways [88], we have shown that
there is not one reference set of genomes that can guaran-
tee the best performance in all cases, which suggests that
the evolutionary histories of individual pathways or bio-
logical systems should be taken into consideration while
assembling a set of genomes for phylogenetic profile com-
parison analysis. This result raises immediate concerns on
the genome-wide large-scale functional linkage predic-
tions using profiles constructed from a fixed set of refer-
ence genomes despite varying evolutionary histories of
individual pathways and network modules.

Hence, based on our observations, we suggest that the fol-
lowing few simple guidelines be followed while selecting
genomes for the reference set: 1) Representatives from all
3 kingdoms of life are a must for highly accurate predic-
tions; although reasonably good accuracy can be achieved
using prokaryotes alone (please note that this observation
is based on extrapolation of our results on E. coli and yeast
proteins). 2) Naïve collection of genomes should be
replaced with a specific choice of genomes representing
the entire phylogenetic diversity of life. In particular, fully-
sequenced large genomes of free-living organisms give the
best information. 3) Parasitic organisms, strains of the
same species and very closely related species are unlikely
to provide new predictive information, at least for the
ensemble of pathways considered in this study. The
behavior of phylogenetic profile methods in a general
sense is greatly affected by the large-scale evolutionary
trends in super-kingdoms. In light of this, it should be
kept in mind that the results presented here apply only in
the context of the KEGG-derived pathways studied here.
One could conceive entirely different rules for inclusion
of genomes in the reference set with respect to eukaryote-
specific pathways that are not suitably represented in
KEGG or were not included in this study. Our observa-
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tions strongly support the emergence of all extant eukary-
otes through a primary endosymbiosis that conferred
predominantly bacterial type general metabolism with
archaeal type core functional systems. This history is the
probable reason for differential performance of PPCs in
different functional systems and also the aberrant behav-
ior of eukaryotes in overall analysis.

Methods
Data Set and phylogenetic profile construction
The amino acid sequences of 894,522 proteins from 95
different organisms (41 Bacteria, 11 Archaea, and 43
Eukaryotes) were obtained from various sources (NCBI,
Ensembl, BROAD, WashU, PlasmoDB, and dictyBase).
For comparison of protein sequences against each other,
we used NCBI's Basic Local Alignment Search Tool
(BLAST) [83]. Every protein i is searched against the set of
proteins from each organism j, and the presence/absence
of the query protein's homolog in organism j is recorded
in the form of BLAST e-value Eij. For each protein i, a phy-
logenetic vector/profile P was generated with each entry Pij
= -1/logEij in the vector corresponding to presence/
absence information of i's homolog in organism j. To
avoid logarithm-induced artifacts, values of Pij > 1 are
truncated to 1 [64,65,71,72]. Although, earlier works on
phylogenetic profile analysis have used binary values (1/
0) to record presence/absence of a protein in a given
organism [18,32,33,78,84-87], using real values (0.0–
1.0), as defined here, provides for different levels of
sequence divergence [11,38,72,81].

Assessing the degree of similarity between two profiles
To assess the similarity between two profiles A and B, we
used the mutual information (MI) measure defined as fol-
lows:

MI(A, B) = H(A) + H(B) - H(A, B),

where  is the entropy of profile A,

 is the joint entropy of pro-

files A and B. Here, p(a) is the frequency with which the
value a is observed in profile vector A, and p(a, b) is the
frequency with which the pair of values (a, b) are observed
in A and B (with a and b appearing in A and B, respec-
tively). Since, our profile entries are real valued numbers
in the range 0.0 to 1.0, profile values were binned in inter-
vals of 0.1.

Pathway similarity calculation
The KEGG pathway database [88] was used to compile the
pathway membership information for each protein. The
pathway similarity between two proteins A and B, meas-

uring the degree of their functional linkage, is calculated
by taking the Jaccard coefficient of their KEGG database
pathway annotation as follows:

Pathway similarity (A, B) = 100 × (| KEGGA � KEGGB |)/
(| KEGGA ∫ KEGGB |),

where KEGGx is the set of specific pathways protein A is
known to participate, and |KEGGx| is the number of
unique pathways in the set. A pathway similarity score of
s between proteins A and B indicates that A is present in at
least s% of the pathways that B is present in, and vice-
versa.

Performance measure calculations
To assess the performance of PPCs for prediction of func-
tional linkages, we used the standard measures of sensitiv-
ity (coverage), specificity, and positive predictive value
(prediction accuracy). Two proteins are considered to be
functionally related (positive) if they co-occur in at least
one KEGG pathway [42,72], and unrelated (negative) oth-
erwise. For our analysis on individual pathways, we con-
sidered a pair of proteins to be a positive if they co-occur
in the pathway under consideration. Otherwise, we con-
sider the pair to be a negative (with respect to the pathway
under consideration), although they may co-occur in
some other pathway. For a chosen mutual information
threshold, positives with a score greater than or equal to
the threshold are classified as true positives and those with
a score below the threshold are classified as false negatives.
Similarly, negatives with score greater than or equal to the
threshold are classified as false positives and those with a
score below the threshold are classified as true negatives.
The sensitivity measure quantifies the fraction of positives
recovered, and is defined as

Sensitivity = TP/(TP+FN),

where TP and FP are the number of true positives and false
negatives, respectively, for a particular mutual informa-
tion threshold. The specificity measure quantifies the frac-
tion of negatives that are correctly identified as negatives,
and is defined as

Specificity = TN/(TN+FP)

where TN and FP are the number of true negatives and
false positives, respectively, for a particular mutual infor-
mation threshold. Positive predictive value (PPV) meas-
ures the accuracy of predicted functional linkages, and is
defined as

PPV = TP/(TP+FP),

H A p a
a

( ) ( )= −∑

H A B p a b p a b
a b

( , ) ( , )ln ( , )
,

= −∑
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where TP and FP are true and false positives for a particu-
lar mutual information threshold.

Statistical significance test
We used t-test to determine whether the difference in
mean values of two distributions is statistically significant.
Given two distributions P and Q, each characterized by its
mean, standard deviation, and the number of data points,
the t-test measures whether the means are distinct. First,
the t-score, which measures the signal (difference between
two means) to noise (variability in distribution) ratio, is
calculated as follows:

where  and varP are the mean and the variance of P,

respectively, and nP is the number of data points in P. The

significance of computed t-score is tested by comparing it
against the value for risk level 0.001 (odds that the differ-
ences in mean is due to chance) and degrees of freedom
(nP+nP-2) from a standard table of significance to deter-

mine whether the computed t-score is large enough to be
significant. If it is, then the difference in two means is sta-
tistically significant. For sizes of datasets in our study, the
computed t-score should be greater than 3.29 (for risk
level 0.001) in order to reach a conclusion that the
observed difference in means of the two distributions is
statistically significant. The risk level of 0.001 indicates
that that one out of a thousand times, you would find a
statistically significant difference between the means even
if there was none (i.e., by "chance"). The higher the t-
score, the higher the significance.
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