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Abstract

Background: New technology has resulted in high-throughput screens for pairwise genetic interactions in yeast and
other model organisms. For each pair in a collection of non-essential genes, an epistasis score is obtained, representing
how much sicker (or healthier) the double-knockout organism will be compared to what would be expected from the
sickness of the component single knockouts. Recent algorithmic work has identified graph-theoretic patterns in this
data that can indicate functional modules, and even sets of genes that may occur in compensatory pathways, such as
a BPM-type schema first introduced by Kelley and Ideker. However, to date, any algorithms for finding such patterns in
the data were implemented internally, with no software being made publically available.

Results: Genecentric is a new package that implements a parallelized version of the Leiserson et al. algorithm
(J Comput Biol 18:1399-1409, 2011) for generating generalized BPMs from high-throughput genetic interaction data.
Given a matrix of weighted epistasis values for a set of double knock-outs, Genecentric returns a list of generalized
BPMs that may represent compensatory pathways. Genecentric also has an extension, GenecentricGO, to query
FuncAssociate (Bioinformatics 25:3043-3044, 2009) to retrieve GO enrichment statistics on generated BPMs. Python is
the only dependency, and our web site provides working examples and documentation.

Conclusion: We find that Genecentric can be used to find coherent functional and perhaps compensatory gene sets
from high throughput genetic interaction data. Genecentric is made freely available for download under the GPLv2
from http://bcb.cs.tufts.edu/genecentric.

Background
When two non-essential genes are simultaneously
deleted, sometimes a surprising phenotype emerges com-
pared to the phenotype of the deletion mutants of the
single genes. When studying the yeast genome, often this
can be quantified in terms of the growth rate of the dou-
ble deletion mutant, compared to the growth rate of its
component single deletion mutants, termed epistasis [1].
Recent SGA [2], dSLAM [3] and E-MAP [4] technology
produces high throughput weighted epistasis values for
large collections of double knockouts.
A variety of algorithmic methods have been proposed

to infer functionally meaningful relationships between
genes based on the structure of their epsistatic genetic
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interactions [5-10]. In particular, we consider the gener-
alized “Between Pathway Model” (or BPM) as studied by
Leiserson et al [5]. As discussed in [5], this involves finding
pairs of sets of genes, where the sum of the epistasis val-
ues between genes in different sets, minus the sum of the
epistasis values between genes in the same set, is as nega-
tive as possible. This is a generalization of an unweighted
BPM model studied by Ma et al. [11] and Brady et al.
[12], which was a simplification of the original BPMmodel
introduced by Kelley and Ideker [13]. Other versions of
BPMs, in different settings or criteria, have been studied
[9,14,15].
Leiserson et al. [5] presented a randomized algorithm

based on maximal graph cuts to generate these puta-
tive generalized BPMs from weighted epistasis data. They
showed that the BPMs produced by their method were
biologically enriched when their method was run on sev-
eral different yeast E-MAP and SGA data sets [8,16]. We
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now present a full implementation, Genecentric, of this
algorithm that is fast, easy to use, well documented and
open source. In addition, Genecentric has an extension
that performs GO enrichment analysis using FuncAssoci-
ate’s web service API [17].

Implementation
Genecentric implements a randomized algorithm to gen-
erate putative generalized BPMs as described in Leiserson
et al [5].

Algorithm
Genecentric takes as input a file with genetic interaction
data and outputs a list of pairs of sets of genes corre-
sponding to the putative generalized BPMs. The genetic
interaction data must be in a tab-delimited format where
each row corresponds to a gene pairing and that pairing’s
interaction score. Specifically, the first column contains
the first gene identifier, the second column contains the
second gene identifier, and the third column contains the
interaction score.
We’ll now brielfy recap the algorithm described in

Leiserson et al [5]. (Figure 1 provides a graphical represen-
tation of the algorithm.) First, the input genetic interac-
tion data is used to create M random bipartitions, where
the vertices correspond to genes and an edge between
genes corresponds to its interaction score. Second, each
random bipartition is transformed into a LocalMaxCut by
iteratively modifying it until every vertex in the graph sat-
isfies the following property: the sum of its edges to other
vertices in the same partition is greater than the sum of its
edges to other vertices in the other partition. Third, every
unique gene g in the interaction data generates a bipartite
subgraph (called a BPM) from this set of M bipartitions.
Namely, one partition of the BPM includes g and every
gene from the M bipartitions that is in the same partition
as g at least C% of the time. The other partition of the
BPM includes every gene from theM bipartitions that is in
the opposing partition as g at least C% of the time. Finally,
the set of all BPMs from all the genes is pruned, either to

remove BPMs whose partite sets are too small or too large
(see parameter settings, below), or to remove substantially
overlapping BPMs generated from different genes g from
the set.
Since a couple of the steps in the aforementioned algo-

rithm involve many independent calculations, Genecen-
tric parallelizes those computations automatically using
the multiprocessing module included in the Python stan-
dard library. Therefore, large data sets can be used to
generate BPMs in reasonable time. Genecentric was able
to produce BPMs for a data set containing 1,685,210
genetic interactions in a few hours on an AMD 48 core
Linux machine with default parameters. On a smaller data
set (220,116 genetic interactions), Genecentric produces
BPMs in under a minute on the same 48 core machine.

Parameters
There are several parameters that can be set to customize
Genecentric. Firstly, Genecentric can modify the underly-
ing weights on the edges of the genetic interaction data. In
particular, Leiserson et al. [5] left SGAweights unchanged,
but squared E-MAP weights (retaining the sign) to speed
convergence.
The user may also set M, the number of randomized

bipartitions (default is 250), and C, the proportion of the
time a gene must be on the same or opposite side as gene
g in order to be included in g’s BPM (default is 0.9). (Recall
that Leiserson’s algorithm generates a BPM for every gene
in the input and prunes redundant BPMs.) Note that
because Genecentric is a randomized algorithm, the set of
BPMs produced will not be the same for every run; how-
ever, as M increases, the results will converge. Leiserson
et al. [5] showed that with values of at least 250 and 0.9
for M and C respectively, different runs of the algorithm
will produce similar results. M and C can be customized,
but making M or C much smaller is not recommended
since there could be too much variability between dif-
ferent runs of the randomized algorithm. Alternatively,
increasing M can further decrease variability, but at a
runtime performance cost.

Input genetic
interactions

Generate
random

bipartition

Apply
LocalMaxCut

Repeat M times

Create BPM
for gene from
M bipartitions

For all unique
genes in the

interaction data

Prune
Output BPMs

Data flow
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Parallelized

Figure 1 Graphical representation of the algorithm implemented by Genecentric. Edges represent data flow, circles represent computation
and rectangles envelop independent computations that can be parallelized in the presences of multiple cores.
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By default, Genecentric will prune the BPM set returned
to avoid repeating many overlapping, similar sets. But
there are also several pruning options that are completely
configurable in Genecentric. The first is the Jaccard index,
J (default is 0.66), which specifies the similarity threshold
of the resulting BPMs. Namely, every pairing of BPMs in
the output is guaranteed to have a Jaccard index less than J
(where the Jaccard index between two BPMs is defined as
the size of the intersection between both BPMs divided by
the size of the union of both BPMs). The final two pruning
options, “minimum-size” and “maximum-size” (defaults
are 3 and 25, respectively), filter the resulting set of BPMs
so that no BPM has a module with fewer than “minimum-
size” genes and no BPM has a module with more than
“maximum-size” genes.
Recall that Genecentric outputs a tab-delimited file

which contains a list of pairs of sets of genes corre-
sponding to its putative generalized BPMs. This file can
be used as input to GenecentricGO which performs GO
enrichment analysis on the BPMs using FuncAssociate
[17]. GenecentricGO can also be configured with several
parameters. Of them, the most notable are the p-value
cutoff (default 0.05) and the genespace. The p-value cutoff
corresponds to the p-value cutoff in FuncAssociate: only
sets of genes whose p-value is less than or equal to this
cutoff will be returned in the results. The genespace is by
default set to only the genes in the input genetic interac-
tion data, but can be toggled to use all genes recorded for
that species by FuncAssociate. GenecentricGO also pro-
vides an interface to use different species and namespaces
with FuncAssociate.
Finally, GenecentricGO by default automatically

employs the FuncAssociate multiple-testing correction
by setting the “simulations” parameter to the greater of
1000 and the number of BPM modules, where 1000 is
the default value set by FuncAssociate. This value is also
capped at 10000 by FuncAssociate. (While in theory,
we should be able to discover more enrichment by just
setting the parameter to the number of modules in the
input BPM file, we found that FuncAssociate’s stochastic
simulations to estimate p-values were too variable when
this parameter was set much below their default of 1000.)

Results and discussion
We ran Genecentric on the same E-MAP dataset as dis-
cussed in the Leiserson et al. paper [5], and showed that
it produced comparable results (though note that results
will not be 100% identical, because, as discussed above and
in their paper, results wobble slightly over different ran-
domized runs of the algorithm). We set out next to show
that Genecentric with default or nearly default parame-
ters can be run “out of the box” to produce meaningful
results that corrolate well with the biological literature

on other datasets as well. In particular, a recent study
[18] produced an E-MAP dataset of 374 genes involved
in various aspects of plasma-membrane biology, including
endocytosis, signaling, lipid metabolism and eisome func-
tion. We ran Genecentric on this E-MAP dataset using
all default parameters except the weights were squared,
as Leiserson et al. [5] recommends for E-MAP data, and
C was lowered from .9 to .8 in order to produce more
BPMs (22 instead of 6). Since default parameters were
used, GO enrichment was computed by FuncAssociate
with a genespace consisting of only genes from the E-MAP
data set. Of these 22 BPMs, 7 exhibited GO enrich-
ment in both gene sets, according to the Genecentric
FuncAssociate GO module, whereas an additional 8 exib-
ited GO enrichment in one gene set of the BPM. These
enrichment rates, while good, are still somewhat below
the percentage enrichment reported for the ChromBio E-
MAP dataset in [5], perhaps because the component genes
in this plasma-membrane E-MAP data set are not all as
well studied, and thus fewer functional annotations are
yet known.
Of the 7 BPMs that exhibit enrichment in both gene

sets, 6 have one set that contains the genes coding for
proteins COG 5, 6, 7, and 8, and there is some addi-
tional overlap in some of the genes in these BPMs (recall
that Genecentric with default pruning options will permit
overlapping BPMs provided their Jaccard index is less
than 0.66). Table 1 shows a list of these BPMs and cor-
responding GO enrichment terms. Figure 2 depicts one
of these BPMs by showing edges for physical and genetic
interactions between each pair of genes.
The proteins encoded by COG 5, 6, 7 and 8 constitute a

structural component known of the conserved oligomeric
Golgi (COG) complex, an important peripheral Golgi
apparatus protein structure that has been most signifi-
cantly implicated in retrograde trafficking [19] and has
additional roles in supporting Golgi apparatus structure
[20] and glycosylation [21]. It is a hetero-octamer con-
sisting of two lobes, A and B, that are both comprised of
four proteins, COG 1-4 for lobe A and COG 5-8 for lobe
B. Recent studies have also identified COG 1 as the link-
ing unit between the two lobes of the complex [22]. Four
out of the eight COG proteins have significant homology
with other organisms, including mammals, and studies
have shown that mutation of COG proteins in humans can
lead to a group of serious conditions known as congen-
ital disorders of glycosylation [21,23]. Deletions in COG
1-4 (Lobe A) in Saccharomyces cerevisiae cause severe
growth defects, but COG 5-8 have been shown to be
non-essential [22]. Additionally, the mutations that cause
these severe growth defects are phenotypically distinct,
indicating different roles for the different subunits of the
COG complex [24,25]. Other genes that occur multiple
times in the same set as the COG proteins in the BPMs
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Table 1 BPMs where 1module includes the COG complex

BPM Selected enriched GO terms

COG6 COG5 COG8 PIB2
COG7

intra-Golgi vesicle-mediated
transport (4/5)
protein targeting to vacuole (4/5)

ARL1 VPS35 GET3 ARL3 protein transport (9/10)
SYS1 GOT1 PEP8 SFT2 Golgi apparatus (7/10)
MNN1 VPS17 endosome transport (6/10)

vesicle-mediated transport (9/10)

COG6 RIC1MRP8 COG5
COG7 SNC1 COG8 GCS1
PIB2 SRO7

intra-Golgi vesicle-mediated
transport (4/10)
Golgi vesicle transport (7/10)
vesicle-mediated transport (9/10)

ARL1 VPS35 GET3 ARL3
SYS1 SRO77 PEP8 SFT2
GOT1 SNC2 VPS13 VPS17

post-Golgi vesicle-mediated
transport (7/12)
Golgi vesicle transport (8/12)
establishment of protein
localization (10/12)
retromer complex (3/12)

COG6 YPT7 COG7 MVB12
YPT52 COG5 CCZ1 ARF3
COG8 ENT3 YPT53

intra-Golgi vesicle-mediated
transport (4/11)
establishment of protein
localization to vacuole (8/11)
vacuolar transport (10/11)
GTP binding (4/11)

ARL1 VPS35 GET3 ARL3 endosome transport (7/12)
YPT31 BOR1 SYS1 GOT1 Golgi vesicle transport (7/12)
PEP8 SFT2 VPS17 YOL019W retrograde transport, endosome to

Golgi (4/12)
establishment of protein
localization (11/12)
retromer complex (3/12)

COG6 COG5 COG8 COG7 intra-Golgi vesicle-mediated
transport (4/4)
protein targeting to vacuole (4/4)
establishment of prtoein
localization (4/4)

ARL1 VPS35 GSF2 GET3 ARE2 retromer complex (3/10)
SFT2 GOT1 SCS7 PEP8 VPS17

COG6 RIC1 MRP8 EIS1 ARF1
COG5 PIB2COG7COG8GCS1

intra-Golgi vesicle mediated
transport (5/10)
Golgi vesicle transport (6/10)

ARL1 VPS35 GSF2 ARL3
SYS1 APL5 GET3 PEP8 SFT2
GOT1 ARE1 SCS7 VPS13
VPS17

protein transport (11/14)
Golgi apparatus (8/14)
endosome transport (7/14)
Golgi vesicle transport (7/14)
establishment of protein
localization (11/14)

COG6 RIC1MRP8 VPS41 EIS1
ARF1 ARF3 COG5 YPT52
COG7 COG8 GCS1 SNC1
PIB2 ENT3

intra-Golgi vesicle-mediated
transport (5/15)
Golgi vesicle transport (8/15)
vesicle-mediated transport (13/15)
establishment of protein
localization (11/15)

ARL1 VPS35 GSF2 ARL3 endosome transport (9/17)
YPT31 SYS1 VPS17 GET3 Golgi vesicle transport (8/17)
PEP8 SFT2 GOT1 SNC2 SCS7
VPS13MNN1 VPS29 ARE2

retrograde transport, endosome to
Golgi (5/17)
establishment of protein
localization (12/17)
retromer complex (3/17)

This table lists several BPMs generated where one module contains genes in the
COG complex. Selected enriched GO terms are included, and bolded genes have
been enriched for at least one of the GO terms listed. For complete GO
enrichment results, please see the Additional file 1.

include PIB2, a protein that binds phosphatidylinosi-
tol 3-phosphate, involved in vesicle-mediated transport.
Phosphatidylinositol-3-phosphate, together with small
GTPases, is also an important factor for sorting in the
endocytic pathway [26]. Other proteins were CCZ1, a pro-
tein involved in vaculolar transport and vesicle docking,
ARF1, ARF3 and GCS1, where ARFs are GTPases of the
Ras superfamily that regulate the formation of coated vesi-
cles in intracellular trafficking [27,28] are regulated by the
GTPase activating protein GCS1 [29]. RIC1, a GTPase
invovled in localization of trans-Golgi membrane proteins
[30] andMRP8, whose function is not known, also appear.
On the opposite module of the BPMs containing COG

proteins, frequently occuring genes include VPS35 and
PEP8, components of the retromer complex needed for
retrograde transport, as well as VPS17, a protein asso-
ciated with proper vesicle formation. Additionally, the
protein GOT1, which plays a role in secretory transport
[31] was found, which further hints at the variable func-
tion of the COG complex and its subunits. The second
module also contained the genes encoding for the ARL1,
SYS1, and ARL3 proteins—which are involved in vesi-
cle tethering at the Golgi apparatus [32]. It is interesting
that, different from the datasets discussed in the Leiser-
son et al paper [5], a large percentage of the enriched
BPMs contain the same COG complex. We don’t know
if the popularity of the COG complex in our results is
simply because of what annotation is known, something
about the interaction of the algorithm with the distribu-
tion of the E-MAP weights, or multiple roles for the COG
complex that make it especially able to compensate for
multiple different biological processes.
In addition to the BPMs containing the COG complex,

there are two dually enriched and seven singly enriched
BPMs (see Tables 2 and 3). We note that some of the
BPM modules—that do not show up as GO enriched—
support functional coherence when we dig more deeply
into the literature. For example, a module in one of our
BPMs, RTG3 ALP1 PEP12 XRN1 BCH2 RTG2 SIW14,
is not flagged as GO-enriched by FuncAssociate, but we
found that RTG3 and RTG2 are known to be involved in
the retrograde signalling pathway. PEP12 is a multifunc-
tional yeast syntaxin that controls entry of biosynthetic,
endocytic and retrograde traffic into the prevacuolar com-
partment [33]. BCH2 is a member of a complex that
mediates the export of specific cargo proteins from the
Golgi to the plama membrane [34].
A full list of Genecentric BPMs is provided in the

Additional file 1.

Conclusions
Wehave introduced Genecentric, a package that can auto-
matically accept a set of high-throughput genetic interac-
tion data, and output generalized BPMs along with their
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Figure 2 Sample of physical and genetic interactions of a BPM. Genetic interactions appear as solid lines. Thicker lines correspond to more
negative weights. Dashed lines correspond to known protein-protein interactions. (Protein-protein interactions were taken from BioGRID’s data,
with the “low-throughput” filter active).

Table 2 Dually enriched BPMs

BPM Selected enriched GO terms

SLT2 BCK1 CLC1 endoplasmic reticulum unfolded
protein response (2/3)

PEX1 PEX6 EDE1 SKN7 ERG4
ADH1 PEX15 ARC18 ECM33

protein import into peroxisome
matrix (3/9)
receptor recycling (3/9)

COG6 YPT7MVB12 YPT52
COG5 CCZ1 ARF3 YPT53
ENT3

vacuolar transport (8/9)
protein targeting to vacuole (6/9)
establishment of protein
localization (9/9)
GTP binding (4/9)

VPS35 YPT31 BOR1 YOL019W
PEP8

retrograde transport, endosome to
Golgi (3/5)

This table lists BPMs which have both modules enriched and do not include all
of the COG 5, 6, 7 and 8 genes. Selected enriched GO terms are included, and
bolded genes have been enriched for at least one of the GO terms listed. For
complete GO enrichment results, please see the Additional file 1.

Table 3 Singly enriched BPMs

BPMmodule Selected enriched GO terms

VPS35 GET3 ARL3 SYS1 protein transport (7/8)
GOT1 PEP8 SFT2 ARE1 endosome transport (5/8)

PEX6 BZZ1 SKN7 BLS1 PEX1
TWF1 PEX15 ARC18 JSN1
ECM33

protein import into peroxisome
matrix,
receptor recylcing (3/10)

SNC1 GCS1 SRO7 Golgi to plasma membrane
transport (3/3)

YPT7MVB12 ARF3 CCZ1
YPT52 VPS41 STD1 ENT3

establishment of protein
localization (7/8)

VPS27 YOL019W VPS4 protein retention in Golgi apparatus
(2/3)

maintenance of protein location in
cell (2/3)

RVS161 RVS167 SKN1 lipid tube assembly (2/3)

RVS161 PKH3 ASG7 conjugation with cellular
fusion (2/3)

This table lists enriched modules from BPMs which have only one module
enriched for GO terms. Selected enriched GO terms are included, and bolded
genes have been enriched for at least one of the GO terms listed. For complete
GO enrichment results, please see the Additional file 1.
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enrichment values. Genecentric has several features that
make using it both easy and fast:

• Its only dependency is Python—no compilation steps
or third party libraries are required. Any system
capable of running Python should also be able to run
Genecentric.

• All of the parameters of the algorithm are easily
configurable using Genecentric’s command line
interface. (Namely, M, C, and J as used in the
aforementioned algorithm description.) The
parameters are by default set to those used in [5]:
M = 250, C = 0.9 and J = 0.66.

• Genecentric automatically takes advantage of
multiple CPUs.

• Input data can be read directly from genetic
interaction data files. The user may specify an
additional set of genes to exclude from BPM
generation (i.e., a list of essential genes).

• Genecentric is species and gene identifier agnostic.
(i.e., Genecentric does not care which kind of gene
identifiers are used.)

• Code is well documented and could be extended
easily.

Finally, we provided an extension to Genecentric that
can perform Gene Ontology (GO) enrichment on a set
of BPMs. Genecentric uses FuncAssociate’s web API to
achieve this, and parameters like genespace, namespace
and p-value are configurable on the command line.

Availability and requirements
Project name: Genecentric
Project home page: http://bcb.cs.tufts.edu/genecentric
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 2.6 or higher
License: GNU General Public License Version 2
Any restrictions to use by non-academics: No

Additional file

Additional file 1 : All BPMs generated with GO enrichment. A full list of
BPMs generated by Genecentric from E-MAP data with 374 genes involved
in various aspects of plasma-membrane biology, including endocytosis,
signaling, lipid metabolism and eisome function.
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31. Lorente-Rodŕıguez A, Heidtman M, Barlowe C:Multicopy suppressor
analysis of thermosensitive YIP1 alleles implicates GOT1 in
transport from the ER. J Cell Sci 2009, 122(Pt 10):1540–50. http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=2680100&tool=
pmcentrez&rendertype=abstract.

32. Panic B, Whyte JRC, Munro S: The ARF-like GTPases Arl1p and Arl3p
act in a pathway that interacts with vesicle-tethering factors at the
Golgi apparatus. Curr Biol: CB 2003, 13(5):405–10. http://www.ncbi.nlm.
nih.gov/pubmed/12620189.

33. Gerrard SR, Levi BP, Stevens TH: Pep12p is a multifunctional yeast
syntaxin that controls entry of biosynthetic, endocytic and
retrograde traffic into the prevacuolar compartment. Traffic
(Copenhagen, Denmark) 2000, 1(3):259–69. http://www.ncbi.nlm.nih.gov/
pubmed/11208109.

34. Trautwein M, Schindler C, Gauss R, Dengjel J, Hartmann E, Spang A:
Arf1p, Chs5p and the ChAPs are required for export of specialized
cargo from the Golgi. EMBO J 2006, 25(5):943–54. http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=1409733&tool=
pmcentrez&rendertype=abstract.

doi:10.1186/1471-2105-14-23
Cite this article as: Gallant et al.: Genecentric: a package to uncover graph-
theoretic structure in high-throughput epistasis data. BMC Bioinformatics
2013 14:23.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=26 70499&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=26 70499&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=26 70499&tool=pmcentrez&rendertype=abstract
http://www.nature.com/nbt/journal/v23/n5/abs/nbt1096.html
http://www.nature.com/nbt/journal/v23/n5/abs/nbt1096.html
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=18 65586&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=18 65586&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377458
http://www.ncbi.nlm.nih.gov/pubmed/17314980
http://www.ncbi.nlm.nih.gov/pubmed/17314980
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=28 00365&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=28 00365&tool=pmcentrez&rendertype=abstract
http://www.nature.com/doifinder/10.1038/nsmb.1829
http://www.nature.com/doifinder/10.1038/nsmb.1829
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2009. 00965.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2009. 00965.x/full
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=21 73297&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=21 73297&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=21 73297&tool=pmcentrez&rendertype=abstract
http://www.molbiolcell.org/content/17/5/2312.short
http://www.molbiolcell.org/content/17/5/2312.short
http://www.ncbi.nlm.nih.gov/pubmed/15932880
http://www.ncbi.nlm.nih.gov/pubmed/15932880
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=30 58693&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=30 58693&tool=pmcentrez&rendertype=abstract
http://www.molbiolcell.org/content/13/5/1484.short
http://www.molbiolcell.org/content/13/5/1484.short
http://www.ncbi.nlm.nih.gov/pubmed/11703943
http://www.ncbi.nlm.nih.gov/pubmed/11703943
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=31 64296&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=31 64296&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=31 64296&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/9705267
http://www.ncbi.nlm.nih.gov/pubmed/10331652
http://www.pnas.org/content/93/19/10074.short
http://www.pnas.org/content/93/19/10074.short
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=30 564&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=30 564&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=30 564&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=26 80100&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=26 80100&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=26 80100&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/12620189
http://www.ncbi.nlm.nih.gov/pubmed/12620189
http://www.ncbi.nlm.nih.gov/pubmed/11208109
http://www.ncbi.nlm.nih.gov/pubmed/11208109
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=14 09733&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=14 09733&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=14 09733&tool=pmcentrez&rendertype=abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Algorithm
	Parameters

	Results and discussion
	Conclusions
	Availability and requirements
	Additional file
	Additional file 1 

	Competing interests
	Authors' contributions
	Acknowledgements
	Funding
	Author details
	References

