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Abstract
Background: Prostate cancer is one of the leading causes of cancer illness and death among men
in the United States and world wide. There is an urgent need to discover good biomarkers for early
clinical diagnosis and treatment. Previously, we developed an exon-junction microarray-based assay
and profiled 1532 mRNA splice isoforms from 364 potential prostate cancer related genes in 38
prostate tissues. Here, we investigate the advantage of using splice isoforms, which couple
transcriptional and splicing regulation, for cancer classification.

Results: As many as 464 splice isoforms from more than 200 genes are differentially regulated in
tumors at a false discovery rate (FDR) of 0.05. Remarkably, about 30% of genes have isoforms that
are called significant but do not exhibit differential expression at the overall mRNA level. A support
vector machine (SVM) classifier trained on 128 signature isoforms can correctly predict 92% of the
cases, which outperforms the classifier using overall mRNA abundance by about 5%. It is also
observed that the classification performance can be improved using multivariate variable selection
methods, which take correlation among variables into account.

Conclusion: These results demonstrate that profiling of splice isoforms is able to provide unique
and important information which cannot be detected by conventional microarrays.

Background
Prostate cancer is the second leading cause of cancer ill-
ness and death among men in the United States and the
third most common cancer world wide [1,2]. According to
recent estimates, it accounts for 33% percent of new can-
cer incidences and six percent of cancer deaths in men

world wide [2,3]. In 2002, the number of new incidences
and deaths in the United States was approximately
189,000 and 30,200, respectively [2]. The difficulty lies, at
least partly, in the heterogeneous nature of the disease.
Tumor growth is initially dependent on androgen levels,
which stimulate cell proliferation and inhibit apoptosis
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via the androgen receptor (AR) pathway. The prostate-spe-
cific antigen (PSA) level has been a standard screening for
early diagnosis; androgen ablation is a prevalent therapy
to repress the development of androgen-dependent
tumors. However, in many cases, this therapy eventually
fails and patients die of the recurrent androgen independ-
ent prostate cancer (AIPC), a lethal form that progresses
and metastasizes (see reviews in refs [4,5]). Multiple path-
ways permit cancer cells to escape or bypass the control of
the normal AR activation to up-regulate target genes
abnormally [6]. Although it has been reported that a
number of genes are related to these pathways as well as
other aspects of prostate cancer, there is still an urgent
need for good biomarkers for early clinical diagnosis and
treatment.

Microarray technologies developed in the last decade per-
mit monitoring of mRNA abundance levels of tens of
thousands of genes in parallel. The accuracy improvement
and cost reduction have made them a routine approach in
looking for genes that are differentially expressed between
normal and tumor samples or between different tumor
types/stages [7-14]. In a recent study, Segal et al. summa-
rized ~2000 array experiments and derived a panoramic
view of activated/deactivated gene expression modules for
various types of tumors [15].

Microarrays have also been employed in prostate cancer
studies. Using cDNA arrays, Dhanasekaran et al. measured
gene expression in 50 normal and neoplastic prostate
specimens, as well as three prostate-cancer cell lines, and
identified gene signatures characterizing androgen-
dependent and AIPC samples [16]. Nelson et al. [17] and
DePrimo et al. [18] studied gene expression in the andro-
gen treated LNCaP cell line, which was known to be
highly androgen responsive. Lapointe et al. profiled 62
primary tumors and 41 normal specimens; three sub-
classes of tumors representing different tumor stages and
risks of recurrence were obtained along with characteristic
expression signatures [19]. These studies demonstrated
the potential of using microarray analyses in characteriz-
ing prostate cancer at the gene expression level.

While transcriptional regulation plays important roles
within a cell, post-transcriptional regulation, such as alter-
native splicing, dramatically increases the diversity of the
proteome. Alternative splicing also plays a critical role in
gene expression regulation and human diseases [20,21]. It
has been reported that about 15% of point mutations that
cause human genetic diseases can alter splicing patterns
[22]. In particular, splicing aberrations have been charac-
terized in a number of genes and tumor types (see review
by Brinkman [23]).

In a previous work, we developed a microarray-based
assay called RASL™ (RNA-mediated Annealing, Selection,
and Ligation), which can systematically monitor the
abundances of unique splicing events [24]. A modified
version of the assay, the DASL® (cDNA-mediated Anneal-
ing, Selection, extension and Ligation) assay, offers addi-
tional robustness for analyzing highly degraded mRNAs,
as well as an additional flexibility in probe design [25,26].
Different from other exon-junction arrays [27,28], the
DASL assay achieves high specificity and sensitivity due to
the fact that both hybridization and ligation of a pair of
oligos complementary to the 5' splice site of the upstream
exon and the 3' splice site of the downstream exon are
required (see ref [25] for details). In our recent study, this
technology was applied to profile the abundances of
~1500 unique splice isoforms in prostate cancer cell lines,
tumor specimens and normal control samples [29]. This
previous study led to two implications: (1) the splicing
patterns were altered in a number of genes in response to
androgen treatment in the LNCaP cell line; (2) a number
of splice isoforms were differentially expressed in tumor
samples. They prioritized a list of prostate cancer marker
candidates for further investigations. In this study, we
extend our previous work and perform a comprehensive
analysis of using alternatively spliced isoforms to classify
prostate cancer samples. Compared with our previous
work, the focus of this study is to quantitatively compare
isoform profiling and overall mRNA profiling for cancer
classification, which has not been systematically investi-
gated before. To be more specific, the contribution of this
study lies in four key aspects: (1) Isoform-sensitive micro-
arrays studies have been assumed to be able to provide
more information for cancer classification than conven-
tional microarray studies because isoform abundances
couple both transcriptional regulation and splicing regu-
lation. However, it has remained unclear how much
unique information could be provided by isoform profil-
ing. In this paper, this assumption is examined qualita-
tively for the first time through differential expression
analysis. Further examinations for several genes are also
described. (2) As in a number of other microarray studies
(e.g. [16,19]), hierarchical clustering has been used to seg-
regate similar tissues. This approach was not able to
obtain an unbiased estimation of the predictive power for
new unknown samples. To assess the predictive power of
isoform profiling and that of overall mRNA profiling, a
support vector machine with recursive feature elimination
(SVM-RFE) was employed to build prediction models and
the prediction accuracies were compared. (3) Building a
prediction model with a minimal subset of variables is
one of the critical tasks in cancer classification. We com-
pared two different variable selection methods for sample
classification and examined whether the robustness of
prediction can be improved by taking the correlation
among isoforms into account during variable selection.
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(4) In our previous study, two smaller datasets generated
in different batches were analyzed separately. The two lists
of candidate markers selected from the two datasets had a
relatively small overlap. To achieve more robust results,
all analyses in this study were based on the larger com-
bined dataset after careful normalizations.

Results
In our previous work [29], the two datasets of prostate
tumors and normal samples were analyzed separately by
hierarchical clustering because they were generated in two
different batches and there were significant heterogenei-
ties between them (data not shown). In both datasets,
splice isoforms could be used to separate tumor samples
and normal samples. However, the sample size in each
dataset was limited and the overlap between the two lists
of differentially expressed isoforms selected from the two
datasets was relatively small. In this paper, the two data-

sets were combined after careful normalizations to
achieve more robust results and statistical power (see
Methods). The combined datasets included 22 cases of
prostate tumors and 16 matched normal samples.

Splice isoforms reveal distinct signatures of prostate 
cancer
We first examined whether the global distinction between
tumors and normal samples still exists in the combined
dataset by unsupervised methods. As expected, tumors
can be readily separated from normal samples by average-
linkage hierarchical clustering (Figure 1A and 1B, cluster
C1 and C2) [30,31]. Compared with cluster C2, the
majority of tissues in cluster C1 are normal prostate and
stroma, with the average tumor percentage being 8.2% (p
< 0.0001), and stromal percentage being 63.4% (p <
0.0001). Of the three tumors segregated with normal sam-
ples in cluster C1, two have low tumor content. Addi-
tional analysis reveals that C2 cases in general have a
significantly higher percentage of more advanced stages
(Stage 3 or above) and more patients die of prostate can-
cer compared to C1 cases. Specifically, 100% of the cases
in C1 were from patients with organ confined tumors
(stage T2), whereas 50% of the cases in C2 were from
metastasized patients (stage T3 tumors, p < 0.001). At the
time of analysis, none of the C1 patients died of prostate
cancer while14% of the C2 patients died of prostate can-
cer. Interestingly, the cluster C2 enriched by tumors was
further segregated into two sub-clusters, reflecting differ-
ent percentage in tumor and stromal content (Mean
tumor content in sub-cluster C2.1 = 47.9% v.s. C2.2 =
64.5%, p = 0.1; Mean stromal content in C2.1 = 35.8% v.s.
C2.2 = 20.5, p = 0.04).

Singular value decomposition (SVD) was used to identify
an orthogonal low dimensional space which preserves the
maximal variation of the original high dimensional space.
The first two principal components capture 17% and 9%
of the total variation, respectively (Figure 1F). Remarka-
bly, the first principal component alone shows a strong
separation of tumor and normal samples. The clusters and
sub-clusters derived from hierarchical clustering are also
reflected in the 3D space spanned by the first three princi-
pal components (Figure 1G), which confirms the results
of clustering.

Further examination of the gene clustering results shows
distinct molecular signatures of different tissue clusters,
including both well known marker genes and less studied
marker candidates (Figure 1C, D and 1E). Figure 1C
shows isoforms up-regulated in cluster tumor sub-cluster
C2.2, including isoforms from genes RPS2, XBP1, U1AF1
and ATP5A1, all of which were known to be up-regulated
in tumors. Figure 1D shows isoforms down-regulated in
normal tissues and up-regulated in tumor tissues, includ-

Prostate tumor and normal samples can be separated into distinct groupsFigure 1
Prostate tumor and normal samples can be sepa-
rated into distinct groups. (A) A thumbnail overview of 
the result of the two-way average-linkage hierarchical clus-
tering of 38 arrays (columns) and 1532 isoforms (rows), as 
described in ref [30]. (B) Zoom-in view of the array cluster-
ing dendrogram. The two array clusters, C1 and C2, are 
enriched by normal samples and tumor samples, respectively. 
Cluster C2 is formed by two sub-clusters, reflecting differ-
ences in tumor percentage and stroma. (C-E) Isoform signa-
tures up- or down-regulated in different array clusters. (F 
and G) The result of SVD. (F) The percentage of variation 
(y-axis) captured by each principal component (x-axis). (G) 
The low dimensional projection of arrays in the 3D space 
spanned by the first three principal components. SVD identi-
fied the same hierarchical structure as revealed by hierarchi-
cal clustering.
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ing isoforms from genes U2AF2, CLN3 and HPN. Figure
1E shows isoforms with high expression levels in normal
tissues and down-regulated in tumor tissues, especially in
sub-cluster C2.2. Several genes in this cluster are known to
be involved in the TGF-beta signaling pathway, such as
TGFB2, LTBP4 and TGFBR3.

Differentially expressed splice isoforms
A two sided t-test was used to identify genes with statisti-
cally significant changes in expression between tumors
and normal samples. A false discovery rate (FDR) or q-
value was calculated as described previously [32], to cor-
rect for multiple testing. As a result, 464 isoforms (30%)
representing 222 genes (61%) are reported as being signif-
icant (q-value < 0.05) [see Additional file 1]. The high pro-
portion of differentially expressed isoforms reflects the
fact that the genes profiled are potentially related to pros-
tate cancer according to existing evidence. Top isoforms
among them include AMACR-2094, FGFR2-0101, FGFR2-
0097, FGFR2-0098, CLU-0192, PGR-1162, etc.

Profiling of splice isoforms provides additional information 
to overall mRNA abundances
In theory, profiling individual splice isoforms can provide
more information than profiling overall mRNA levels as
in conventional microarrays. This is because isoform pro-
filing detects the combinatorial effects of both transcrip-
tional regulation and splicing regulation. Consider the
simplest case of a gene with two alternatively spliced iso-
forms. If one isoform is up-regulated in tumors whereas
the other is down-regulated, the overall mRNA abundance
may not change. On the contrary, if the overall mRNA
level is differentially expressed, there is at least one iso-
form exhibiting differential expression. However, how
much additional information can be obtained for cancer
classification by isoform profiling has not been systemat-
ically evaluated. To address this question, we compared
individual isoforms and overall mRNAs for differential
expression.

Due to the costs and array capacity, the original array
design did not include probes targeting common regions
of all isoforms. Therefore, the overall mRNA expression
level can not be obtained directly. However, since the
probed exon junctions target unique major isoforms and
hybridization efficiencies of different probes are compara-
ble [25], we reason that the overall expression level can be
estimated by summing up the abundances of individual
isoforms. To examine the validity of this idea, two well-
known prostate cancer cell lines LnCaP and PC-3 were
profiled using the same DASL assay (splicing array). For
comparison, 107 genes were arbitrarily selected for gene
expression profiling in the same cell lines (expression
array). An independent oligo pool targeting common
regions of all isoforms in each of the 107 genes were used

in the expression array. Therefore, the log expression ratio
of each gene in the two cell lines can be obtained from the
estimation based on the splicing array and from the direct
measurement in the expression array independently. To
our satisfaction, the two quantities are highly correlated
(R2 = 0.80, , p = 2.2e-16), suggesting a reasonable accuracy
of the estimation (Figure 2A).

Having validated the approach, the overall mRNA abun-
dances of each gene in prostate tissues were estimated. A
t-test was similarly applied to identify genes with signifi-
cant differential expression in tumors at the overall mRNA
level. In total, 159 genes (43.6%) are reported as being
significant (q-value < 0.05). Again, the high proportion of
significant genes reflects the fact that they are potentially
relevant to prostate cancer according to previous studies.
Strikingly, more genes are called significant by examining
individual isoforms than by examining overall mRNAs
(222 vs 159, p = 0.001, chi-square test). Among the 159
genes that are called significant, 150 genes (94%) have at
least one isoform that is reported as significant (Figure
2B). In contrast, only 68% of genes with significant iso-
forms can be detected at the overall mRNA level. The
remaining 32% of the genes have significant isoforms but
do not exhibit significant differential expression at the
overall mRNA level. It is important to note that these
genes represent the unique information that is provided
by splice isoform sensitive microarrays and cannot be
obtained from conventional microarrays.

From the perspective of isoforms, 78% of significant iso-
forms are from those genes that are also called significant
whereas 22% of significant isoforms are from those genes
that do not show overall mRNA differential expression
(Figure 2D) [see Additional file 2 and 3]. Multiple testing
has been appropriately accounted for, so the additional
significant calls using splice isoforms are not due to the
different stringencies of thresholds, but reflect additional
information provided by including splicing regulation.

For many genes, only one isoform is specifically altered in
tumors. In these cases, the addition of other isoforms to
the total mRNA level simply introduces random noise.
Notably, there are 14 genes with one isoform being up-
regulated in tumors and another isoform being down-reg-
ulated. Among them, 3 genes are not significant at the
overall mRNA level: CD44 (CD44-1404 vs CD44-1570),
ITGB1 (ITGB1-0032 vs ITGB1-0033) and MAPT (MAPT-
1060 vs MAPT-1061). CD44 is a multifunctional receptor
involved in cell-cell interactions and cell trafficking.
Deregulated expression of a number of variants is corre-
lated with tumor metastasis (reviewed by [23]). ITGB1 is
a protein involved in extra-cellular matrix interactions
and is also related to many tumor types, including pros-
tate cancer [22].
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There are relatively fewer studies discussing the role of
MAPT in cancer. MAPT encodes the microtubule-associ-
ated protein tau mainly expressed in the central nervous
system. Mutations in the MAPT gene disrupt the normal
binding of tau to tubulin. This in turn results in patholog-
ical deposits of hyperphosphorylated tau in the brain,
which is a pathological hallmark of several neurodegener-
ative disorders (see review by Rademakers et al. [33]). Pre-

viously, Sangrajrang et al. found that MAPT was also
expressed in the DU145 cell line using RT-PCR and the
expression at the protein level was validated by Western
blotting [34]. The expression was elevated after estramus-
tine treatment and the authors suggested that the protein
may be positively related to drug resistance. This was con-
sistent with a recent report demonstrating that the up-reg-
ulation of the protein tau was correlated to the decrease of
paclitaxel sensitivity in breast cancer [35]. In our data,
MAPT-1060 (representing the skipping of exon 4A, num-
bered according to ref [33]) has a two fold increase in
tumors relative to normal tissues(q-value = 0.86%),
whereas MAPT-1061 (representing the inclusion of exon
4A) has a two fold decrease in tumors relative to normal
tissues (q-value = 0.16%). It is likely that exon 4A is
uniquely skipped in prostate cancer cells. This hypothesis
is further supported by the following evidence. Exon 4A
harbors a C/T single nucleotide polymorphism (SNP)
near the 5' splice site (Entrez SNP: rs17651549, contig
position: 2715394). This SNP was assayed from 71 indi-
viduals and the C/T ratio is 0.886/0.114. In the major C
allele, a putative exonic splicing enhancer (ESE) cagccgg
encompassing the SNP is predicted by ESEfinder and
resembles the specific RNA binding site of SF2/ASF, a crit-
ical serine rich (SR) protein that helps to recruit the splic-
ing apparatus (score: 4.6, threshold: 1.956) [36]. This
putative ESE is disrupted in the minor T allele for all four
SR proteins in ESEfinder including SF2/ASF, SC35, SRp40
and SRp55. However, further experimental studies and
confirmation of the splicing alteration may be required to
validate this hypothesis.

Profiling of splice isoforms improves predictive power
A robust prediction model to classify unknown samples is
essential for early cancer detection and diagnosis. Having
demonstrated that a large fraction of genes show differen-
tial expression at the splice isoform level but not at the
overall mRNA level, a key question is how much addi-
tional predictive power can be achieved by isoform profil-
ing. Another related problem is to select minimal subsets
of variables with the best performance. Like many other
types of tumors, a single molecular marker is usually not
robust enough for prostate cancer detection, as is the case
for the widely used PSA level for early stage screening. At
the other extreme, including all variables from a genome-
wide profiling is not justifiable either, due to the noise
introduced by a huge number of uninformative variables
and the difficulty in the interpretation of the resulting
model.

A support vector machine (SVM) was used here to build
the classifier because of its excellent performance in many
previous studies with small sample sizes [37]. An recursive
feature elimination (RFE) algorithm was integrated as
described previously with minor adaptations [38].

Profiling splice isoforms provides additional useful informa-tion for prostate cancer classificationFigure 2
Profiling splice isoforms provides additional useful 
information for prostate cancer classification. (A) The 
validity of estimating the overall mRNA abundance level from 
the isoform abundance level. The overall mRNA level was 
estimated by summing up the abundances of individual iso-
forms for each gene. The estimated mRNA abundances of 
107 genes were compared with direct measurements by an 
independent expression microarray design (described in 
main text). Plotted are the scatter-plot of log expression 
ratios of these genes in two prostate cancer cell lines, 
LNCaP and PC-3. These two approaches show good agree-
ment (R2 = 0.80, p = 2.2e-16). (B) 159 genes out of 364 pro-
filed genes in the DASL assay exhibit differential expression 
between tumors and normal samples at the overall mRNA 
level (q-value = 0.05). Most of them (92%) have isoforms 
with significant differential expression. (C and D) 464 iso-
forms from 222 genes are reported as being differentially 
expressed between tumors and normal tissues (q-value = 
0.05), which may be prostate cancer marker candidates. 32% 
of these genes (corresponding to 22% significant isoforms) 
do not show differential expression at the overall mRNA 
level, therefore can not be detected by conventional micro-
arrays.
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Leave-one-out cross validation (LOOCV) with external
variable selection was used to give an unbiased evaluation
of the prediction accuracy (see Methods for details). SVM-
classifiers were built using the individual splice isoforms
and estimated overall mRNA abundances. The results of
LOOCV are shown in Figure 3A. For the classifiers using
isoform abundances, the best performance, 35 correct pre-
dictions out of 38 samples (92%), is achieved when 128
isoforms are included for classification. For the classifiers
using overall mRNA abundances, the best performance
(87% correct predictions) is achieved when 32 genes are
used. The additional information provided by splicing
regulation gives rise to an improvement of about 5% in
predictive power. Importantly, the difference persists in
the whole range of different sizes of selected variable sub-
sets, which is unlikely by random chance. With an inde-
pendent method, this demonstrates that isoform profiling
can provide valuable information for cancer classification.
Also, the classification performance deteriorates when the
subset of selected variables is too small in size (e.g., 4 var-
iables). This is consistent with the previous observation
that a robust cancer prediction model should use a rea-
sonable number of molecular signatures [39].

Comparison of different variable selection methods
Both t-tests and SVM-RFE can generate lists of candidate
markers. These two approaches represent univariate varia-
ble selection and multivariate variable selection, respec-
tively. They have different assumptions and may
characterize different yet overlapping perspectives of the
molecular mechanisms underlying the data. For example,
variables are assumed to be independent in a t-test but
there is no assumption of independence in SVM-RFE.
Comparing the multiple outputs of selected signatures by
different methods may shed further insights into the data
and the methods. Therefore, the two different variable
selection approaches, t-test and SVM-RFE, were applied to
select marker candidates and their performances in build-
ing linear SVM models were compared. The results of
LOOCV are shown in Figure 3B. The best performance of
t-test selection is achieved with a similar number of varia-
bles as SVM-RFE. Both methods result in an accuracy of
92%. The similar best performance by t-test and SVM-RFE
is likely due to the distinct features of tumors and normal
tissues. The information to classify the two groups is
largely redundant. However, the curve of prediction accu-
racy by the SVM-RFE selection is smoother than that by
the t-test selection as the size of selected variable subset
decreases. This smaller variation suggests that SVM-RFE is
more robust than t-test in variable selection for cancer
classification.

The 128 isoforms selected by t-test (t-test128 list) and the
128 isoforms selected by SVM-RFE (svm128 list) share 42
isoforms (Table 2). The common list includes AMACR-

2094, AMACR-2097, AMACR-2098, FGFR2-0099, FGFR2-
0094, PGR-1166 and PGR-1555 among others. They may
represent robust marker candidates. Significant isoforms
in each list were further divided into two groups according
to whether the corresponding genes also exhibit signifi-
cant differential expression at the overall mRNA level.
Interestingly, among those 86 isoforms included only in
the svm128 list, 13 of the isoforms are in the category that
the corresponding genes do not show significant differen-
tial expression at the overall mRNA level. In contrast,
among the 86 isoforms included only in the t-test128 list,
only 4 isoforms lie in this category. Therefore, SVM-RFE
captures more information uniquely provided by consid-
ering splicing regulation (p = 0.03, chi-square test). This
demonstrates the advantage of a variable selection
method taking the correlation between variables into
account.

Discussion
The diagnosis and treatment of prostate cancer are fields
with long histories. Various efforts have led to the progres-
sive understanding of the disease. However, the present
criteria of diagnosis and prognosis, as well as the
approaches of treatment and surgery, are not sufficiently
reliable. Previous gene expression profiling studies on
prostate tumors and normal tissues demonstrated the fea-
sibility in characterizing the molecular alterations at the
overall mRNA transcript level. However, these transcrip-
tome analyses were based on the old central dogma of
"one gene, one mRNA", which may underestimate the
complexity of tumorigenesis [23].

Previously, we carried out a study of prostate cancer by
exon-junction microarray-based assay and demonstrated
the power of this integrated technology in detecting both
transcriptional and splicing regulation [25,29]. In this
paper, we present systematic analyses with the focus on
using splice isoform profiling for prostate cancer classifi-
cation. Isoform-sensitive microarrays have been used in
several recent studies [24,25,27,29,40-44] (also see review
by Lee and Roy [45]). These studies demonstrated that iso-
form-sensitive microarray is a reliable, high throughput
approach to detecting splicing alterations in various tis-
sues and conditions. Although more and more data are
expected to be generated in the near future, the dataset
used in this study is the only dataset currently available
which screened a relatively large sample of cancer and
normal tissues. As far as we know, this is the first system-
atic comparison of isoform-sensitive microarrays and con-
ventional microarrays for cancer classification.

Previous studies have used a "splice index", which is the
fraction of each isoform, to remove the effect of transcrip-
tional regulation [40,41]. This is not desired for cancer
classification because as much information as possible
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should be incorporated. Therefore the abundance of each
isoform, which couples both transcriptional regulation
and splicing regulation, was used for classification. The
performance was compared with that of using overall
mRNA abundances. One has to note a caveat of the cur-
rent DASL assay: it does not include probes complemen-
tary to the common regions of all mRNA transcripts for
each gene due to the current limit in array capacity. There-
fore, the overall mRNA level was estimated indirectly by
summing up all the isoforms targeted. The estimation is
not ideal due to the fact that not all isoforms were
included in the array and the probes target splicing events
that are not mutually exclusive in several cases. However,
the estimation is reasonably good and highly correlated
with the direct measurement by an expression array. Vari-
ous other methods were tried to estimate the overall
mRNA abundances, but the method used here is the most
accurate and simplest.

Among the ~1500 isoforms from putative prostate cancer-
related genes, a large fraction of them exhibit differential
expression in cancer cells. Tumors and normal tissues can
be readily separated by both unsupervised and supervised
methods. By comparing individual isoforms and overall
mRNAs for differential expression, we arrived at the con-
clusion that an isoform-sensitive microarray, which
detects coupled transcription and splicing regulation, can

provide about 30% more information than conventional
microarrays. This value may still be underestimated due to
the following reasons. The current DASL assay included
only 364 genes potentially relevant with prostate cancer
derived from previous studies. Till now, a large body of lit-
erature, especially those in the genomic scale, focused
more on transcriptional regulation. Therefore, the selec-
tion of genes may be biased to those exhibiting aberrant
transcriptional regulation.

The optimal prediction model was built by SVM with var-
iable selection integrated, a powerful machine learning
approach. With around 100 isoforms, the best classifica-
tion performance can be achieved at a correct prediction
rate of 92%. Compared with the optimal SVM classifier
built with overall mRNA abundances, this represents an
improvement of five percent. Therefore, both differential
expression analysis and classification analysis quantita-
tively demonstrated the advantage of isoform-sensitive
microarrays.

We also compared the effect of different variable selection
approaches on classification performance. By taking the
correlation between isoforms into account, isoforms
selected by SVM-RFE are more robust for classification
than isoforms selected by a t-test. Although univariate
two-sample comparisons such as t-test are widely used to

Prediction models built with linear SVMFigure 3
The performance is measured by leave-one-out cross validation. To get unbiased result, the variable selection and training are 
done in training arrays, which is completely independent with the testing array. (A) The comparison in classification perform-
ance of SVM-RFE selected variables using individual isoforms and the overall mRNAs. (B) The comparison in classification per-
formance of variable subsets selected by SVM-RFE and t-test, using individual isoforms.
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identify differentially expressed genes, the assumption of
independence between genes or isoforms is not biologi-
cally justifiable. In cancer signal transduction pathways, a
group of genes in the same pathway are interacting with
each other; cross-talks often exist between pathways as
well (C Jiang, personal communication). Variables are
more convoluted in the DASL data due to the coupling of
transcription and splicing. The multi-loci nature of the
disease also makes it difficult to use a single or few molec-
ular markers to build a sufficiently robust prediction
model.

This study identified a number of known prostate cancer
markers as well as less studied marker candidates, which
span a wide spectrum of biological functional roles. Some
are related to signal transduction (SIM2 and CDC42BPA),

as well as extracellular matrix and cytoskeleton (CD44,
MAPT and ILK). Others appear to be involved in epider-
mal differentiation and proliferation (KRT15, IGF1, PGR
and HPN), cell growth and development (FGFR2), apop-
tosis (DBCCR1 and CLU), lipid metabolism (AMACR),
etc. Very significantly, multiple isoforms from AMACR, a
key player in catalyzing the isomerization of alpha-
methyl-branched fatty acid and a recently reported good
prostate cancer marker, show the strongest signal in our
data [46]. Several genes encoding splicing factors, such as
U2AF1, U2AF2 and DHX34, also show significant differ-
ential expression. This is consistent with our observation
that a large fraction of splicing factors are deregulated in
tumors (C. Zhang et al, unpublished data).

Table 1: Pathological information of tumor and normal prostate samples

ID Age Risk group % tumor BPH Atrophy Stroma Inflam PSA Gleason Stage

T5 67 low 50 0 0 20 0 8.48 5 + 4 = 9 T3bN1Mx
T21 74 Low 60 10 10 20 0 6.7 4+4 = 8 T2bNxMx
N22 74 Low 0 10 40 50 0 6.7 T2bNxMx
N30 55 Int 0 10 30 68 0 11.68 T2bN1Mx
N44 61 low 0 10 2 88 0 5.46 T2cNxMx
N46 74 High 0 45 20 35 0 8.06 T2aNxMx
N56 67 High 0 5 0 94 0 5.7 T2aN0Mx
T72 68 Int 70 0 0 30 0 8.27 4+3 = 7 T3bN1Mx
N77 66 Int 0 0 10 89 1 3.15 T2cNxMx
T78 66 Int 35 5 5 55 0 3.15 3+4 = 7 T2cNxMx
T84 60 high 70 5 0 25 0 9.99 4+5 = 9 T3bN0Mx
N85 66 Int 0 30 0 70 0 4.37 T3bN0Mx
T86 66 Int 90 5 0 5 0 4.37 4+4 = 8 T3bN0Mx
T87 61 High 25 45 5 25 0 2.23 4+3 = 7 T2bN0Mx
N88 61 High 0 10 30 60 0 2.23 T2bN0Mx
T107 68 Int 60 10 0 30 0 7.4 4+3 = 7 T2bNxMx
N109 67 Low 0 5 0 90 5 7 T2bNxMx
T110 67 Low 40 0 0 58 0 7 3+4 = 7 T2bNxMx
N113 70 Low 0 10 5 85 0 4.78 T3aNxMx
T114 70 Low 40 0 5 55 0 4.78 4+4 = 8 T3aNxMx
N121 50 0 30 2 68 0 0.22
T122 67 Low 70 0 5 25 0 7 3+4 = 7 T2bNxMx
T123 78 80 0 0 20 0 17.7 5+5 = 10 NR
N133 0 25 5 75 0
T147 78 Int 70 0 0 30 0 6.9 4+4 = 8 T2bNoMx
N148 67 Low 0 35 10 55 0 4.68 T2aNxMx
N155 70 Int 0 40 10 48 2 8.4 T2cNxMx
T167 72 Int 80 0 10 10 0 18 4+4 = 8 T2bNoMx
T174 83 high 70 5 0 25 0 15 5+4 = 9 T4
T177 67 Int 40 0 30 30 0 10.87 4+4 = 8 T2cNoMx
T189 77 N/A 70 0 0 0 30 2.51 5+5 = 10 T2bN2Mx
T192 61 Int 50 5 10 35 0 5.7 4+4 = 8 T3aNxMx
N196 73 low 0 40 5 55 0 4.59 T2bNxMx
T197 67 high 95 0 0 5 0 21.82 4+4 = 8 T3aN1Mx
T198 60 60 0 10 25 0 4.06 4+4 = 8 T3bNxMx
N201 64 0 20 5 45 0 UNK T2bNxMx
T202 67 Int 90 0 5 5 0 12.34 4+4 = 8 T3bNxMx
T204 54 low 80 0 5 15 0 3.91 4+5 = 9 T3cNxMx
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Table 2: Top prostate cancer marker candidates selected by both t-test and SVM-RFE.

Isoform ID¶ Normalized log2 expr FDR# (q-value) SVM-RFE freq.* Protein Name§

ALDH1A2-0004 -1.21 1.3E-04 35 Aldehyde dehydrogenase 1A2
AMACR-2094 1.41 6.7E-05 38 Alpha-methylacyl-CoA racemase
AMACR-2097 1.08 9.2E-04 38
AMACR-2098 0.99 1.8E-03 17
ANXA2-0914 -1.04 1.8E-03 36 Annexin A2
APBB3-0185 1.01 1.5E-03 38 Amyloid beta (A4) precursor protein-binding 

family B member 3
BC008967-0877 -1.38 7.9E-05 26
C21ORF5-0239 1.24 6.0E-04 35 Chromosome 21 open reading frame 5
C7ORF24-0062 1.30 8.4E-05 17
CALCR-1180 1.05 5.2E-04 37 Calcitonin receptor
CCT8-0334 1.21 1.5E-04 32 Protein with high similarity to C. elegans 

Y55F3AR.3
CDC42BPA-
1048

-1.19 6.0E-04 38 CDC42 binding protein kinase alpha

CDK7-0899 1.35 8.4E-05 37 Cyclin-dependent protein kinase 7
CES1-0937 -1.34 7.9E-05 32 Cat eye syndrome chromosome region 

candidate 1
CLU-0197 -1.11 1.2E-03 38 Clusterin (apolipoprotein J)
EDNRB-1187 -1.24 4.7E-04 26 Endothelin type B receptor
FGFR2-0094 -1.13 4.0E-04 19 Fibroblast growth factor receptor 2
FGFR2-0099 -1.03 7.7E-04 28
HEBP2-0472 1.08 7.8E-04 24 Heme binding protein 2 (placental protein 23)
HSPD1-0152 1.10 1.8E-03 37 Chaperonin 60
HSPD1-0154 1.17 2.8E-04 31
IGSF4-0722 0.72 2.1E-03 38 Immunoglobulin superfamily member 4
IMPDH2-0144 1.25 1.3E-04 34 Inosine monophosphate dehydrogenase type 

2
IQGAP2-0234 1.17 5.6E-04 22 IQ motif containing GTPase activating protein 

2
LAMR1-0523 1.20 1.3E-04 38 Laminin receptor 1
LTBP4-0746 -1.27 1.5E-04 33 Latent transforming growth factor beta 

binding protein 4
LTBP4-0748 -1.10 1.4E-03 38
LYPLA1-0860 1.38 7.9E-05 35 Lysophospholipase 1
NELL2-0805 -1.10 1.2E-03 24 Nel-like 2
PGR-1166 -1.16 4.0E-04 32 Progesterone receptor
PGR-1555 0.85 7.5E-04 38
PPIB-0969 0.94 2.2E-03 34 Cyclophilin B
PTS-0059 -1.07 2.2E-03 31 6-pyruvoyltetrahydropterin synthase
PYCR1-0058 1.28 4.1E-04 38 Pyrroline-5-carboxylate reductase 1
RING1-0217 -0.93 1.7E-03 22 Ring finger protein 1
SFRS10-1126 0.95 2.0E-03 34 Splicing factor arginine/serine rich 10
SMPDL3B-2030 1.09 2.2E-04 38 Protein containing a calcineurin-like 

phosphoesterase domain
STAC-1044 -1.31 7.9E-05 34 Src homology three and cysteine rich domain
TGFB2-0085 -1.11 6.5E-04 38 Transforming growth factor beta 2
TRIM29-1350 -1.29 1.5E-04 35 Ataxia telangiectasia mutated
TRIM29-1353 -1.20 1.7E-04 34
TXNIP-1116 1.09 1.3E-03 38 Thioredoxin interacting protein

¶ detail information of each isoform, such as the exon junction and probe design, can be accessed at the MAASE database [48];
# FDR is calculated using all 38 samples;
§SVM-RFE freq.: the number of times that an isoform is included in 38 selected subsets in leave-one-out cross validation.
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Another interesting observation obtained by examining
the panel of potential marker candidates selected by one
or more methods is that a number of genes are normally
expressed specifically in neuronal cells (such as MAPT,
STAC, NELL2, etc). The relationship between abnormal
expression of neuronal genes and tumors is not com-
pletely clear. However, it is believed that there is a link
between diverse neurodegenerative diseases and cancers
via the induction of antitumor immunity, known as para-
neoplastic neurological degenerations (PND) (see review
by Albert and Darnell [47]). Alternative splicing is also
prevalent for neuronal genes.

Conclusion
Profiling of individual isoforms can provide unique and
important additional insights into prostate cancer classifi-
cation. Robust prediction models can be built with a sub-
set of isoforms selected by multivariate variable selection
method.

Methods
DASL assay
The DASL assay and array hybridization were described
previously [25]. In contrast to conventional microarrays
which only measure the overall mRNA abundance of each
gene, the most distinguishing feature of the DASL assay is
that it permits the profiling of each individual mRNA
splice isoform quantitatively. This technology has been
shown to be highly sensitive, specific and reproducible
(R2 > 0.99 between replicates).

Tumor and normal tissue profiling
The array used in this study included 1532 isoforms from
364 genes. These genes, potentially related to prostate
cancer, were selected from published literature, previous
microarray data analysis, human genome anatomy
projects and EST searching. All of them have known gene
structures and alternative splicing patterns. Alternatively
spliced exon junctions probed in the array were obtained
by the alignment of mRNA transcripts/ESTs and the
genome. They were manually annotated and are publicly
available from the MAASE database [48,49]. In total, 22
cases of archived formalin fixed, paraffin embedded pros-
tate tumors at different tumor stages and 16 adjacent nor-
mal matching samples from the UCSD prostate tumor
bank were assayed, each with two replicates (Table 1). The
detailed information about sample collection, prepara-
tion, RNA profiling experiment and probe quantification
were described elsewhere [29]. The raw data is available
from the authors upon request.

Microarray data normalization and statistical analysis
Before further analysis, a log2 transformation was applied
to raw intensities. Since the dataset was generated in two
batches, heterogeneity between batches has to be

removed. As a first step, each isoform (row) inside each
batch was median-centered separately. Then, the two
batches were combined and standardized to unit variance
across each array (column) and isoform (row) as a whole.
Finally, the two replicates of each tissue sample were aver-
aged. In this way, each value in the data matrix represents
the log expression ratio of an isoform in a particular sam-
ple with respect to a "common control" [15]. The effect of
normalization was examined by clustering the combined
data using real expression values and null control probes,
respectively. After normalization, there is no visible artifi-
cial distinction between the two batches.

To estimate the overall mRNA abundance of each gene,
the intensities of all isoforms were summed. Then the
same log transformation and normalization steps above
were applied. Again, each normalized value represents the
log expression ratio of mRNA abundance in a particular
sample with respect to a "common control".

A two-sided t-test was used to select isoforms or genes
with significant differential expression between tumors
and normal tissues. To correct for the effect of multiple
testing, false discovery rate (FDR) or q-value was calcu-
lated as described previously [32].

A chi-square test was used to analyze the significance of
frequency data.

Singular value decomposition
Singular value decomposition (SVD) is a standard mathe-
matical transformation to find a set of orthogonal princi-
pal components (PCs) which explain as much variation as
possible [50]. The power of SVD has been shown in many
fields as well as in microarray data analysis. Alter et al. and
Holter et al. suggested that the first two PCs can character-
ize cell cycle phases of yeast genes[51,52]. Liu et al. sepa-
rated prostate and colon tumors from others with the first
PC alone[53]. In a similar spirit, SVD transformation was
used in this study to reveal the "hidden" information
underlying the original high dimensional dataset.

SVM-RFE
A linear support vector machine (SVM) optimizes a linear
classifier D (xi) = w·xi + b by maximizing the margin of
support vectors from two classes, where xi is the expres-
sion vector of a sample i and w is the vector of weighting
coefficient, reflecting the contribution of each variable in
classification [37]. In the past few years, SVM has been
developed and shown as a powerful tool for classification
problems with a small sample size, such as microarray
sample classification (e.g. ref [7]). SVM-RFE (RFE stands
for recursive feature elimination) is a wrapper approach of
variable selection, in which the predictive power of a sub-
set of variables is measured collectively by the accuracy of
Page 10 of 12
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the classification based on the subset in consideration
[38,54]. Since an exhaustive search of the optimal subset
is a combinatorial problem, a heuristic strategy must be
applied. In SVM-RFE, variables are ranked by the weight-
ing vector w, by which a subset of variables with top ranks
is selected. Then the weighting vector w is re-evaluated by
optimizing a new classifier with the selected subset and a
smaller subset is selected therein. This recursive procedure
continues until the subset is small enough or the classifi-
cation performance approaches some criteria. In this way,
informative variables for classification are recursively
selected (or uninformative variables are recursively elimi-
nated). Details of the algorithm can be found in ref [38].
Our implementation of SVM-RFE used SVMTorch for lin-
ear SVM model calculations [55]. The default soft margin
(C = 100) was used.

Cross validation incorporating variable selection
Due to the limited sample size, leave-one-out cross valida-
tion (LOOCV) was used to evaluate the classification per-
formance of SVM classifiers built with subsets of variables
selected by t-test and SVM-RFE. In each round, one array
(test set) is left out to test the classifier trained on the
remaining arrays (training set). The classification per-
formance is the percentage of correct predictions in all
rounds. To get an unbiased result, in each round the vari-
able selection step must be applied "externally", i.e. only
on the training set, excluding the sample left out for vali-
dation [39]. Therefore, the subsets of variables selected
might be different from round to round. The number of
times that a variable is selected reflects the robustness of
the variable for classification. Therefore the final subset of
variables can be selected by ordering the number of times
that a variable is included in the selected subsets of all
rounds.
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