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Abstract
Background: Tandem mass spectrometry (MS/MS) is a powerful tool for protein identification.
Although great efforts have been made in scoring the correlation between tandem mass spectra
and an amino acid sequence database, improvements could be made in three aspects, including
characterization ofpeaks in spectra, adoption of effective scoring functions and access to
thereliability of matching between peptides and spectra.

Results: A novel scoring function is presented, along with criteria to estimate the performance
confidence of the function. Through learning the typesof product ions and the probability of
generating them, a hypothetic spectrum was generated for each candidate peptide. Then relative
entropy was introduced to measure the similarity between the hypothetic and the observed
spectra. Based on the extreme value distribution (EVD) theory, a threshold was chosen to
distinguish a true peptide assignment from a random one. Tests on a public MS/MS dataset
demonstrated that this method performs better than the well-known SEQUEST.

Conclusion: A reliable identification of proteins from the spectra promises a more efficient
application of tandem mass spectrometry to proteomes with high complexity.

Background
A major goal of proteomics is to study biological processes
comprehensivelythrough the identification, characteriza-
tion, and quantification of expressed protein in a cell or a
tissue. Recently, tandem mass spectrometry has been
shown to be a powerful tool for sensitive high-throughput
identification of proteins [1,2]. Following enzymatic
digestion of proteins, the resulting peptides are separated
in the mass analyzer according to their mass to charge
ratio (m/z-value). Peptides with the same m/z value are

mostly brokeninto two fragments at a single peptide
bond, forming N-terminal ions, i.e. a, b or c-ion and C-ter-
minal ions, i.e., x, y or z-ion. All ions are then detected to
generate a MS/MS spectrum (See Figure 1). In a mass spec-
trum, the intensity of a peak is generally proportional to
the frequency of ions with the corresponding m/z-value
[3].

A number of factors complicate the interpretation of MS/
MS data. Neither the peaks corresponding to the a/b/c ver-
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sus the x/y/z ions, nor the charge states of the ions are
known. Some product fragments may be absent because
either the fragments are in a neutral state or the precurso-
rion hardly breaks down into these products; and unex-
plainable peaks may appear as the result of
contamination or rare fragmentation styles. In addition,
some peaks deviate from their expected positions because
the corresponding ions contain isotopic atoms or have
lost a chemical group. Consequently, effective identifica-
tion of proteins remains a challenge [4].

Existing methods for interpreting mass spectrum data can
becategorized into two types: database searching methods
and 'de novo' approaches independent of databases. Most
database searching methods start with construction of a
hypothetic spectrum for each peptide derived from a pro-
tein database, followed by comparing hypothetic and
experimental spectra. The peptides with the highest score
are reported as potential solutions. Employing this strat-
egy, many systems have proven fairly successful [3,5,6].

An effective scoring function for evaluating matches
between experimental spectrum and candidate peptide is
a key issue in the interpretation of a mass spectrum. Most
scoring functions, such as SEQUEST [5] and Sonar http://
65.219.84.5/ProteinId.html are based on shared peaks. p-
value is an alternative way to evaluate the probability of
recognizing a set of fragments in a protein database, as
implemented in MOWSE http://www.hgmp.mrc.ac.uk/
Bioinformatics/Webapp/mowse/, Mascot [7] and ProbID
[8]. Characterizing ion types and their probabilities, Dan-
cik et al [9] proposed a likelihood-based approach, which
was generalized in SCOPE [10] to involve more prior
knowledge. An extension of Dancik's scoring approach
into an intensity-based statistical scorer incorporated a
variety of experimental observations and prior knowledge

on peptide fragmentation [11]. ProbID [8], a method
based on a probabilistic model, adopted a Bayesian
approach to interpret mass spectra data.

Random matching between experimental and theoretical
masses may bring aboutfalse-positive results, giving rise to
another key problem of peptide identification---the crite-
ria for evaluation of the reliability of the matching. The
difference between the highest and second highest scores
[5] and p-value [7] estimate are used to filter false posi-
tives. Jan Eriksson [12] and Keller [13] built a model to
work out the distribution ofscores from random matches,
which allowed significance testing undergeneral database
searching constraints. Therefore, filtering criteria to distin-
guish a valid match from all matches should be developed
towards being dependent on quantitative estimates rather
than on experience.

The present paper aims to tackle the two problems men-
tioned above.

1. We introduce a new, effective probabilistic scoring
function. Adopting astatistical model similar to Dancik et
al [8], we have employedrelative entropy (i.e., K-L dis-
tance) to measure the similarity between hypothetic and
experimentally observed spectra. We present a brief proof
toshow that relative entropy is indeed the simplified form
of the conditionalprobability that the spectrum is gener-
ated from the peptide.

2. We present an EVD-based criterion to distinguish valid
matches from random ones. Each spectrum will acquire
the best score from correlation with all candidate pep-
tides. Such best scores conform to the extreme value dis-
tribution, which underlies the quantitative threshold of
the significance test.

A system written in C, the Protein Identifier (PI), was
implemented adopting the relative entropy scoring func-
tion and tested on real data. Tests showed that it per-
formed better than a widely used cross-correlation scoring
approach [5]. For the sake of convenience, we have made
the program available on our website PI http://www.bio
info.org.cn/MSMS/papers/supp1/.

Methods
Data set
A publicly available spectrum set from Keller et al [14] was
used to test our algorithm. It contains spectra generated by
digesting two 18-proteins mixtures with trypsin. To assign
a candidate peptide to each spectrum, Keller et al [14] ran
SEQUEST against a human peptide database, obtaining
37,044 pairs of peptide and spectrum [14]. Among these
assignments, 125 assignments of peptides with a single
charge, 1,656 with double charges and 984 with triple

Schematic figure of peptide fragmentationFigure 1
Schematic figure of peptide fragmentation. A peptide 
breaks into two parts, induced by the collisional gas. Break-
age favors the peptide backbone, resulting in N-terminal a/b/
c ions and C-terminal x/y/z/ions; small chemical groups such 
as water and amino molecules often dissociate from specific 
residues.
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charges were confirmed manually. For thefollowing two
reasons, the original dataset above was subjected to a fil-
tering procedure for refinement. First, because the enzyme
had been slightly contaminated (private communication
with A. Keller who published the data), peptides with
abnormal termini were screened out. Second, the spectra
from triply charged ions were filtered out because their
fragmentation pattern is not yet fully understood. As for
partial proteolysis, peptides with up to 5 trypsin cleavage
sites were kept for database searching. The filtering proce-
dure produced a refined query set containing 19,000 spec-
tra, and 1,247 correct peptide assignments. Thereafter the
1,247 correct assignments was divided into a training set
derived from 2 proteins and a test set derived from the
other proteins for cross validation. The training set was
used to study the characteristics of the mass spectrometry
while the testing set was to test the performance of our
algorithm. (Available at the website PI http://www.bio
info.org.cn/MSMS/papers/supp1/).

Description of algorithm
In order to describe our statistical model, a set of terms
similar to Dancik et al [9] and Vineet Bafna et al [10] were
defined as follows:

Let A be the set of amino acids, each amino acid having a

molecular mass m(a), a ∈ A. A peptide is denoted as a
sequence of amino acids P = p1p2...pn with mass

, pi ∈ A. Dissociation at the i-th peptide

bond forms two partial peptides, the N-terminal peptide

Pi = p1p2...pi, i = 1,2,...,n, and the C-terminal peptide  =

pi+1...pn. Formally, ion types are represented as a set of

numbers indicating the offset of ion to peptide, δ =

{δ1,δ2...δK}, thus, the i-type ion of the partial peptide P'

has the mass m(P') + δi. For example, δ = {1, -27, -17, -16}

corresponds to the most frequent N-terminal ions, b, a, b
- H2O, b -NH3, respectively. The interval from 0 to the pre-

cursor ion mass M = m(P) is discretized into N bins,
hence, a MS/MS spectrum is represented as a vector of
intensity, i.e., S = {I1,I2,...IN}, where Ii is the intensity of

the peak with the m/z-value i*M/N.

Fragmentation in mass spectrometry is a stochastic proc-
ess governed by the collision dynamics and the physico-
chemical properties of a peptide [10]. The fragmentation
of a set of the peptide in spectrometry was modeled by a
random "ball tossing" trial, each trial tossing an N-termi-
nal ion and/or a C-terminal ion in some bins. Thus, after
a series of trials, the number of ions in a bin will be pro-
portional to the intensity of the corresponding peak. The
fragmentation of the different peptides, i.e., tossing of dif-

ferent balls, is assumed to be mutually independent. Let
random variable C be the cleavage site, and Pr(C = i,P) be
the probability of cleavage at the i-th bond of peptide P.
Let Pr(δi) be the probability that a breakage generates an
i-type ion in a trial. Since fragmentation is residue
dependent [15], we can adopt a more accurate definition,
the conditional probability Pr(δi|pj), where pj is the amino
acid adjacent to the cleavage site. As mass spectrometry
may also generate peaksdue to merely "random noise",
Pr(R) is introduced to denote the probability of such
event. For the sake of simplicity, only N-terminal ions are
studied here; the considerations would have been similar
for C-terminal ions.

Parameter learning and hypothetic spectrum generating

To estimate the above peptide and instrument specific
parameters, a learning procedure was modeled according
to the offset frequency function [9], with improvements
added to take account of intensity. For a set of experimen-
tal spectra with known peptide sequences thereof, let S =
{I1,I2,...IN} be a spectrum corresponding to the peptide P,

ε be the m/z precision level of the instrument, N(S,Pi,δj) be

the sum of the peak intensities within a distance ε from

m(Pi) - δj,i = 1,...n-1,j = 1,...|δ|, then

 is the number of trials during

which the i-th bond was dissociated. Dividing N(S,Pi) by

the total intensity, i.e., , gives an estimate

of Pr(C = i,P) over spectrum S, and N(S,Pi,δj)/N(S,Pi) is a

ditto of Pr(δj). The probability of random noise Pr(R) is

estimated as the sum of the intensities of the unexplained
peaks divided bythe number of bins N. Averaging them
over all samples will improve the estimation accuracy.

Fragmentation tends to occur more frequently in the mid-
dle than at ends of a peptide. J. Simpson [16] represented
the relationship between peak's intensity and cleavage
sites as a function of the relative position of a breakpoint,
ranging from 0 to 1, whereas David L. Tabb[17] adopted
a function based on relative mass of the partial peptide.
Here, we used Tabb's approach to work out Pr(C = i,P).

Utilizing the above probability, we produced a hypothetic
spectrum for a given peptide through simulating its disso-
ciation in thespectrometry. A set of the peptide fragments
at the i-th peptide bond with the probability Pr(C = i,P),
and generates the j-type ion with probability Pr(δj).
Hence, peaks with mass m(Pi) - δj were assigned with rela-
tive intensity Pr(C = i,P)*Pr(δj), and other peaks were
assigned with Pr(R) to simulate random noises.

m P m pi
i

( ) = ( )∑

′Pi

N S P N S Pi i j
j

, , ,( ) = ( )∑ δ

N S P Ii j
j

, /( ) ∑
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Relative entropy based scoring function
Before comparison to the hypothetic spectrum, an experi-
mental spectrum was pre-processed by dividing the inten-
sity of each peak by the total ion intensity and filling
blank bins with the value Pr(R) to simulate random noise.
Hence, both the experimental and hypothetic spectra were
transformed into distributions of ions over N bins, and
relative entropy was employed to measure the similarity
between them.

Relative entropy is a pertinent statistical tool to measure
distance between two distributions [18]. For two distribu-

tions U = <u1,u2...un>,  and V = <vi,v2...vn>,

, the relative entropy is defined as H(U,V) =

. H(U,V) is always positive, and the

more similar the two distributions, the smaller the relative
entropy.

The relative entropy measure is essentially a simplified
form of the likelihood Pr(S|P). Provided that qi is the

probability that an ion will be tossed into the i-th bin, and
Ii the number of ions tossed into this bin after

 tosses, the count vector I = <I1,I2,...IN> con-

forms to a multi-nominal distribution. Hence, Pr(S|P) can
be computed as follows:

.

For a spectrum, Ii corresponds to the observed intensity of

a peak with m/z-value i, where I is the vector form of a
spectrum. Using Stirling's Formula, we can rewrite the
above expression as follows:

Hence ln[Pr(S|P)] ≅ lnK + Itotal lnItotal - H(I,Q), where C

denotes combination and  embodies a

characteristic of the spectrum. The above formula means

that fora specific peptide, the smaller the relative entropy,
the more likely that the spectrum was generated by that
particular peptide.

Threshold settings based on extreme value distribution
A score matrix was produced after comparing a set of spec-
tra S = {S1,S2...Sm} with a set of candidate peptides C =
{C1,C2...Cn} (Table. 1).

For a specific spectrum Si, the peptide with the minimal
score was thought to be the one most likely to have gener-
ated it. The minimal score of a row, recorded in the "min"
column, conforms to the extreme value distribution
(EVD). In fact, the distribution of items in the min column
is the superposition of two EVD distributions because of
the following reason. Dividing the spectra in S into two
classes, i.e. S = D ∪ E, where D includes those that were
generated from a peptidein C, and E the rest. Thus, the
match of a spectrum with a peptide in E can occur only by
chance, and therefore results in a minimal score higher
than the matches with peptides in D. The gap between
matches of the twopeptide sets, along with the robustness
of EVD, forms a foundation to distinguish valid matches
from random ones. More important, EVD allows us to
quantitatively estimate the confidence for a given crite-
rion. It should be noted that since the score of the pep-
tides depends on the mass of the precursor ions, so does
the threshold.

Result and discussion
We performed the parameter learning, the hypothetic
spectrum generation andthe search procedure on the cho-
sen dataset as described above (See Methods section)

Parameter learning
For each round of test, the frequency of different ions were
learnt from a training assignment comprising peptides
from two to four proteins(generally less than 300 peptides
assignments), including non-peptide bond backbone
cleavage, isotope forms, and neutral loss (Figure 2). Here,
the precision of an ion-trap mass spectrometry was set to
0.5 Dalton. It could beobserved that b, a, b - H2O, b - NH3,
appear more frequently than other product ions, and iso-
tope effect was also dominant. In Figure 3, the relation-
ship between cleavage probability and relative position is
shown as a bell-like curve. A conclusion could be made
that cleavage tends to occur more frequently at middle
than in the ends. The above observation coincides with
the characteristic of fragmentation [11]. When the learn-
ing procedure was performed on different training sets, no
obvious differences were observed for the learnt parame-
ters.
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Hypothetic spectrum generation
To visualize the similarity and difference between hypo-
thetic and experimental spectra, the hypothetic spectrum
for a peptide VGDANPALQK was generated using the
learnt parameters (shown in Figure 4 along with the
experimental spectrum). As can be seen from the compar-
ison, the hypothetic spectrum matches the experimental
at important ions with respect to relative abundance,
including serial ions b, y, andtheir isotope and group-loss
forms (for the clarity of the figure, only b and y ion had
been showed).

It should be pointed out that for the positions without
hypothetic peaks, random noise learnt from training set
was assigned to it. In fact, noise was an intrinsic feature for
ion-trap mass spectrometry [19].

However, for some ions, there exists an obvious difference
in the intensities between the two spectra. The main rea-
sons for these discrepancies are the residues dependent
cleavage and the complicated mobility patterns of the pro-
ton. To improve the accuracy of the learning procedure
advanced learning techniques, such as EM methods,
should be introduced in future work.

Distribution of score and threshold setting
For each spectrum in a training set, similarity with all can-
didate peptidesare measured. The distribution of the best
similarity gives a plot conforming to the extreme value
distribution (Figure 5). For spectraderived from peptides
with no counterpart in the candidate set, the score values
are all generated by chance, and one peak with higher
score is observed in diagram (Figure 5, dash line). How-
ever, for spectra that are derived from peptides with a
counterpart in the candidate set, the likely correct matches
between spectra and candidate peptides form a peak with
lower score. Therefore, two peaks will be observed---one
corresponding to the random matches, and the other to
the likely correct matches, the latter with lower score val-
ues (Figure 5, solid curve). From Figure 5, it is clear that
there is a distinct distance between the two peaks, which
provides a basis for setting a threshold value to effectively
distinguish correct matches from random ones. In our

experiment, the threshold was set to 3.8, i.e., the location
of the cross-point of the two distributions, which mini-
mizes the sum of false-positives and false-negatives.
Therefore, if a match had a score less than 3.8, it was con-
sidered highly probable that the spectrum was produced

Breakage preference in the position along peptidesFigure 3
Breakage preference in the position along peptides. 
Breakage tends to occur at middle rather than terminal posi-
tions of the peptides. The Abscissa denotes the position of 
residues relative to the whole sequence. The relative proba-
bility is normalized to a total of 100.0.

Table 1: An example of score table. Comparison of spectrum Si 

with candidate peptide Cj produces a score in the matrix, and 
each item of the 'min' column is the minimal score of the same 
row.

C1 C2 ... Cn min

S1 2.4 3.7 8.9 2.4
S2 5.3 6.8 1.9 1.9
...
Sm 7.7 10.0 6.1 6.1

Occurrence probability of different N-terminal ionsFigure 2
Occurrence probability of different N-terminal ions. 
In general, serial ions bear a larger probability, however, their 
variants (like dehydrated form) also often appear. The m/z of 
the peptide bond is set to 0, and the relative probability is 
normalized to a total probability of 100.0 (including C-termi-
nal ions, which are not shown).
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as result of the matched peptide. Threshold for three dif-
ferent training sets were 3.81, 3.66 and 4.09, respectively,
that suggested the relative robustness of the threshold set-
ting.

Performance of the score function
Searching the query spectra against the same human pep-
tide database as Keller et al [14] had been performed three
times by selecting different proteins as testing sets. Take
the first round as an example (Thefirst two proteins in the
mixture were composed of the training set and therest test
set). Our program PI reported 1,053 potential assign-
ments, having 801 assignments overlap with the test set.
For the 252 assignments inconsistent with the test set,
manual inspection showed that 171 of them were correct.
The difference in performance arose from SEQUEST
neglecting some correct assignment, as reported by
Andrew. Finally, PI achieved an average sensitivity of 0.87
and an average error rate of 0.07. Table 2 shows the com-
parison between the performances of SEQUEST and PI. As
for the stability of our program, when PI was tested on a
different dataset from OPD [20] it still displayed a sound
performance (sensitivity 0.89 and error rate 0.06). It is
interesting that performance of PI on OPD dataset was
better than that on Keller's mixture dataset although the
parameter training was done on the latter. This may be
attributed to the different quality of these datasets. All the
assignments are presented on our website at PI http://
www.bioinfo.org.cn/MSMS/papers/supp1/.

Comparison of score functions
Roughly speaking, factors influencing the dissociation of
peptides come in two categories. One is the chemical
property of a peptide, and the other isthe collision energy.
In recent years, much effort has been made to unravelthe
fragmenting mechanism [15,21-26]. Based on of theoret-
ical computation, experimental studies, and statistical
analyses, models for prediction of product ions have
become increasingly sophisticated and accurate, taking
into consideration the chemistry of the ion rearrange-
ments, gas-phase basicity of the individual residues, and
the location effect. However, there is apparently still a way
to go before the fragmentation mechanism is completely
understood. Therefore, due to the incomplete under-
standingof the fragmentation chemistry, analyzers still
have to rely on statisticalapproaches. A probabilistic for-
mulation was originally brought forth by Dancik [9] and
provoked several subsequent studies [10,27]. However,
the principle of "a premium for present ions" and "a pen-
alty for non-presentions" [9] aims only at the hypothetic
but not at the experimentalspectrum. In other words, that
formulation concentrates on what should appear in a
hypothetic spectrum and neglects what emerges in the
observed spectrum. Hence the formulation has the sub-
stantial defect that there is no penalty for emergence of
unexplainable ions in an experimental spectrum. Our sys-

Distribution of minimal score values of MS/MS spectraFigure 5
Distribution of minimal score values of MS/MS spec-
tra. The score of a spectrum is the best match to the pep-
tide library. The solidcurve results from correlating a set of 
MS/MS spectra with a peptide library containing the query 
peptide, while the dashed curve results from matcheswith a 
library not containing the query at all (i.e. all matches are ran-
dom). Threshold is set to be the location of the cross-point 
of the two distributions, which minimizes the sum of false-
positives and false-negatives. Therefore, if a match had a 
score less than 3.8, it was considered highly probable that the 
spectrum was produced as result of the matched peptide.

The hypothetic and experimental spectra of the sequence VGDANPALQKFigure 4
The hypothetic and experimental spectra of the 
sequence VGDANPALQK. The serial ions are marked with 
the observed intensity.
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tem describes the correlation between theoretical and
experimental spectra in a bi-directional manner, taking
account of non-coherence in a homogeneous way.

Conclusion
In this paper we present a novel method for correlating
peptides with tandem mass spectra. The collision-induced
dissociation is analyzed as a random event and occurrence
probabilities for characteristic ions are calculated. By
using these parameters, a statistic model to predict the
theoretical spectra for peptides is built. Based on the
hypothetical spectra, the relative entropy is presented to
correlate the experimental spectra with the hypothetical
ones. Then it is pointed out that the score of spectra obey-
sthe superposition of two extreme value distributions,
which allows the quantitative estimate for the confidence
of peptide assignments. Computational experiment was
done on two public databases and it showed that the per-
formance of the present method was is superior in com-
parison with SEQUEST.
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