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Abstract
Background: In recent years protein structure prediction methods using local structure
information have shown promising improvements. The quality of new fold predictions has risen
significantly and in fold recognition incorporation of local structure predictions led to
improvements in the accuracy of results.

We developed a local structure prediction method to be integrated into either fold recognition or
new fold prediction methods. For each local sequence window of a protein sequence the method
predicts probability estimates for the sequence to attain particular local structures from a set of
predefined local structure candidates.

The first step is to define a set of local structure representatives based on clustering recurrent local
structures. In the second step a discriminative model is trained to predict the local structure
representative given local sequence information.

Results: The step of clustering local structures yields an average RMSD quantization error of 1.19
Å for 27 structural representatives (for a fragment length of 7 residues). In the prediction step the
area under the ROC curve for detection of the 27 classes ranges from 0.68 to 0.88.

Conclusion: The described method yields probability estimates for local protein structure
candidates, giving signals for all kinds of local structure. These local structure predictions can be
incorporated either into fold recognition algorithms to improve alignment quality and the overall
prediction accuracy or into new fold prediction methods.

Background
In recent years progress has been made in protein struc-
ture prediction by incorporating information on local
protein structure. David Baker's group has successfully
used local fragment predictions [1-4] in conjunction with
a fragment assembly procedure to substantially improve
new fold predictions [5-7]. Also for fold recognition and
remote homology detection methods the integration of
local fragment predictions led to improved results [8].

Methods for analyzing fragments focus on sequence or
structure or both. We are looking for fragments that occur
in several proteins, that are sufficiently similar in struc-
ture, and that exhibit enough sequence similarity to be
detectable by discriminative methods.

Specifically, we address the question: Given a local
sequence fragment, how much can we learn about the
local structure it adopts? It is expected that, in many cases,
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knowledge of the sequence of the fragment is not enough
to determine its structure. Often long-range interactions
with parts of the amino acid chain that are far away in
sequence but close in space can be determinants for local
structure. However, in other cases the local sequence
properties give rise to a single or just a few local structures.
Knowledge of these conserved cases enables the predic-
tion of local structure in the respective regions of the pro-
tein.

In the following we briefly review two approaches to ana-
lyzing protein fragments (one by Baker's group and one
by Hunter and Subramaniam) and compare them with
our own method.

Baker's approach [1,3] starts by clustering fragments based
on sequence similarity. In the second step for each of the
clusters the structural variation of the fragments is exam-
ined. Clusters that vary too much are discarded. The
remaining clusters represent sequence neighborhoods
that adopt only one or few local structures (see Figure 1).

Hunter's approach [9] clusters fragments based on struc-
tural similarity in order to define 28 canonical local struc-
tures. These are supposed to roughly model local
structural variation. After tabulating the corresponding
sequences of each of the classes and calculating position-
specific amino-acid probabilities, a simple prediction
algorithm (Naive Bayes) is used to predict the canonical
fragment structure based on sequence information (see
Figure 2).

Our approach (Figure 3) combines the advantages of both
ideas. Baker's algorithm partitions sequence space regard-
less of the corresponding structures. As sequences vary to

a greater extent than structures, incorporating structural
information while partitioning sequence space is crucial.
This idea can be realized using a classifier, which parti-
tions sequence space into decision regions, such that
inference of local structure is optimized. In place of
Hunter's simple Naive Bayes approach, we suggest a more
flexible classifier like a support vector machine or a ran-
dom forests to map from local sequence to structure.
Here, the question of the partitioning granularity of
sequence space amounts to the classifier regularization
problem, which can be addressed by commonplace vali-
dation methods. Moreover, our method of defining recur-
rent local structures is different from Hunter's approach
and exhibits improved performance regarding Hunter's
quality criteria.

Early work on local structural fragments was done by
Rooman et al. [10], who use a hierarchical procedure to
cluster 7-residue fragments into a coarse grouping (4 clus-
ters), which was shown to be similar to DSSP classes.
Fetrow [11] uses a neural net to produce a low-dimen-
sional feature representation for a distance- and angle-
based description of local structure. Using k-means, this
reduced feature representation is clustered into 6 groups,
which show significant amino acid sequence patterns.
Camproux et al. [12] use the hidden states in an HMM to
derive a 12-letter alphabet of fragments which considers
the distances within and the volume spanned by the frag-
ment as well as consecutiveness of these structural build-
ing blocks. De Brevern et al. [13] propose a 16-letter
alphabet generated by a self-organzing map based on a
dihedral angle similarity measure. Similarly to Cam-
proux's work, the chaining of consecutive fragments is
considered. Using a Bayesian approach local structure is
predicted based on local sequence (allowing a fuzzy n-to-
m relationship between local structure and sequence).
Recently the predictive performance on this alphabet was
improved by Etchebest et al. [14]. A comprehensive eval-
uation of these and other structural alphabets was done by
Karchin et al. [15,16].

Results
To validate our methods we examine the quality of the
structural clustering procedure, the accuracy of the classi-
fication into the resulting structural classes and the accu-
racy of the probability estimates in the classification step.

Local structure clustering
We chose Cα distance matrix comparison for clustering
structure fragments, as it provides a vector space represen-
tation for structural similarity and is thus applicable to
large data sets (see Methods for details). In order to esti-
mate the suitability of this representation, we examined
its correlation with the widely used root mean square
deviation (RMSD). Scatter plots depicting strongly posi-

Clustering in sequence space and discarding clusters with too much structural variation (Baker's Method)Figure 1
Clustering in sequence space and discarding clusters with too 
much structural variation (Baker's Method).
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tive correlation and a Pearson correlation coefficient of
0.7962 indicate that distance matrix comparison is a rea-
sonable representation of structural similarity. Although
there are refined versions of distance matrix comparison,
for instance by downweighting large distances, here we
used the basic version.

A tradeoff exists between accentuating a natural clustering
tendency, the number of clusters (resulting in a finer or
coarser structure representation), and the complexity of
the subsequent classification task (more defined classes
are harder to predict accurately). Finally we decided on a
threshold based on the following considerations: (1)
There is no clear natural clustering as shown in the next
section. (2) Posing a reasonable task for the subsequent
classification the number of clusters should not be too
large. (3) A comparison with the results of Hunter et al. [9]
(whose method is the closest to our approach) requires a
similar setting regarding modeling quality.

Clustering with a threshold of 720 for the Cα distance
matrix comparison we obtain 27 clusters on the whole
dataset (295,411 fragments). As can be seen in Figure 4,
the distribution over the 27 classes is highly skewed. One
class containing about 29% of the fragments dominates
the other classes which contain between 1% and 5% of
the fragments. As expected, the dominant class contains
alpha helical fragments. Beta strand fragments are distrib-
uted among several structural classes. Their geometrical
variation is almost as high as in loop regions, as is to be
expected [17].

The structural clustering in [18] results in two dominant
classes, one for alpha, and one for beta fragments. In

terms of quantization error our clustering is superior,
indicating that a subpartitioning of beta fragments is
advisable. However, because of this different class balanc-
ing the classification results are not comparable. With two
dominant clusters for alpha and beta fragments, second-
ary structure prediction would suffice to produce high
classification accuracy.

Quality of the structural clustering
The validation of clustering results aims at quantifying to
which extent the clustering resembles the natural group-
ing of data points. Many clustering algorithms require the
specification of parameters, e.g. the number of clusters for
k-means or a linkage threshold for hierarchical agglomer-
ative clustering algorithms. Quality measures are used to
adjust these parameters in order to cluster the data points
appropriately.

In our clustering procedure we specify a threshold which
controls the binning of fragments in the leader clustering
algorithm. This parameter indirectly controls the number
of clusters for the subsequent k-means refinement.

As a first quality criterion of the clustering we used the
mean of the averaged pairwise within-cluster distances.
The result of the leader algorithm depends on the input
order of the data, thus we repeated the clustering proce-
dure ten times with shuffled input. The resulting curves
are smooth, exhibiting no natural cutoff (Figure 5). This
resembles the observations of Hunter and Subramaniam
[18].

As a second quality criterion of the clustering process we
used the quantization error in terms of RMSD. Clustering
can be regarded as a data grouping process by which we
represent whole groups by single representatives (similar
to vector quantization in a vector space). As representative
of a structural cluster, we choose the fragment with the
lowest sum of distances to all other fragments in the
respective cluster.

The quantization error is defined as the average RMSD dis-
tance of all fragments in the data set to their respective
representatives. For two reasons we use the root mean
square deviation to compute the quantization error. First,
the RMSD is easier to interpret as it is commonly used to
compare protein structures. Second, this validation shows
that the Cα distance matrix measure, which we used for
efficient clustering, is able to find structure representatives
that are good in terms of RMSD.

For 27 clusters, our clustering results in a quantization
error of 1.19 Å. Hunter and Subramaniam specify the
quantization error of their method for 28 clusters as 1.71
Å [18]. The difference between these two figures is an indi-

Clustering in structure space and generating sequence pro-files for each structural cluster for Naive Bayes classification (Hunter's Method)Figure 2
Clustering in structure space and generating sequence pro-
files for each structural cluster for Naive Bayes classification 
(Hunter's Method).
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cation for the superiority of the structural representatives
produced by our clustering method.

In the supplementary material [see Additional file 1] we
provide the position-specific propensities for the types of
secondary structure (H, E, and C). Alpha helices are clearly
represented by cluster 3. This includes a few fragments
with transitions to coils at the ends. Fragments in cluster
11 also have a clear helical center whereas coil structures
dominate towards the ends. Overall, extended β-elements
and coils are rather mixed in the clustering. Clusters 5 and
21 show stretches of β-strands with coils at the beginnings
and ends, respectively. Clusters 6 and 14 both exhibit a β
tendency in the middle and more coils towards both ends.

The supplement also contains information on the struc-
tural variability in each cluster, visualized as pairwise
RMSD and pairwise secondary structure dissimilarity
plots. These plots show that most of the clusters could be
further divided into smaller subgroups. This is consistent
with the smoothness of the kneeplot in Figure 5.

Examples of structural clusters
To give an impression of the structural clusters, we show
some examples in Figure 6. Random samples of ten frag-
ments from clusters were taken, superpositioned by Kears-
ley's quaternion method [19] and visualized in PyMOL
[20]. Note that the sample is not necessarily representa-
tive. From the resulting visualizations, we chose a few that
demonstrate interesting local structures like helices, beta
strands, beta strands attached to turns or loop regions.
Whereas some of these clusters represent well defined

local patterns, others are only a coarse grouping of similar
structures.

Classification
In this section we describe experimental results of the
sequence to structure mapping by a discriminative classi-
fier. Knowing that local sequence plays only a partial role
in the formation of local structure, it is obvious that the
mapping is a difficult task, when totally neglecting tertiary
relationships.

Examining the correlation between sequence similarity
(Log-average scores [21], Manhattan distance, and Eucli-
dean distance of sequence profiles) and structural similar-
ity (RMSD) for local windows of 7 residues in length
shows negligible correlation of -0.0479, 0.0186, and
0.0398 respectively.

All of the following observations refer to fragments with a
length of 7 residues. The structure labels obtained from
the previous step are for a fixed clustering threshold of
720, which leads to 27 class labels.

First we show results for classification without confidence
estimates, with focus on support vector machines as the
predictive model. Then, results for the probability esti-
mates are shown. The respective problematic SVM per-
formance suggests a shift of focus towards random forests
as classification model.

Prediction accuracy
We used decision trees (C5.0), support vector machines
(SVM) and random forests (RF) to predict local structure
classes given sequence information. The peak accuracies
for C5.0, SVMs, and RFs are 0.2320, 0.3615, and 0.3409
respectively (see Table 1; for runtime restrictions not all
combinations have been computed).

As a rather simple model, a decision tree was used to esti-
mate the difficulty of the classification problem. Using
C5.0 with standard parameters and input based on phys-
ico-chemical properties yields classification accuracy of
0.2320. This stresses the inherent complexity of the map-
ping task.

For SVMs the training complexity is quite high, thus
exhaustive testing of all interesting parameter combina-
tions is not possible. We used a simple grid-search proce-
dure on promising parameter regions. By manual
intervention these regions where extended into directions,
in which further improvement was expected. For the rele-
vant SVM parameters C (error penalty) and γ (RBF kernel
parameter) we decided to use the parameter ranges pro-
posed by Hsu et al. [22]. C ranges over {2, 4, 8, 16, 32,

Clustering in structure space and using a nonlinear classifier for partitioning sequence space with respect to correspond-ing structure labels (Our Method)Figure 3
Clustering in structure space and using a nonlinear classifier 
for partitioning sequence space with respect to correspond-
ing structure labels (Our Method).
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64}, γ ranges over {0.03125, 0.0625, 0.125, 0.25, 0.5, 1,
2}.

Experimenting with different profile representations (see
Methods), the encoding of amino acid properties exhibits
clear advantages. For C = 2 and γ = 0.03125 the prediction
accuracy rises from 0.3038 (for amino-acid profiles) to
0.3426 (for property-based profiles). The performance
using only representations of single sequences is below
that of using amino-acid profiles.

Changing the size of the training set from 5,000 to
20,000, the classification accuracy rises from 0.3426 to
0.3615. However, the run time is increased significantly to
approximately one day for five-fold cross validation on
20,000 fragments (on a SUN Ultra SPARC-III+ with 900
MHz).

For random forests the overall accuracy is 0.3409 using
the standard setting of 500 trees (for 20,000 training sam-
ples).

Accuracy of probability estimates
To achieve better confidence in the prediction step, for
each classified sample a vector is returned that contains a
probability for each of the classes. This probability is sup-

posed to represent the confidence with which the sample
can be assigned to the class. High probabilities represent
high confidence.

To retrieve probability estimates from support vector
machines predictions need to be postprocessed (see Meth-
ods). Predicting just the class with the highest probability,
classification accuracy drops to 0.29 (compared to 0.34 if
no probability estimates are used). Thus the postprocess-
ing step significantly decreases predictive performance.
During corresponding tests in [23] no performance loss
was observed. In our case, due to the imbalance in the
class sizes, probability estimates are biased towards the
dominant class (the helical class in our case). This results
in an over-representation of the dominant class at the top-
rank.

Similarly to the boxplots for the class-wise probability
estimates in Figure 7, for SVMs it can be observed as well
that the ranges of the given estimates reflect class size (Fig-
ure 4). This also explains the poor performance of the
SVM probability estimates. If the sensitivity towards the
smaller classes were higher (higher probability estimates),
the specificity would decrease dramatically, as many of
the samples in the dominant class would be erroneously
classified into one of the smaller classes. Thus by predict-
ing conservative estimates for the small classes SVMs lose
overall accuracy.

For random forests probabilistic outputs are a natural
extension of the standard algorithm, yielding the same
classification accuracy. Due to the low overall accuracies,
probability estimates are mandatory, thus we decided to
focus on using random forests.

Limiting predictions to high confidence decisions can
increase classification accuracy. In Figure 8 we plot confi-
dence thresholds against accuracy. However, interpreting
the resulting plot can be misleading. Keeping the class
specific ranges of confidence predictions from Figure 7 in
mind, it becomes obvious, that large parts of the plot
describe predictions for the dominant class.

To level out the effect of dominant classes, we evaluate
prediction accuracy conditioned on the predicted class
(see Figure 9). Thus given the classifier decision for a spe-
cific class, the real class is more likely to be the predicted
one than another.

The confusion matrix shows some dominant mispredic-
tions. Looking at these cases shows that the classes which
are confused with each other, often exhibit similar sec-
ondary structures (see supplementary material). For
example class 2 which is confused with class 9, both are
coiled with a tendency to helix at the end. Likewise, cluster

Prior probabilities of the structural classesFigure 4
Prior probabilities of the structural classes. The helical frag-
ments (class 3) are clearly dominating the other classes. 
Extended beta structures are split up into several smaller 
classes, reflecting their higher structural variability compared 
to helices.
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4 which is often predicted instead of clusters 10 and 23
show a similar combination of coil and helix. Clusters 6,
14, and 25 have a conserved extended center with coils
towards the ends. Clusters 8 and 19 are coiled with a hel-
ical tendency at the beginning and a bias towards
extended structures at the end.

Despite the difficulties resulting from the imbalance of
class sizes, the probability estimates entail signals also for
the occurrence of underrepresented classes. Using them to
enrich local structure candidates for fragment assembly or
incorporating them into an alignment score for fold rec-
ognition can improve prediction quality. In an enrich-
ment prediction, we allow the classifier to return several
class suggestions per input sample. In Figure 10 the classi-

fication accuracy is shown, if several class suggestions are
allowed. With up to three class suggestions the prediction
contains the correct class in more than 54% of the cases.
In protein structure prediction based on fragment analysis
this can reduce the search space significantly. If additional
constraints are taken into account, e.g. smoothing over
the predictions of overlapping fragments, the results can
be improved further.

To evaluate the predicted probabilities of the single
classes, without interfering effects of the class distribution,
we generated receiver operating characteristics (ROC)
plots of the results (see Figure 11). For an introduction to
ROC plots see [24]. For classifiers with continuous output
(e.g. confidence estimates), ROC graphs plot the false pos-

Kneeplot of the mean average dissimilarity across varying thresholds for the leader clustering algorithmFigure 5
Kneeplot of the mean average dissimilarity across varying thresholds for the leader clustering algorithm. The mean average dis-

similarity is computed as , with Ck being the data points in cluster k, and K being the total 

number of clusters. As the result of the leader algorithm depends on the input order of the data, the clustering procedure is 
repeated ten times with shuffled input.
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itive rate against the true positive rate. The false positive

rate of a fixed class i is defined by .

This is the number of samples erroneously classified in
class i divided by the total number of samples not belong-
ing to class i. The true positive rate is defined by

. This is the number of samples cor-

rectly classified in class i divided by the total number of
samples in class i. The most important property of these
rates is their independence from the class distribution.
Random guessing would generate identical false positive
and true positive rates, on average. Therefore, the diagonal
(y = x) in the ROC plot is the performance of random
guessing (shown as red line in our ROC plot).

In Figure 12 we compare the impact of different sequence
representations on classification performance. For a single
sequence representation the classification performance
for each of the classes is computed as the area under the
ROC curve (AUC). Thus, the 27 AUC measures can be

illustrated as a density of AUCs. Comparing the density
curves shows that input representation by frequency pro-
files performs better than input based on sequence alone.
Furthermore, using amino acid property profiles slightly
increases the performance compared to standard amino
acid profiles.

Figure 13 shows the effect of the size of the data set on
classification performance. Varying the size of the data set
from 5,000 over 10,000 to 20,000, the curves move
towards the upper right corner, indicating rising perform-
ance. As training times are a major bottleneck we did not
perform tests on larger data sets. Property-based profiles
have more variables than amino-acid profiles (48·k com-
pared to 20·k for k being the length of the fragment),
training time is inherently longer.

Comparability of classifier performance
Comparing the performance of the classification proce-
dure to other methods (e.g. the methods by Baker and
Hunter) is difficult. Obstacles for an objective comparison
are (1) different prediction protocols (e.g. Baker only pre-
dicts in cases of high confidence) and (2) different repre-

FPR
false positives

negatives
=

TPR
true positives

positives
=

Boxplot of probability estimates (RF classifier)Figure 7
Boxplot of probability estimates (RF classifier). The boxes 
range from the first to the third quartile. The lines within the 
boxes denote the medians, the whiskers extend to the maxi-
mum and minimum values unless they are outliers, outliers 
are plotted as distinct circles. The red crosses indicate the 
prior class probabilities. (For presentation reasons, predic-
tions for a subsample of the test set are shown).
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Selected examples of local structure clusters, including local structures like helices, beta strands, and beta strands merging into turns or loop regionsFigure 6
Selected examples of local structure clusters, including local 
structures like helices, beta strands, and beta strands merging 
into turns or loop regions. Each cluster is represented by ten 
randomly chosen fragments (superpositioned by Kearsley's 
quaternion method [19] and visualized in PyMOL [20]). Some 
of these clusters represent well defined local patterns, 
whereas others are only a rough grouping of similar struc-
tures.
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sentation of local structure space leading to a different
prior distribution of class labels.

The final prediction rate equals to 36% that is less than the
44% of Hunter's method. One of the reviewers pointed
out, that this seemingly lower rate is in fact better because
the latter method predicts most local protein structures to
be in only 10 of the 28 clusters and also tends to over-pre-
dict β-structures.

In order to compare our results to Hunter we adjusted our
clustering manually, grouping together previously sepa-
rated extended beta structures. Aside from the large α-hel-
ical class this leads to a second large class. Performing the
classifier analysis with this modified fragment labeling
leads to an increased classification accuracy of 44%. This

shows that simple performance measures like accuracy are
not able to capture the classification result. Ultimately the
performance of local structure suggestions should be val-
ued by their usefulness in later stages, e.g. their contribu-
tion to fragment assembly approaches.

A note on fragments of various lengths
In our experiments above we limited the fragment size to
seven residues. Hunter and Subramaniam use fragments
of length seven, as structural variation of 7-residue frag-
ments can be modeled at accuracies below 1 Å using fewer
than 1,000 canonical local shapes. Moreover, current
structure databases do not provide enough data for accu-
rate modeling of longer fragments [18]. Bystroff and Baker
note that the correlation between sequence and structure
increases as the fragment length increases from three to
eight, but slowly decreases for longer fragments [3].

Applying our method to fragments longer than 12 resi-
dues fails due to the strong increase in structural variation.

Prediction-conditioned confusion matrix (RF classifier)Figure 9
Prediction-conditioned confusion matrix (RF classifier).
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Classification accuracy, if all predictions below a given confi-dence threshold are discarded (RF classifier)Figure 8
Classification accuracy, if all predictions below a given confi-
dence threshold are discarded (RF classifier). High confi-
dence parts of the plot mostly consist of predictions for the 
dominant class according to the predicted confidence ranges 
in figure 7.
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Table 1: Prediction accuracies for decision trees (C5.0), SVMs, and Random Forests.

Classifier accuracy Single Seq (5000 samples) HSSP Profiles (5000 
samples)

Property profiles (5000 
samples)

Property profiles (20000 
samples)

C5.0 - 0.2320 - -
SVM 0.2955 0.3038 0.3426 0.3615
SVM (prob. estim.) - - 0.2900 -
Random Forest 0.3024 0.3001 0.3102 0.3409
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The clustering procedure that we used requires a structure
similarity threshold, specifying a limit of tolerated dissim-
ilarity within a cluster. After setting these thresholds for
longer fragments based on visual inspection of fragment
pairs, the number of obtained clusters grew dramatically.
Many of the clusters contain just one or a few fragments,
which have no close neighbors in structure space. The
complexity of the leader clustering algorithm is linear in
the number of clusters and in the number of data points.
However, if the number of clusters grows on the order of
the number of samples, this amounts to quadratic com-
plexity, rendering large-scale experiments infeasible. The
approach by Hunter and Subramaniam is hampered by
the same problem. Baker ignores this problem, as the
number of clusters for sequence space partitioning is pre-
specified, not considering the increasing structural varia-
tion with growing fragment length. Therefore, longer
recurring fragments are implicitly discarded, unless they
are represented super-proportionally to form a well con-
served cluster.

In order to analyze the variation in structure space, we
used a kd-tree to efficiently retrieve nearest neighbors of
all data points. For length 7, only 11 data points had no
neighbors closer than a given Cα distance matrix score
threshold (which was heuristically set based on visual
inspection of fragment pairs, ranging from 420 for length

7 to 1,000 for length 11). For length 9 the number of
"lonely data points" increased to 44, roughly 11,000 for
length 10 and roughly 50,000 for length 11. However, as
for longer fragments the usefulness of rigid comparison
becomes questionable, flexible distance measures should
be taken into account.

As the length of fragment pairs increases, the use of rigid
structure comparison becomes questionable and tech-
niques should be employed that take structural flexibility
into account.

Several recent approaches use smaller fragments of 4, 5, or
6 residues [14,25,26]. While this reduces sequence-struc-
ture correlations, the advantage is that with a smaller set
of representatives accurate modeling is possible. On the
other hand chaining smaller fragments leaves more
degrees of freedom in a fragment assembly approach. Ide-
ally a fragment assembly procedure either uses long frag-
ments for modeling conserved parts and small fragments
to fill the gaps, or the context of small fragments is taken
into account, e.g. by studying chains of consecutive frag-
ments (e.g. [12,13]).

Conclusion
We introduced a new approach to local protein structure
prediction. In contrast to Baker's approach [3], we take
into account structural information while partitioning
sequence space. As sequence diversity is much higher than

ROC curves for the 27 structural classes (using physico-chemical property profiles and RF classifier)Figure 11
ROC curves for the 27 structural classes (using physico-
chemical property profiles and RF classifier).
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structural variation, it is expected that unsupervised learn-
ing in sequence space is harder than unsupervised learn-
ing in structure space. In this case the problem of choosing
the correct granularity of the partitioning of sequence
space takes the shape of the classifier regularization prob-
lem. Therefore, standard methods like cross-validation
can be used to determine a partitioning with high predic-
tive power. In contrast to Baker we can provide estimates
of conservation even for less conserved fragments.

In contrast to Hunter's approach [9], we incorporate pro-
tein family information by using profiles instead of
sequences. For secondary structure prediction this provi-
sion yielded a significant increase in performance [27].
The same could be observed in our case. The accuracy was
further improved by using profiles based on amino-acid
properties.

We see the main contributions of this work in (1) propos-
ing a model for partitioning sequence space in depend-
ence on the corresponding structures, (2) suggesting a
representation of sequences through features based on
amino-acid properties which can easily be used in classifi-
ers and (3) introducing a distance metric for structural
fragments which can be used in vector-space based meth-
ods.

There is room for further development of our method.
The clustering procedure used for identifying recurrent
local structure patterns is simple and can be enhanced in
many ways. An important step is the removal of structural
outliers. For increasing fragment sizes the number of
expected outliers grows significantly. Procedures for itera-
tive pattern expansion are an interesting approach to
reducing the size of the search space for longer fragments.
Also approximate nearest neighbor algorithms can be
used to prefilter fragments. Another way of getting around
the algorithmic restriction to smaller fragments is pro-
vided by methods working on sub-samples of the data set.
We suggest that the quantization error quality criterion is
a suitable measure for assessing the quality of the repre-
sentative fragment set and thus can be used to evaluate
further methodical improvements.

On the long run, there are numerous ways to push for-
ward the understanding of local sequence structure rela-
tionships. Studying the evolutionary and physical role of
protein fragments can lead to deep insights into the devel-
opment of protein structures and function, as well as
details of the folding process. Interesting questions
include the automatic detection of candidates for evolu-
tionarily conserved fragments [28], detection of patterns
in the topology connecting smaller conserved fragments
(e.g. [29] and integration of information about long-

AUC densities for training set sizes 5,000 samples, 10,000 samples, and 20,000 samples (RF classifier)Figure 13
AUC densities for training set sizes 5,000 samples, 10,000 
samples, and 20,000 samples (RF classifier). Each of the den-
sity curves is generated from the area under the curve per-
formance scores for each of the 27 classes.
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AUC densities for sequence only, amino acid profiles, and 
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range interactions to discriminate between local structure
ambiguities (e.g. [30]).

Some of these questions are so fundamental that finding
a comprehensive answer and understanding their rela-
tionships might be of similar difficulty as the protein
structure prediction problem itself.

Methods
Our local structure prediction method predicts probabil-
ity estimates for a local sequence to attain particular local
structures from a set of predefined local structure candi-
dates. The first step is to define a set of local structure rep-
resentatives. In the second step a classifier is trained to
predict the local structure representative given local
sequence information.

Datasets
We base our method development and validation on the
nonredundant subset pdb_select25 [31] of the Protein
Data Bank (PDB) [32]. In this subset all pairwise sequence
similarities are below 25%. Representatives are chosen
based on structure quality in terms of resolution and R-
factor. Resolution and R-factor are guaranteed to be below
3.0 Å and 30%, respectively. The version of April 2003
contains 1999 protein chains with 324,426 residues in
total. The corresponding structures are retrieved from the
PDB.

For sequence representation we use profiles from the
HSSP database [33]. Profiles in the HSSP database were
constructed for a given protein by aligning the sequence of
the protein with homologous sequences and calculating
an amino acid frequency profile. To extend the approach
to new sequences not covered by the HSSP database, pro-
files for the new sequences had to be built with an
approach similar to the method of HSSP, i.e. an iterative
SWISS-PROT search [34].

By sliding a window of fixed length over proteins we
obtain fragments consisting of a sequence profile frag-
ment and the respective structural representation in Carte-
sian coordinates. Removing fragments with missing
profiles in HSSP or missing coordinates in the PDB we
obtain 295,411 fragments of length 7.

Discretization of local structures
Local structure fragments are obtained by collecting over-
lapping windows with a length of 7 residues from a set of
non-redundant proteins (pdb_select25). Tests showed
that excluding test structures was not necessary, i.e. no
overfitting occurred if the local structure candidates were
defined using the full set of local structures. This could be
expected, as the number of selected representative frag-

ments (27) is very low compared to the total number of
fragments (295,411).

Using a clustering method with a suitable structural dis-
tance measure the fragments are grouped into disjoint
sets. Subsequently centroid structures of each of these
clusters are regarded as structural representatives.

As clustering method we chose a combination of the
leader algorithm and k-means clustering. The leader algo-
rithm [35] is used to find an initial clustering. All frag-
ments are traversed sequentially and assigned to clusters.
If an object is similar enough to the founding object of an
existing cluster it is assigned to that cluster, otherwise it
becomes the founding object of a new cluster.

Afterwards k-means clustering is used for iterative refine-
ment. Data points are assigned to their closest cluster cent-
ers and the cluster centers are recomputed as the means of
the data points in the clusters. This procedure is repeated
until convergence of the clusters.

The runtime efficiency of this approach makes it applica-
ble to our data set (in contrast to hierarchical clustering
algorithms, which exhibit quadratic runtimes).

The clustering procedure requires a vectorial representa-
tion of data points. The commonly used root-mean-
square-deviation (RMSD) is not suitable, as it requires the
pairwise superposition of structures before comparison
(e.g. [19]).

Instead, we chose a structural distance measure based on
Cα-Cα distance matrix comparison. The efficacy of this
structural distance measure is affirmed by the high Pear-
son correlation of 0.7962 between this distance measure
and the root mean square deviation (RMSD).

The Cα-Cα distance matrix is defined as

where dij is the Euclidean distance between residue i and
residue j (their Cα-atoms). To compare two distance
matrices A and B of the same size L × L we use:

Thus, we define the structural distance between two pro-
tein fragments of the same length as the sum over the
absolute differences of corresponding entries in the Cα-Cα
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distance matrices of the two fragments. In this way, each
fragment is represented by the vector containing all
entries of the Cα-Cα distance matrix and the L1 norm is
used to compare two fragments.

Mapping from local sequence to local structure
The second step uses a classifier to map sequence informa-
tion to structural representatives. The classifier is trained
with sequence information based on fragments spanning
seven residues and on the corresponding structure labels
obtained in the previous clustering step. All predictions
were evaluated in a 5-fold cross-validation, i.e. in five iter-
ations four fifth of the whole data set were available as
training data, the remaining fifth was used as test data.
Thus, each sample in the data set is used once for testing a
model that was trained without the fold containing this
sample. When the number of training samples was
restricted for the evaluation, a randomly drawn subsam-
ple of the available training set per fold was used; testing
was still performed on the whole data set as described
above.

For the representation of local sequence information (a
window of seven residues), we considered three different
approaches. First, we used a categorical encoding of the
amino acid sequences. This can be regarded as a degener-
ate case of amino acid profiles, in which at each sequence
position exactly one amino acid occurs with relative fre-
quency 1. Second, we used standard sequence profiles
from the HSSP database [33], which were constructed
from multiple alignments of homologous proteins. Thus
the sequence description consists of a 20 × 7 matrix.

A third approach uses profiles of amino acid properties
(e.g. polarity, hydrophobicity, size). Thus, a position in
the property profile represents relative frequencies of 48
physico-chemical properties [36] instead of relative
amino acid frequencies. Using a table of properties for
amino-acids the sequence profiles from HSSP can be
mapped to the according property profiles. The resulting
relative frequencies do not sum to 1, as the physico-chem-
ical properties are not mutually exclusive.

As classifiers we used decision trees (C5.0) as a simple
classification scheme with possibly interpretable output,
as well as support vector machines (SVM) and random
forests (RF) as more sophisticated classifiers.

For decision trees [37] we used the commercially available
program C5.0 by Quinlan [38]. As decision trees exhibited
poor classification accuracy of 23.3% in initial tests, we
did not include them in further experiments.

Support vector machines (SVM) are a statistical learning
method, that can be trained to separate labelled data

points into their respective classes. A separating hyper-
plane that yields the best expected separation on new data
is fitted. By using an implicit transformation into a high-
dimensional feature space data sets which are not linearly
separable can be tackled. For an introduction to SVMs see
[39,40]. We used the support vector machine implemen-
tation libSVM by Chang and Lin [41]. To tackle the multi-
class problem we used the one-against-one strategy as
suggested in [42]. In cases of limited overall classification
accuracy a measure of reliability is crucial. Therefore, the
methods of Platt [43] and Wu [23] are used to obtain a
vector of probability estimates for the local structures.
However, our experiments have shown that transforming
discrete predictions into probability estimates reduced the
overall classification accuracy significantly. Another draw-
back is that computing probability estimates requires the
fitting of a function mapping from hyperplane distance to
probabilities. This can be compute-intensive if many
training samples have to be used.

Random forests are classifiers that are constructed from a
combination of decision trees. The single trees are trained
on randomly drawn sample of the training data and the
split variables during tree construction are chosen from a
drawn subset of all variables. Averaging over these varying
trees a better generalization is achieved compared to sin-
gle decision trees. For details about random forests see
[44]. Random forests have been reported to be competi-
tive with support vector machines regarding classification
performance [45]. A significant benefit for our application
is that random forests naturally provide probability esti-
mates for classes. An additional step which can potentially
decrease performance as necessary for support vector
machines is not needed. In our experiments we used the
randomForest implementation by Liaw [46] for the statis-
tical language R.
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