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Abstract

Background: Automated information extraction from biomedical literature is important because
a vast amount of biomedical literature has been published. Recognition of the biomedical named
entities is the first step in information extraction. We developed an automated recognition system
based on the SVM algorithm and evaluated it in Task |.A of BioCreAtIvE, a competition for
automated gene/protein name recognition.

Results: In the work presented here, our recognition system uses the feature set of the word, the
part-of-speech (POS), the orthography, the prefix, the suffix, and the preceding class. We call these
features "internal resource features", ie. features that can be found in the training data.
Additionally, we consider the features of matching against dictionaries to be external resource
features. We investigated and evaluated the effect of these features as well as the effect of tuning
the parameters of the SVM algorithm. We found that the dictionary matching features contributed
slightly to the improvement in the performance of the f-score. We attribute this to the possibility
that the dictionary matching features might overlap with other features in the current multiple
feature setting.

Conclusion: During SVM learning, each feature alone had a marginally positive effect on system
performance. This supports the fact that the SVM algorithm is robust on the high dimensionality of
the feature vector space and means that feature selection is not required.

Background

There is a growing interest in genome research, and a vast
amount of biomedical literature related to it has been
published. Collecting and maintaining various databases
of this information in computer accessible format require
automatically extracting information. Various automated
information extraction systems for biomedical literature
have been reported. Ono et al. [1] and Blaschke et al. [2]
demonstrated the automated extraction of protein-pro-
tein interactions (PPIs) from biomedical literature. They

identified key words that express these interactions, and
demonstrated automated extraction based on these key
words and some heuristic rules. Temkin et al. [3] demon-
strated the automated extraction of PPIs using a context-
free grammar. In each of these studies, protein name rec-
ognition was the first step. Next, protein name dictionar-
ies were constructed. Finally, protein name recognition
was performed based on pattern matching using the dic-
tionaries. Recognition performance affected the results of
PPIs extraction. Fukuda et al. [4] and Frenzén et al. [5]
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developed automated recognition systems based on
hand-crafted rules. They identified key terms for recogniz-
ing protein names, which they termed "core terms" (e.g.
capital letters and special symbols) and "feature terms"
(e.g. "protein" and "receptor"). Their systems recognize
protein names based on these key terms and some hand-
crafted rules.

Collier et al. [6] and Shen et al. [7] investigated the auto-
mated recognition of biomedical named entities based on
the hidden Markov model. Kazama et al. [8], Lee et al. [9],
and Takeuchi et al. [10] investigated automated recogni-
tion based on a support vector machine (SVM). Features
for recognizing named entities were proposed in these
investigations, e.g. word, part-of-speech (POS), and
orthography.

Task 1.A of BioCreAtlvE was a competition involving
automated gene/protein name recognition. The system
described here was developed for that competition. It uses
the SVM algorithm as a learning method for gene/protein
name recognition. This algorithm has achieved good per-
formance in many classification tasks, and we have previ-
ously showed that it performs well for protein name
recognition [11]. Gazetteers have often been used for the
named entity recognition task on newswire corpora. How-
ever, as Tsuruoka et al. [12] reported, dictionary pattern
matching can result in low recall in a biomedical domain
due to spelling variations. We thus investigated and eval-
uated the performance of our system when using an addi-
tional feature of making partial dictionary pattern
matches. The gene/protein name dictionaries were made
by collecting gene and protein names from the SWISS-
PROT [13] and the TrEMBL [13] databases. We used par-
tial dictionary matching, and the matches found in the
dictionary became features used by SVM. Here we report
the performance of our system in the BioCreAtIvE compe-
tition, analyze its features, and discuss the effect of the
parameters on SVM learning.
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System concept.

Results

System description

The concept of our system is shown in Figure 1. We use
SVM as the machine learning algorithm. The training data
is a set of feature vectors with a binary value (+1 for a pos-
itive example and -1 for a negative example). The algo-
rithm finds an optimal classification function that divides
the positive and negative examples. We report on the fea-
tures that we used in our system to recognize gene/protein
names. We use the Yet Another Multipurpose Chunk
Annotator, YamCha [14]http://cl.aist-nara.ac.jp/~taku-

ku/software/yamcha/, which wuses TinySVM http://
chasen.org/~taku/software/TinySVM/ to bridge the gap

between the results of feature extraction and the SVM.

Training data and test data

Training data (7500 sentences) and development test data
(2500 sentences) were prepared for system development
in Task 1.A of the BioCreAtIvE competition. In both data
sets, the gene/protein names were tagged with NEW-
GENE. Other tokens were tagged with POS tags. An exam-
ple is the following: "translocation/NN of/IN the/DT NF-
kappaB/NEWGENE  transcription/NEWGENE  factor/
NEWGENE,/,", where NN is a noun or singular mass, IN
is a preposition or subordinating conjunction, and DT is
a determiner. This data is tokenized by BioCreAtIvE. We
follow their definition. For example, "translocation", "of",
"the", "NF-kappaB", "transcription”, "factor" and "," are
the tokens in above sample phrase.

BIO representation
We used a BIO representation for chunking, using the fol-
lowing three tags.

e B: Current token is the beginning of a chunk.

e I: Current token is inside a chunk.

e O: Current token is outside of any chunk.

The resulting chunking representation of the above sam-
ple phrase is "translocation/O of/O the/O NF-kappaB/B

transcription/I factor/I,/O".

Feature extraction
We extracted the following features (see Table 1).

e Word: All words appearing in the training data.

¢ POS: Part of speech of the current token. We used the
Brill tagger [15]http://www.cs.jhu.edu/~brill/. POS and
NEWGENE were tagged in the training and test data for
development. The tags were not shown in the test data for
evaluation. We tagged using the Brill tagger in the training

Page 2 of 10

(page number not for citation purposes)


http://cl.aist-nara.ac.jp/~taku-ku/software/yamcha/
http://cl.aist-nara.ac.jp/~taku-ku/software/yamcha/
http://chasen.org/~taku/software/TinySVM/
http://chasen.org/~taku/software/TinySVM/
http://www.cs.jhu.edu/~brill/

BMC Bioinformatics 2005, 6:S8

Table I: Features extracted.

Feature Value

word all words in the training data

orthography capital, symbol, etc. (see Table 2)

prefix 1, 2, or 3 gram of the starting letters of a word
suffix I, 2, or 3 gram of the ending letters of a word
part of speech Brill tagger

preceding class -2, -1

gene/protein name dictionary

protein names collected from SWISS-PROT and TrEMBL

Table 2: Orthographic features.

Feature Example Feature Example
DigitNumber 15 CloseSquare ]
Greek alpha Colon :
SingleCap M SemiColon ;
CapsAndDigits 12 Percent %
TwoCaps RalGDS OpenParen (
LettersAndDigits p52 CloseParen )
InitCaps Interleukin Comma )
LowCaps kappaB FullStop .
Lowercase kinases Determiner the
Hyphen - Conjunction and
Backslash / Other ¥+ i
OpenSquare [

and two test data sets because we wanted to use POS as a
feature.

e Orthography: Table 2 shows the orthographic features.
If the token has more than one feature, then we used the
feature listed first in Table 2 (left side comes before the
right side in the table).

e Prefix: Uni-, bi-, and tri-grams (in letters) of the begin-
ning letters of the current token.

e Suffix: Uni-, bi-, and tri-grams (in letters) of the ending
letters of the current token.

¢ Dictionary matching: Matching gene/protein names dic-
tionary entries against uni-, bi-, and tri-grams (in tokens)
of words starting at the current token. For example, in Fig-
ure 2, the uni-gram (the current token) is "NF-kappaB",
the bi-gram is "NF-kappaB transcription" and the tri-gram
is "NF-kappaB transcription factor". There are four fea-
tures: gene name dictionary match for the uni-gram (1),
and protein name dictionary match for the uni-gram (2),
bi-gram (3) and tri-gram (4). Each feature was represented
as either Y (matching) or N (not matching). The diction-

ary was constructed based on the gene/protein names
from the SWISS-PROT and TrEMBL databases. The SWISS-
PROT database is a protein knowledge base including
amino acid sequences and other properties currently
known about the proteins. It is manually annotated. The
TrEMBL database consists of computer-annotated entries
derived from the translation of all coding sequences in the
nucleotide sequence database. The sequences are not yet
represented in the SWISS-PROT database. The TrEMBL
database also contains protein sequences extracted from
the literature and protein sequences submitted directly by
the user community. We collected 96,195 protein names
and 115,663 gene names from the SWISS-PROT database
and 76,596 protein names and 31,414 gene names from
the TTEMBL database. Two dictionaries were constructed,
one from SWISS-PROT (GPD1) and the other from
SWISS-PROT and TrEMBL (GPD2). When used for match-
ing, each of these dictionaries is divided into 2 (sub-)dic-
tionaries, one with the protein names and the other with
the gene names. In our dictionary matching, we ignored
the case and stop words, which are shown in Table 3http:/
/www.ncbi.nlm.nih.gov/entrez/query/static/help/

pmbhelp.html#Stopwords. PubMed is a service of the
National Library of Medicine that can be used to search
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Table 3: Stop words defined by PubMed. Stop words were
ignored during dictionary matching.

a did it perhaps these
about do its quite they
again does itself rather this
all done just really those
almost due kg regarding through
also during km seem thus
although each made seen to
always either mainly several upon
among enough make should use
an especially may show used
and etc mg showed using
another for might shown various
any found ml shows very
are from mm significantly was
as further most since we
at had mostly so were
be has must some what
because have nearly such when
been having neither than which
before here no that while
being how nor the with
between however obtained their within
both i of theirs without
but if often them would
by in on then
can into our there
could is overall therefore

WORD POS ORTHO PREFIX SUFFIX DIC CLASS
position -3 translocation NN Lowercase ttrtra nonion YNNN o
position -2 of IN Lowercase o of fof NYNN o
posiion-1 |1 the | DT Lowercase tththe chethe NYNN ol
position 0 E NF-kappaB NNP Greek N NF NF- BaBpaB YNNN B |
position +1 ; transcription NN Lowercase ttrtra non ion YYNN i’ ) 71’ -
position +2 E factor NN Lowercase f fa fac T or tor YYNN i 1
position +3 i NNNN i o

sliding window

Figure 2

Feature extraction example. Feature extraction is
shown using the sample phrase "...translocation of the NF-
kappaB transcription factor...".

for articles from over 15 million citations for biomedical
articles. PubMed ignores the stop words in search queries.

¢ Preceding class: Class (i.e. B, I, or O) of the token(s) pre-
ceding the current token. The number of preceding tokens
is dependent on the window size (described later on).

For example, the features of "NF-kappaB" in the sample
phrase in Figure 2 are as follows. The word feature is NF-
kappaB. The POS feature is NNP. The orthographic feature
is Greek. The prefix features are N, NF, and NF-. The suffix
features are B, aB, and paB. The value for uni-gram (NF-
kappaB) matching with the protein name dictionary is Y.
The value for bi-gram (NF-kappaB transcription) match-
ing is N. The value for tri-gram (NF-kappaB transcription
factor) matching is N. The value for uni-gram (NF-kap-
paB) matching with the gene name dictionary is N. The
preceding class features are "O" for "the" (preceding first)
and "O" for "of" (preceding second).

Machine learning using YamCha

YamCha is a general purpose SVM-based chunker. Yam-
Cha takes in the training and test data and formats it for
the SVM. The format of YamCha for a sample phrase is
shown in Figure 2. The phrase is written vertically in the
WORD column. The extracted features are shown in the
following columns, e.g. the orthographic feature is shown
in the ORTHO column. In the DIC column, the first three
items show the results (Y or N) of the uni-, bi-, and tri-
gram (in token) matching for the protein names in the
dictionary. The last item shows the result of the uni-gram
(in token) matching for the gene names in the dictionary.
The CLASS column shows the class for each word, i.e., B,
I, or O. Each feature is set apart by white space. The shaded
area in Figure 2 shows the elements of the feature vectors
for the current word, i.e. "NF-kappaB". The information
from the two preceding and two following tokens is used
for each vector. YamCha counts the number of features,
and changes each feature into a unique positive integer.
The feature vector transferred to the SVM by YamCha is in
the form

+1201:1 3148:1 4882:1
-1 874:13652:1 6179:1.

Each line shows one vector. A +1(-1) means a positive
example (negative example). The positive integer on the
left side of the colon is the unique number of each feature.
A "1" on the right side of the colon shows that the vector
includes the feature presented by the unique number.

We used three classes, i.e., B, I, and O. YamCha counted
the number of classes appearing in the training data and
directed the SVM to learn based on the situation. Three
training sessions were done in a pair-wise fashion, i.e. (B
vs. 1), (Bvs. O), and (I vs. O), and three hyperplanes were
formed. In the test data, the optimal class of each token
was the class that had the maximum value in the three
hyperplane functions. Several parameters affect the
number of support vectors.
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Table 4: Parameters of YamCha. These parameters affect the
support vectors in SVM learning.

Parameter Value

kernel polynomial

degree of kernel 2

direction of parsing forward

window size 5 words (position -2, -1, 0, +1, +2)
cost of constraint violation 1.0

multi-class pair-wise

e Dimension of polynomial kernel (natural number): We
can use only a polynomial kernel in YamCha.

¢ Range of window (integer): The SVM can use the infor-
mation on tokens surrounding the token of interest as
illustrated in Figure 2.

® Method for a solving multi-class problem: We can use
the pair-wise or one-vs.-rest method. In the latter, the B, I,
and O classes are learned as (B vs. other), (I vs. other), and
(O vs. other).

¢ Cost of constraint violation (floating number): There is
a trade-off between the training error and the soft margin
of the hyper plane.

BioCreAtlvE Competition

The features and parameters we used in the BioCreAtIvE
competition are shown in Tables 1 and 4. We tested three
methods for the dictionary matching (1%, 2nd, and 3rd
runs).

e 1st run: Exact pattern matching between GPD1 and
words in the training and test data.

e 2nd run: Regular expression pattern matching between
GPD1 and words in the training and test data. We ignored
non-alphabetical letters in the strings by using a regular
expression in Perl. For example, "NF-kappa B" was repre-
sented as "NF\W*kappa\W*B". "\W" matches any charac-
ter except a letter, numeric digit or "_". "*" indicates any
number of such characters can be matched.

e 31 run: Exact pattern matching between GPD2 and
words in the training and test data.

Our final result in the BioCreAtIvE competition is shown
as case 1 in Table 5. The best "balanced f-score" was that
for the 2nd run. The differences between the three runs
were less than 1%. The 3t run was the worst. The results
without dictionary matching are shown as case 2 in Table

100%
O 4 tokens or more
60% @ 3 tokens
40% 02 tokens
01 token
20%
0%
test data TP FP FN
Figure 3

Percentage of n-grams of gene/protein names in test data for
evaluation and TP, FP, and FN datasets.

5. The score went up about 2.5% when dictionary match-
ing was used.

Analysis of recognition error

Some gene/protein names are compound tokens. The
average number of tokens per name was 2.131 tokens in
the training data. In the first run, the average number of
tokens per name were 1.998 (TP), 2.406 (FP), and 2.298
tokens (FN). Figure 3 shows the percentage of the number
of tokens per gene/protein name that appeared in the test
data for evaluation and the TP, FP, and FN data sets. The
percentages of names over 4 or more tokens long in the FP
and FN were higher than the one for TP, suggesting that
recognizing longer names is more difficult than recogniz-
ing shorter ones.

Table 6 shows the number of overlapping gene/protein
names between pairs of data sets (e.g. TP and FP). 76
names overlapped between the training data and FP of the
test data, which was 8.1% of the names in the FP data. 50
names overlapped between the TP and FP of the test data,
which was 5.3% of the names in the FP data. "TSST-1" and
"PTH" are two example tokens that are sometimes marked
as part of a gene/protein name in the evaluation test set
and sometimes not. "TSST-1" is marked as part of a gene/
protein name in test set sentence 11506, but not in sen-
tence 10931. Similarly, "PTH" is marked as part of a gene/
protein name in sentence 14477, but not in sentence
12212. The sentences are shown below with each token in
the form t/p, where t is the token itself. p is ' NEWGENE' if
t is part of a gene/protein name, otherwise, p gives the
part-of-speech for t:

e @@11506 With/IN a/DT cutoff/NN level/NN for/IN
TSST-1/NEWGENE of/IN ... were/VBD positive/]] for/IN
TSST-1/NEWGENE /.

s @@10931 ...
TSST-1/NN /.

under/IN the/DT influence/NN of/IN

Page 5 of 10

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:S8

Table 5: Evaluation results. Case | is using the dictionary feature. Case 2 is not using the dictionary feature. "TP", "FP", and "FN" are

the numbers of true-positives, false-positives, and false-negatives.

run Precision Recall Balanced f-score TP FP FN

|st 0.8245 0.7416 0.7809 4412 939 1537
case | 2nd 0.8230 0.7433 0.7811 4422 951 1527

3rd 0.8225 0.7408 0.7795 4407 951 1542
case 2 without dictionary matching 0.8122 0.7075 0.7562 4209 973 1740

Table 6: Overlap of gene/protein names between any two data
items. The results are for the first run. The numbers are the
overlap between the row/column items.

TP FP FN
training 1290 76 240
TP - 50 194

e @@14477 ... the/DT secretion/NN of/IN PTH/NEW-
GENE and/CC CT/NEWGENE ...

* @@12212 ... and/CC intact/]] PTH/NN (/(r/]] =/SYM -
0/CD ./CD 59/CD,/, p/NN </SYM 0/CD ./CD 05/CD)/
SYM /.

Effects of tuning parameters and features

We analyzed the effects of the tuning parameters and fea-
tures on system performance. In the analysis, we used the
combined data set of the original training, development
test and evaluation test. We performed a 10-fold cross val-
idation using 90% of the combined data set as training
data and the remainder as test data. This combined data
set was also used in the analyses shown in Tables
8,9,10,11.

Table 7 shows the effects of tuning the parameters on pre-
cision, recall, and the balanced f-score. We define the
parameters used in the 1%t run in the BioCreAtlvE
competition as the "base" (see sub-section BioCreAtIvE
Competition and Table 4). The balanced f-score
decreased about 0.03 in the cases of deg(ree) = 1 and
win(dow) = -1 to 1.] The other parameters did not have
much effect on the results. We also carried out a Wilcoxon
signed-ranks tests (two-sided) between the "base" and
other cases. Statistical analysis was performed using com-
mercial software (SPSS for Windows, version 11.0J, SPSS
Inc.). Yeh [16] pointed out that "both precision and f-
score are complicated nonlinear functions of random var-

iables" and the randomization test was recommended.
We used a Wilcoxon signed-ranks test with exact tests. A
data sample for a test is the result of interest from one of
the 10 trials in a 10-fold cross validation. Each sample was
the difference between a trial's result for the case being
compared and the corresponding result for the "base" case
(a matched pair).

The p-values are shown in parentheses. We defined the
null hypothesis as the case where there was no statistically
significant difference between two values. The alternative
hypothesis was defined as the opposite case. We set the
statistical significance level at 0.05. The null hypotheses of
the "deg.","win.-1+1", "cv = 0.01", recall of "win.-3+3"
and precision of "one-vs.rest" cases were rejected. In other
words, a statistically significant difference was seen in
those cases.

The effects of each feature on our system are shown in
Tables 8 and 9. The parameters are shown in Table 4. The
definition of "base" is the same as in Table 7. In Table 8,
we demonstrate the ability of SVM learning to be mostly
unaffected when ignoring one of the features. The "-word"
column in Table 8 shows the case in which the word
feature was ignored. The other columns have a similar
meaning. The suffix (preceding class) feature greatly
affected recall (precision). The other features had little
effect.

Table 9 showed the effect of adding the other features to
the "base". In this table, the combination of the word and
preceding class feature is defined as the "base". None of
the features affected precision much, while all of them
affected recall.

Effect of dictionary matching methods

Table 10 shows the effect of each dictionary matching
method. We used the features and parameters shown in
Tables 1 and 4. A statistically significant difference is not
seen. We also show the case in which the stop words were
not ignored in the dictionary matching. A statistically
significant difference was seen in this case, so stop words
should be ignored in dictionary matching.
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Table 7: Effects of tuning parameters on system performance. The "base" parameters are shown in Table 4. The "deg." means the
degree of the polynomial kernel, the "win." is the window range, and "cv" is the cost of constraint violation. The cost is the trade-off
between the training error and margin. The "one-vs.-rest" method was used for solving multi-class problems. The parenthesized
values are the p-values. The values in bold font have a statistically significant difference from the base value. A difference is labeled
statistically significant when the p-value is less than 0.05 on the Wilcoxon signed-ranks sum test (two-sided).

base deg. = | deg. =3 win. -1+1 win. -3+3 cv =0.01 cv=10 one-vs.-rest
Precision 0.8189 0.7692 0.8266 0.7761 0.8258 0.8227 0.8190 0.8227
(0.002) (0.014) (0.002) (0.064) (0.002) (0.750) (0.006)
Recall 0.7661 0.7525 0.7395 0.7524 0.7546 0.7686 0.7662 0.7655
(0.004) (0.002) (0.010) (0.002) (0.008) (1.000) (0.570)
Balanced f-score  0.7916 0.7607 0.7806 0.7640 0.7885 0.7946 0.7916 0.7930
(0.002) (0.006) (0.002) (0.232) (0.004) (0.500) (0.232)

Table 8: Effect of each feature on system performance l. The first column shows the values when all features were used in the SVM
learning (word, POS, orthography (orth.), prefix (pre.), suffix (suf.), dictionary matching (dic.), and preceding class (pc.)). The other
columns show the values when a feature was ignored in the learning. The parenthesized values are the p-values. The values in bold
have a statistically significant difference from the base value. A difference is labeled statistically significant when the p-value is less than

0.05 on the Wilcoxon signed-ranks sum test (two-sided).

base -word -pos. -orth.

Precision 0.8189 0.8076 0.8239 0.8210
(0.002) (0.037) (0.375)
Recall 0.7661 0.7619 0.7658 0.7590
(0.008) (0.945) (0.020)

Balanced f-score 0.7916 0.7840 0.7937 0.7887
(0.002) (0.131) (0.160)

-pre. -suf. -dic. -pc.
0.8051 0.8000 0.8143 0.7009
(0.002) (0.002) (0.105) (0.002)
0.7574 0.7233 0.7478 0.7508
(0.004) (0.002) (0.002) (0.002)
0.7805 0.7597 0.7796 0.7250
(0.002) (0.002) (0.004) (0.002)

Table 9: Effect of each feature on system performance Il. The first column shows the values when only the word and preceding class
features were used in the SVM learning. The other columns shows the values when the word and preceding class features plus one
other feature were used in the learning. The parenthesized values are p-values. The values in bold have a statistically significant
difference from the base value. A difference is labeled statistically significant when the p-value is less than 0.05 on the Wilcoxon signed-

ranks sum test (two-sided).

word+pc. (base) word+pc. +POS

word+pc. +orth.

word+pc. +pre. word+pc. +suf. word+pc. +dic.

Precision 0.8000 0.7813 (0.004)
Recall 0.5509 0.6423 (0.002)
Balanced f-score 0.6524 0.7118 (0.002)

0.7886 (0.014)
0.6786 (0.002)
0.7295 (0.002)

0.7867 (0.020)
0.6374 (0.002)
0.7041 (0.002)

0.8014 (0.770)
0.7035 (0.002)
0.7492 (0.002)

0.7964 (0.084)
0.6410 (0.002)
0.7102 (0.002)

Effect of POS tagger

As mentioned above, we used the Brill tagger [15] for POS
tagging. The tagger was trained on newswire articles. Shen
et al. [7] suggested that a POS tagger should be trained
using this domain. They trained their tagger using the
GENIA corpus [17]. They reported that using the POS
feature greatly increased the f-score. We trained a tagger
using 500 abstracts from GENIA corpus 3.02p. After the
training, the accuracy of the POS tagging increased from
79.95 t0 92.81% on the GENIA corpus.

Table 11 shows the effect of training on different corpora
on the POS tagger. The "word+POS(A)+pc." column
shows the case using the original POS tagger. The
"word+POS(B)+pc." column shows the case using the
POS tagger trained on the GENIA corpus. The word and
preceding class features were also used in both cases. The
f-score using GENIA trained POS tagger was worse than
that using the original POS tagger. The "full(A)" and
"full(B)" columns show the cases using the original and
GENIA trained POS tagger, respectively. The difference
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Table 10: Effect of dictionary matching. The results are for a 10-fold cross validation. The results in Table 5 were for the evaluation test
data; cross validation was not used. "GPD 1" means the results using GPD| in dictionary matching. They correspond to the Istrun in
Table 5. "GPDI with regexp." means the results using GPD| with regular expressions in dictionary matching. They correspond to the
2nd run in Table 5. "GPD2" means the results using GPD?2 in dictionary matching. They correspond to the 3" run in Table 5. "GDPI-
stop words" means the results when the stop words were not ignored in dictionary matching on the |5t run. The parenthesized values
are p-values. The values in bold have a statistically significant difference from the Istvalue. A difference is labeled statistically
significant when the p-value is less than 0.05 on the Wilcoxon signed-ranks sum test (two-sided).

GPDI GPDI with regexp. GPD2 GPD |-stop words
Precision 0.8189 0.8199 (0.695) 0.8130 (0.131) 0.8099 (0.006)
Recall 0.7661 0.7668 (1.000) 0.7596 (0.160) 0.7600 (0.049)
Balanced f-score 0.7916 0.7924 (0.770) 0.7854 (0.105) 0.7841 (0.006)

Table 11: Effect of trained POS tagger on biomedical literature. POS(A) means the original, newswire trained POS tagger. POS(B)

means the POS tagger with trained on GENIA corpus 3.02p. "full(A)'

' means using all features and the original, newswire trained POS

tagger. "full(B)" means using all features and the POS tagger with trained on GENIA corpus 3.02p The parenthesized values are p-
values. We compare two cases: "word+POS(A)+pc." vs. "word+POS(B)+pc." and "full(A)" vs. "full(B)". The values in bold have a
statistically significant difference in the comparison. A difference is labeled statistically significant when the p-value is less than 0.05 on

the Wilcoxon signed-ranks sum test (two-sided).

word+POS(A)+pc. word+POS(B)+pc full(A) full(B)

Precision 0.7813 0.7867 0.8189 0.8177
(0.105) (0.557)

Recall 0.6423 0.6147 0.7661 0.7640
(0.002) (0.322)

Balanced f-score 0.7118 0.6900 0.7916 0.7899
(0.002) (0.432)

between the "full" cases was small, but like with
"word+pc.+POS" cases, instead of an expected increase,
there was surprisingly a drop (in this case, not statistically
significant) in the balanced f-score when switching from
the original POS tagger to the GENIA trained POS tagger.

Discussion

As described above, the system we developed for auto-
mated gene/protein name recognition uses the SVM algo-
rithm and an SVM-based chunker, YamCha. YamCha
performs pre-processing and set-up for the SVM. We eval-
uated our system in the BioCreAtIvE competition using
various parameters for SVM learning, i.e. degree of the
polynomial kernel, range of the window, cost of con-
straint violation, and method for solving multi-class prob-
lems. Among these parameters, the degree of the
polynomial kernel (d = 1) and the range of the window (-
1+1) had a significant effect. Takeuchi et al. [10] also used
an SVM-based system to evaluate the effects of feature sets
and found a range of -1+1 was better than -3+3, which is
the opposite of our findings. The optimal window size is
thus corpus dependent.

We also evaluated the effect of various features (both indi-
vidually and combined): word, POS, orthography, prefix,
suffix, dictionary matching, and preceding class features.
In Table 8, one feature is removed at a time. As shown in
the table, except for the suffix and preceding class features,
removing any one feature did not have a large effect. In
Table 9, the evaluations were performed by using each fea-
ture one at a time in addition to the word and preceding
class features. As shown in the table, each feature had a
significant effect when few other features were present.
Combining this with the Table 8 results suggests that the
features' effects usually overlapped with each other when
the features were combined. Takeuchi et al. [10] reached
to the same conclusion from their results.

As noted above, Tsuruoka et al. [12] reported that diction-
ary pattern matching can result in low recall in a
biomedical domain due to spelling variations. As
described above, we used uni-, bi-, and tri-gram (in
tokens) matching for gene/protein name descriptions in
the dictionary. The effect of dictionary matching feature
was significant by itself. But when the features were
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small margin

large margin

Figure 4

Two possible hyper planes and margins between pos-
itive and negative examples. White triangles are positive
examples. Black dots are negative examples. A solid line
shows a hyper plane. Two dashed lines are the boundaries
between the positive and negative examples. An SVM finds
the optimal hyperplane, which is the one with the maximum
margin.

combined, the effect was not so significant. Evaluation of
different types of dictionary matching (Table 10) showed
that the differences between the types were small.

We evaluated the effect of training a POS tagger with a cor-
pus that is specific to the biomedical domain, as opposed
to training the tagger on newswire. There was surprisingly
a drop in the balanced f-score when switching from the
original POS tagger to the GENIA trained POS tagger. One
of the reasons may be that the GENIA corpus is smaller
than the other training corpus.

Conclusion

We participated in Task 1A of the BioCreAtIvE competi-
tion using the SVM algorithm. We evaluated the effect of
several features on SVM learning. We also introduced
information from external resources (gene/protein name
databases) as a feature. While the effect of each feature was
significant, these effects overlapped with each other when
the features were combined. The best balanced f-score was
the case where all features were used. This suggests that
the effect of each feature was small when the features were
combined. Kudo et al. [14] suggested that an SVM has a
high generalization performance independent of the
dimension of the feature vectors. Our results support their
suggestion.

Methods
The support vector machine (SVM), introduced by Vapnik
[18], is a learning algorithm for solving two-class pattern

recognition problems and is known for its good perform-
ance. SVM is used for many types of natural language
processing (e.g. text classification and named entity
recognition).

Each training data sample is labeled either a positive or
negative example.

Xy v1)r o (X V) Xi€ Ry € {+1,-1F. (1)

x; is the feature vector of the i-th sample and has a dimen-
sion of n. k is the total number of vectors. The y;is the class
of the vector; it is either a positive example (+1) or nega-
tive example (-1). SVM separates the two types of exam-
ples with a hyperplane, as illustrated in Figure 4 (the solid
line shows the plane). In this figure, triangles are positive
examples and black dots are negative examples. The
hyperplane is given by

wx)+b=0weR,beR (2)

The two dashed lines in Figure 4 are the boundaries
between the positive and negative examples. They are par-
allel to the hyperplane, and the distance between them is
called the margin. In this figure, two possible separating
patterns are shown: a small margin and a large margin.
The two dashed lines and margin d are given by

(wx)+b==x1,d=2/||w|]. (3)

An SVM finds the values for the variables w and b which
maximizes the margin for the training data.

These variable values minimize ||w]|| under the constraint
vil(w-x) +b] 2 1.

In general, while the training data cannot be linearly sep-
arated, the non-linear boundary can be made linear using
a kernel function K(x; x;), which moves the training data
to a high-dimensional space. Of the various types of ker-
nels available, we used a d-th polynomial kernel:

K(xi %) = (x;x;+ 1)% - (4)
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