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Abstract

Background: Increasingly biological text mining research is focusing on the extraction of complex relationships
relevant to the construction and curation of biological networks and pathways. However, one important category of
pathway—metabolic pathways — has been largely neglected.
Here we present a relatively simple method for extracting metabolic reaction information from free text that scores
different permutations of assigned entities (enzymes and metabolites) within a given sentence based on the presence
and location of stemmed keywords. This method extends an approach that has proved effective in the context of the
extraction of protein–protein interactions.

Results: When evaluated on a set of manually-curated metabolic pathways using standard performance criteria, our
method performs surprisingly well. Precision and recall rates are comparable to those previously achieved for the
well-known protein-protein interaction extraction task.

Conclusions: We conclude that automated metabolic pathway construction is more tractable than has often been
assumed, and that (as in the case of protein–protein interaction extraction) relatively simple text-mining approaches
can prove surprisingly effective. It is hoped that these results will provide an impetus to further research and act as a
useful benchmark for judging the performance of more sophisticated methods that are yet to be developed.

Background
On the extraction of metabolic pathway information
An important goal of biological text mining is to extract
relationships between named biological and/or medical
entities. Until recently, the vast majority of research in this
area has concentrated on extracting binary relationships
between genes and/or proteins, most notably protein–
protein interactions. However, attention is increas-
ingly shifting towards more complex relationships,
with a particular focus on biomolecular networks and
pathways [1].
However, in spite of this new focus on networks

and pathways, one of the most important sub-topics
— the construction and curation of metabolic path-
ways — has largely been ignored. This is in con-
trast to the protein- and gene-centric focus of recent
text-mining research: protein–protein interaction net-
works [2,3], signal transduction pathways [4-6], protein
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metabolism (synthesis, modification and degradation) [1],
and regulatory networks [7,8]. This protein/gene-centric
focus is also enshrined in the BioNLP’09 shared task on
event extraction, an important initiative designed to gal-
vanize community-wide effort to address the challenges of
extracting information about complex events [1].
The only system that we are aware of that has an explicit

focus on extracting metabolic pathway information from
free text is the template-based EMPathIE [9], which is no
longer under active development (R. Gaizauskas, personal
communication). The aim of EMPathIE was to extract
information about metabolic reactions together with rel-
evant contextual information (including source organism
and pathway name) from specific journals. When eval-
uated on a corpus of seven journal articles, EMPathIE
achieved 23% recall and 43% precision [10].
Certain more generic systems may also be used for

the same purpose, including the GeneWays system for
“extracting, analyzing, visualizing and integrating molec-
ular pathway data” [4], and the MedScan sentence parsing
system [11], capable of extracting relationships between
a range of biomedical entities including proteins and
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small molecules, and evaluated on a PPI extraction task
by Daraselia et al. [12]. However, neither GeneWays nor
MedScan are freely available and we are not aware of any
published evaluation of their performance with metabolic
pathway data.
It is interesting to note that the creators of GeneWays, in

that system’s key publication, suggest signal-transduction
pathways are an “easier target” for information extrac-
tion than metabolic pathways, and chose to evaluate its
performance on the former rather than the latter [4]. Sim-
ilarly Hoffmann et al. identify the extraction of metabolic
information as a “special case” that has “specific prob-
lems” associated with it [13]. This perception may explain
why relatively little attention has been paid to the task of
extractingmetabolic reactions from free text. The particu-
lar challenges that are characteristic of metabolic reaction
extraction task include:

• Multiple entity types and entity mismatch. Whereas
protein–protein interaction networks, protein
metabolism and signal-transduction pathways
concern the entity-type protein, metabolic reactions
involve both enzymes and metabolites. Moreover,
there is a mismatch between the entities that most
taggers address (proteins/genes, small molecules)
and the entities that we wish to tag in metabolic
pathways (enzymes, metabolites). Similar problems
arise in the context of the extraction of
protein–protein interactions owing to the fact that
protein/gene taggers almost invariably fail to
distinguish between proteins and genes. Only a
subset of proteins are enzymes, and whereas the
distinctive nomenclature associated with enzyme
names may be beneficial to the extraction process
(we address this point below), it has been argued that
identifying the names of metabolites is more difficult
than some other categories of chemical name [14].

• Ternary (and n-ary) relationships. Whereas the
relationships in protein–protein interaction networks
and signal-transduction pathways are typically binary
(e.g. “protein A activates protein B”), metabolic
relations are typically ternary (e.g. “enzyme C
catalyzes the conversion of substrate D to product
E”). Moreover, multiple substrates and/or products
are commonplace, leading to further complexity. One
consequence is that there is a greater potential for all
the relevant entities in a metabolic reaction to be split
over multiple sentences and for there to be a high
incidence of anaphora usage.

One of the key themes of this paper is to address
the question as to whether the extraction of metabolic
reactions is, indeed, more difficult than the extraction of
protein–protein interactions.

Although the fully-automated construction of networks
and pathways from the literature may be the ultimate
goal, a more practical focus for text mining systems in
the immediate future is to provide assistance to database
curators and model builders. Existing initiatives specifi-
cally designed to support database curation include Pre-
BIND [15] and various tools [16] aligned with the task of
curating FlyBase [17]. In this context, high recall is often
deemed to be of paramount importance, although exces-
sive numbers of false positives detract from the usability
of such systems [18]. Existing initiatives designed to assist
the curation of pathway and network databases include
research that addresses the curation of Wnt signaling
pathways [5] and an application designed to support the
curation of chemical–gene–disease networks in the Com-
parative Toxicogenomics Database [19].

Amethodology for extracting metabolic reactions
Various approaches have been utilized for extracting rela-
tionships between biological entities described in free
text, broadly ranging from simple methods based on the
co-occurrence of terms to sophisticated natural language
processing methods. Here we adopt an intermediate, rule-
based and pattern-matching approach that combines lists
of stemmed keywords with rules for rewarding and penal-
izing the occurrence of words depending on their location.
Our approach can be viewed as an elaboration of several
existing algorithms designed to extract protein–protein
interactions (PPIs).
Indeed, the starting point for the algorithm developed

here was the simple benchmark for PPI extraction pre-
sented in [20], which looks for ordered triplets of the
form “protein name/interaction keyword/protein name”.
The Co3 algorithm, available via theWhatizit suite ofWeb
services [21], takes a similar approach, as does the algo-
rithm devised by Ono et al. [22], but with the addition of
simple parts-of-speech rules.
This kind of algorithm is easy to integrate with

established named-entity recognition tools. Our algo-
rithm builds on two state-of-the-art named-entity taggers:
BANNER [23] for recognizing gene/protein names; and
OSCAR3 [24,25] for identifying the names of chemical
entities.
However, one important difference in the algorithm we

have developed arises from the intrinsic complexity of the
relationships we are seeking to extract. Different permu-
tations of assigned entities within a given sentence are
scored separately, although there are rules to ensure that
implausible permutations are ignored. Details are given in
the Methods section below.
In terms of performance, we might anticipate that our

algorithm will give higher precision, but lower coverage,
than simple co-occurrence methods; and higher cover-
age, but lower precision, than NLP-based methods. It is
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interesting to note that the simple algorithm used in [20]
proved remarkably effective when evaluated against some
well-regardedNLP-based approaches.When other factors
are taken into account, such as execution speed and ease
of installation, simple algorithms of this type are worthy
of serious attention.

Ametabolic reaction extraction task
When considering how to evaluate our system, we found
that existing corpora — even those with many sentences
that contain the names of at least two small molecules,
for example GENIA [26] and the metabolite corpus devel-
oped by Nobata and coworkers [14] — do not contain
significant amounts of metabolic information relevant to
our chosen target. Given that we perceive support for
metabolic pathway curation as the ultimate goal of our
research, we chose to assess how many reactions belong-
ing to a given metabolic pathway our system is able to
extract from papers known to be relevant to that pathway.
To this end, three contrasting pathways were chosen from
the EcoCyc database [27].
Our approach to evaluation differs in two additional

respects from the recent protein-centric BioNLP shared
task on complex relationship extraction [1]: rather than
abstracts alone, we use additional sections of full text
articles (see below); and we do not use pre-annotated
entities. For the shared task, gold-standard annotations
of protein names were provided from the outset. It was
argued at the time that this would not have a major
impact on the results, whilst it was acknowledged that it
detracted somewhat from the task’s “realism” [1]. How-
ever, an analysis by Kabiljo and coworkers demonstrated
that the use of putative entity names that have been pre-
dicted using entity taggers (with an associated error rate of
around 15%) instead of true, gold-standard entity names
(extracted manually from the literature) can have a sur-
prisingly large impact on relationship extraction scores,
with “a fall of around 20 percentage points [in F-score]
being commonplace” [20].
Although our approach to evaluation has been previ-

ously adopted elsewhere (see, for example, Rodŕıguez-
Penagos et al. [8]), we acknowledge that it is “unrealistic”
in that all papers are known to be relevant in advance.
Although this is an important caveat, we believe the
identification of relevant papers (e.g. with respect to the
species of interest) is the task of a separate informa-
tion retrieval component and that our evaluation of our
system’s ability to extract metabolic reactions is highly
informative.

Methods
Existing text-mining resources
OSCAR3 [28] is an open source tool for identifying
chemistry-specific terms in free text that uses an approach

that combines n-grams, regular expressions and heuristic
rules with access to a chemical dictionary [25]. There are
relatively few competitor taggers that annotate the names
of chemical entities, and OSCAR3 is arguably the most
mature and widely-used of those that are freely available.
It performed exceedingly well in a recent independent
evaluation by Wiegers et al. [19], retrieving well over 90%
of curated chemical “actors”, and had high recall rates
(over 85%) when applied to a newmanually-annotated test
metabolite corpus [14].
Although OSCAR3 is designed to tag enzymes as well as

small molecules, its strategy for identifying enzyme names
is limited to checking for single words with the suffix “-
ase” or “-ases”. However, we found this to be inadequate
in practice; in a preliminary examination of the context
in which enzymes are mentioned in our training set of
sentences, we discovered a significant number of cases
in which the standard nomenclature was not used. For
instance, consider the following sentence fragments (in
which we have italicized the enzyme entity):

“The protein encoded by the hisF gene has an
ammonia-dependent activity”

“The hisB gene product appears to be a bifunctional
enzyme”

Moreover, even when the name of the enzyme ends in “-
ase”, it often comprises multiple words, only one of which
is tagged by OSCAR3. Hence, in the sentence:

“Therefore, cleavage of acetoin might occur by a
reaction that is analogous to the oxidative-thiolytic
cleavage of pyruvate to acetyl-CoA and CO2 catalyzed
by the pyruvate dehydrogenase multienzyme
complex.”

we would like to annotate the full name pyruvate dehydro-
genase, or perhaps pyruvate dehydrogenase multienzyme
complex, rather than just the single word dehydroge-
nase that OSCAR3 annotates. It is also worth not-
ing that OSCAR3’s mark-up nomenclature for enzymes
(type=“CM”) is the same as that for chemical entities in
general. For these reasons we decided to use a generic
gene/protein name tagger in our system to identify the
names of putative enzymes, rather than OSCAR3.
Nevertheless, most enzyme names do end in “-ase” or

“-ases”, and there are potential benefits to taking these
distinctive suffixes into account when choosing between
multiple putative enzyme names (see below).
There are several free gene/protein name taggers

available. We chose BANNER (v02) [23,29], an open
source tool that applies a conditional random fields-
based approach to a range of orthographic, morpholog-
ical and syntactic features, on the grounds that it was
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the best performing tagger in our earlier, multi-corpus
evaluations [20].
Sentence splitting and tokenization were carried out

using the Apache OpenNLP toolkit v1.4.3 [30] with bio-
chemical models available from the Jena University Lan-
guage & Information Engineering (JULIE) lab [31]. All
these resources are open source.

Reaction extraction algorithm
Given text in which the names of putative proteins and
small molecules have been tagged, our algorithm pro-
ceeds in three key stages: a sentence selection phase;
an entity assignment phase; and an assignment scoring
phase.

Sentence selection
The algorithm begins by selecting sentences containing
at least two small molecules. Our working assumption is
that sentences of interest will contain the names of both
a substrate and a product, but not necessarily the name
of an enzyme; it is sometimes possible to correctly iden-
tify substrate and product even when the name of an
enzyme is not found (e.g. when it is mentioned in a sep-
arate sentence). In our training corpus (described below),
30% of the sentences that describe a metabolic reaction
(and selected without reference to whether the name of an
enzyme is present or not) do not contain the name of an
enzyme.

Entity assignment
Given a selected sentence, most (but not all) potential
orderings of putative enzyme(s), substrate(s) and prod-
uct(s) occurring within the sentence are then considered
in turn, or — in the absence of a putative enzyme name
—orderings of substrate(s) and product(s). The possibility
that the reaction has multiple substrates and/or products
is taken into account during this scoring phase. Consider,
for example, the sentence:

“L-Arabinose isomerase catalyzes the conversion of
L-arabinose to L-ribulose, the first step in the
utilization of n-arabinose by Escherichia coli B/r.”

Here BANNER tags L-Arabinose isomerase as a puta-
tive protein, and OSCAR tags L-arabinose, L-ribulose and
n-arabinose as putative small molecules. Ten different
ways that the entities enzyme, substrate and product
may be assigned to the tagged names are deemed suit-
able for consideration during the scoring phase. These
assignments are given in Table 1.

Assignment scoring
Given a sentence to which the entities substrate, prod-
uct and (optionally) enzyme have been assigned, each

Table 1 Assignments of the entities enzyme (E), substrate
(S) and product (P) for a sample sentence

L-Arabinose isomerase L-arabinose L-ribulose n-arabinose

E S P P

E S S P

E P S S

E P P S

E S P

E S P

E S P

E P S

E P S

E P S

The ten assignments of E, S and P for the sentence “L-Arabinose isomerase
catalyzes the conversion of L-arabinose to L-ribulose, the first step in the
utilization of n-arabinose by Escherichia coli B/r”. Given that L-Arabinose
isomerase is the only tagged protein, it is deemed to be the enzyme in all cases,
whereas different numbers and orderings of substrates and products are
possible, given the presence of three tagged small molecules (L-arabinose,
L-ribulose and n-arabinose). Note that other potential orderings (namely E-P-S-P
and E-S-P-S) are not considered, as they are deemed highly unlikely to occur
in practice.

assignment is then awarded a separate score based on the
following criteria:

• Each word occurring between the first and last
assigned substrate and product — the entities
L-arabinose and n-arabinose in the exemplar
sentence above — and that does not belong to the
name of any additionally-assigned entities —
L-ribulose in this exemplar sentence — incurs a small
penalty (-0.1 points per word).

• If a keyword is found at an appropriate location
relative to one or more entities, the assignment is
awarded a positive score (+2 points
per keyword).

• If a keyword is found in an inappropriate location, a
penalty (of -1 point) is incurred.

• A bonus (of +2 points) is awarded when both a
reaction and production keyword are found, provided
they are in appropriate locations.

Keywords fall into the following categories: reaction
word stems (e.g. add, convert, hydrolys, dimeris); pro-
duction word stems (e.g. form, give, produc, synthesi);
variants of the verb catalyze; prepositions (e.g. to, from,
by); and the coordinating conjunction and. Stemming
was performed using a Java implementation [32] of the
standard Porter stemming algorithm [33]. Scoring loca-
tions include: between an assigned enzyme and substrate
for reaction keywords; between a substrate and prod-
uct for reaction keywords, for production keywords and
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for the prepositions to and into; and between the last
two assigned products/substrates for the word and. An
example of an inappropriate location for a production
keyword is before an assigned substrate.
As an example, here is the scoring for our exemplar

sentence given the following assignments:

Enzyme = L-Arabinose isomerase
Substrate = L-arabinose
Products = L-ribulose and n-arabinose

• Reaction keyword conversion found between the
enzyme and substrates: +2 points.

• Preposition to found between substrate and
products: +2 points.

• Both a reaction word and a production word have
been found: +2 points.

• Word catalyzes found: +2 points.
• Penalty for words between first and last entities: -0.8

points.

This gives a total score of +7.2 points.
The list of assignments is then ranked by score and the

final predictions are made from this list, highest score
first. Multiple assignments may be used to make predic-
tions, thereby enabling the algorithm to identify multiple
reactions within a single sentence.
The keyword lists and weightings used in the algorithm

were chosen as follows:

• The reaction keyword list was assembled manually
with specific reference to the nomenclature used in
the Enzyme Commission classification [34].

• The production keyword list, together with the set of
prepositions and conjunctions, were assembled
manually from an examination of the literature, from
our own knowledge of the field, and using
a thesaurus.

• The weightings (bonuses and penalties) used for each
component when generating a score for a given
assignment were derived from a small training corpus
described below.

It is worth noting that an attempt to automatically com-
pile a keyword list from verbs found between a tagged
protein entity and a tagged small molecule in the GENIA
corpus (a process analogous to that carried out by Kabiljo
et al. in the context of PPI extraction [20]) proved insuf-
ficiently discriminatory to be useful, as the false positive
rate was too high.
The program used to generate the metabolic reaction

extraction results presented in this paper is available in
Additional file 1 and an explanatory worked example is
given in Additional file 2.

Training and evaluation
Training corpus
A small training corpus was used to set the weighting
for the various scoring rules described in the previous
section. This corpus consists of sentences containing the
names of at least two small molecules selected manu-
ally from the literature referenced in the EcoCyc database
[27] for various metabolic pathways, but excluding the
specific pathways used subsequently for evaluation; 100
sentences were manually selected that describe at least
one reaction each (with at least one named substrate and
one named product), together with 100 sentences con-
taining the names of multiple small molecules, but that
do not describe a specific reaction. It is important to note
that these were the only criteria used to select sentences
from the set of referenced papers. No attempt was made
to exclude “difficult” sentences, hence the corpus contains
the following complex sentence with multiple reactions:

“ZEP catalyses the epoxidation of zeaXanthin to
produce epoxycarotenoid; NCED catalyses the
cleavage reaction of epoxycarotenoids to produce
xanthoxin (the first C15 intermediate); and AAO
catalyses the final step of ABA biosynthesis, which
converts ABA aldehyde to ABA.”

Half of the sentences (i.e. 50 describing interactions,
50 describing no interactions) were used to manually
adjust the weightings of the various scoring components
described above in order to find a good combination for
differentiating between true positives (i.e. true interac-
tions with entities correctly assigned) and false positives
(i.e. non-interactions, or interactions with entities misas-
signed). In addition, we chose a scoring threshold (set to
3.0); any permutation of entity assignments that gives a
score below the threshold is eliminated from further con-
sideration. The effectiveness of the chosen weightings was
evaluated using the remaining set of 100 sentences. No
attempt was made to highly optimize the choice of weight-
ings and thresholds, as our sample size of sentences was
relatively small and unlikely to be highly representative of
relevant literature as a whole.

Evaluation pathways
Rather than create a set of manually-annotated sen-
tences or abstracts to evaluate our method, we decided
to assess performance against manually-curated pathways
in the EcoCyc database. This is a similar approach to that
adopted by Yuryev et al. [6] in the context of automated
signaling pathway construction and Rodŕıguez-Penagos
et al. [8] when evaluating the automated reconstruction of
a bacterial regulatory network.
We chose three pathways from EcoCyc and collected

the original papers cited in each of these EcoCyc entries:
the pantothenate and coenzyme A biosynthesis pathway
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(8 papers), shown in Figure 1; and the tetrahydrofolate
biosynthesis pathway (13 papers) and the aerobic fatty
acid β-oxidation I pathway (11 papers), shown in Addi-
tional file 2. All three pathways are from E. coli K-12 substr.
MG1655. All reactions in all three pathways have at least
one substrate, product and enzyme; some reactions have
multiple substrates and/or products, but there is never
more than one enzyme.
We chose to annotate only the Abstract and Introduc-

tion of the referenced papers using our metabolic reaction
system and compare the results to the relevant pathways
within EcoCyc. Our decision to exclude the Methods,
Results and discussion sections was in part a pragmatic
one (it reduced the amount of text we needed to exam-
ine manually in order to evaluate the performance of our
system), but was also guided by previous research con-
cerning the information content of the different sections
of full-text articles. For example, Shah et al. [36] under-
took an analysis of the distribution of protein and gene
names in 104 articles, and concluded that the Abstract
and Introduction were the best sources of information
about entities and their interactions, with the Methods
and, to a lesser extent, the Results sections often proving
problematic (for example, keywords unique to the Meth-
ods section commonly refer to reagents and experimental
techniques).
We also carried out a complementary analysis against a

collection of short passages of text containing known reac-
tions which we obtained from the Reactome database [37].
Using the database we were able to link togethermetabolic
reactions and the short passages of text describing them.
Our intention was to automate a comparison between the
gold-standard reactions in Reactome and the reactions
extracted by our method. This required that all entities in
the reaction must be present in the describing text and
the entities must all be able to be trivially matched with
their corresponding mentions with the text. This filtering
produced 193 suitable passages of text with corresponding
metabolic reactions.

Measuring performance
To gain a rounded picture of how well our system
performs, we considered the quality of its predictions
for different aspects of our evaluation data: the enti-
ties (enzymes, small molecules) within a pathway; the
metabolic reactions within a pathway; the binary rela-
tionships (enzyme-substrate, enzyme-product, substrate-
product) within a reaction; and whole pathways.
Given that primarily we compared our predictions to

manually-curated pathways, rather than to gold-standard
corpus annotations, we chose to adopt a similar approach
to measuring performance to that of Rodŕıguez-Penagos
et al. (2007) [8]. However, in our preliminary evalua-
tion of entity tagger performance, we used gold-standard

manually-annotated corpora, rather than curated path-
ways. In this context wewere able to calculate the standard
recall, precision and F-score metrics used in the majority
of text mining research. Consequently the main perfor-
mance measures we used are:

• Recall(C) : Of the reactions/relationships/entities
within a corpus of texts, the percentage that have
been extracted — here ’C’ stands for ‘corpus’.

• Recall(P) : Of the reactions/relationships/entities
within a manually-annotated pathway, the
percentage that have been extracted — here ’P’ stands
for ‘pathway’.

• Precision: Of the extracted
reactions/relationships/entities, the percentage that
are correct.

• F-score: The weighted harmonic mean of recall(C)
and precision.

Note that, in evaluating recall, we only take into account
the primarymetabolites belonging to themain route along
the metabolic pathway. Hence side metabolites, such as
ATP → ADP + Pi, are ignored. We took this approach
because it is common practice for authors to omit details
about side metabolites from published papers, leaving
them to be inferred by the reader.
When judging the accuracy of named entity taggers,

there is a choice to be made between “strict” matching cri-
teria (where the tagger is required to match a given name
exactly) and “sloppy” matching criteria (where the tagger
is not required to match the name boundaries exactly to
score a “hit”). For example, consider the following tagged
sentence fragment:

“. . . is a key precursor of the
<molecule>4′-phosphopantetheine</molecule>
moiety of. . . ”

Using sloppy matching criteria, credit is given for anno-
tating phosphopantetheine, 4′-phosphopantetheine or 4′-
phosphopantetheine moiety, but also for key precursor of
the 4′; whereas strict matching criteria require an exact
match to 4′-phosphopantetheine.
In this research we adopted sloppy matching criteria on

the grounds that they have proved more informative than
strict criteria in the context of gene/protein named-entity
recognition in general, and of gene/protein relationship
extraction in particular. With respect to named-entity
recognition, in the vast majority of cases where a match
was found using sloppy criteria but not with strict criteria,
the core part of the entity name was correctly identi-
fied [38]. Strict criteria were deemed misleading because
they are highly sensitive to the essentially arbitrary choices
made when drawing up annotation guidelines for the eval-
uation corpora — for example, whether the word “mouse”
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Figure 1 The pantothenate and coenzyme a biosynthesis pathway. A diagram of the pathway obtained using the BioCyc pathway viewer [35].
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is part of the protein name in the phrase “mouse oxytocin”.
With respect to named-entity recognition in the specific
context of relationship extraction, a manually corrected F-
score was only 4 percentage points lower than the sloppy
F-score, but 20 points greater than the strict F-score [20].
In the data sets used for this research there are a few

examples where sloppy matching criteria arguably give a
misleading impression about how well a complex entity
name has been tagged. With sloppy matching, both the
following examples of sub-optimal tagging score a “hit”:

• The significant truncation of the long entity name
Geranyl pyrophosphate:(-)-endo-fenchol cyclase to
endo-fenchol cyclase;

• The splitting of single entity TPS-d3 family members
of conifer diterpene synthases into the two tagged
entities TPS-d3 and conifer diterpene synthases.

However, such examples are comparatively rare, and we
have concluded that the number of false negatives that
appear to be true negatives with strict criteria is a more
significant problem than the number of false positives that
appear to be true positives with sloppy criteria.

Results and discussion
Pre-evaluation of entity taggers
We performed a preliminary evaluation of the perfor-
mance of BANNER and OSCAR3 on the GENIA corpus

Figure 2 Graphs showing the performance of OSCAR3 at a range of confidence thresholds. Performance is shown under the following
conditions: a)when applied to the SCAI chemical corpus; b)when applied to the GENIA corpus without acronym detection; and c)when applied to
the GENIA corpus with acronym detection. The y-axis gives the recall(C), precision and F-score values in the range 0 to 1.
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[39], which contains 2,000 biomedical abstracts related to
the specific topic of human blood cell transcription fac-
tors. GENIA was chosen because it contains annotations
for a broad range of biological and chemical entities. We
additionally tested OSCAR3 using the dedicated Fraun-
hofer SCAI chemical corpus [40], which contains 101
abstracts from chemistry papers. Neither tool was devel-
oped using either of these corpora: BANNER was trained
on the BioCreAtIvE corpus [41], and OSCAR3 combines
knowledge-based heuristics with the chemical dictionary
ChEBI [42].
BANNER scored 72% for precision, recall(C) and F-

score on GENIA. This is roughly in line with our expec-
tations; it has been previously shown that a range of
protein/gene name taggers perform less well on GENIA
than on some other widely-used corpora, and that this
is (at least in part) attributable to the chosen annotation
criteria (see, for example, the analysis in [43]).
The results for OSCAR3 are more interesting and are

presented in Figure 2. Two features stand out from these
results: the best performance of OSCAR3 on both cor-
pora is worse than we had expected from results presented
elsewhere [19], with peak F-scores of 62% and 48% on
the Fraunhofer SCAI corpus (Figure 2a) and the GENIA
corpus (Figure 2b) respectively; and the performance on
the GENIA corpus is significantly worse than that on
Fraunhofer SCAI.
A preliminary examination of the tagged text generated

by OSCAR3 for both corpora indicated that a signifi-
cant proportion of the false positives were attributable to
acronyms being tagged as the names of chemicals. This
is a known problem (identified in the original OSCAR3
paper by Corbett & Murray-Rust [24]) and one that the
authors advocate addressing at the level of the wider
text-mining framework.
In this spirit, we developed a simple method for resolv-

ing acronyms. Any putative acronym (i.e. any uppercase
token of more than one letter) is deemed to be a false pos-
itive unless either a) a defining chemical name is found
in the text preceding it, or b) OSCAR3 gives it a confi-
dence score of 0.5 or more. The latter criterion is used to
allow for the presence of commonly occurring molecules
for which acronyms are frequently used without explicit
definition (e.g. NAD). This approach achieved a signifi-
cant improvement in precision at the cost of a negligible
drop in recall (Figure 2c). Bearing these results inmind, we
henceforth used OSCAR3 with the threshold set to zero,
thereby maximizing recall.
We also used our training corpus of sentences contain-

ing the names of at least two small molecules (see above)
to assess whether, in cases where BANNER tags multiple
protein names within a single sentence, it is advantageous
to prefer names that end in “-ase” or “-ases”. Of the 77
enzyme names in the training corpus, 60 end in “-ase(s)”.

As expected, the suffix “-ases” commonly occurs when
a text refers to a class of enzymes in general, whereas
the suffix “-ase” is used when a specific enzyme is being
discussed in the context of a particular reaction.
Where BANNER tags multiple names within a single

sentence, we concluded that giving preference to names
that have the ending “-ase(s)” is potentially beneficial in
the vast majority of cases. This is mainly attributable
to the tendency of BANNER to tag multiple terms that
refer to the same entity; by giving precedence to a term
that ends in “-ase(s)”, the typical effect is to select the
full name of the enzyme ahead of its tagged abbreviation
and/or EC number. For simplicity, we have not incorpo-
rated this approach in our current method. However, a
small increase in the score assigned to putative enzymes
that have names ending in “-ase(s)” is, we believe, worth
further consideration.

Performance of entity taggers onmetabolic corpora
We began by undertaking a standard analysis of tagger
performance by evaluating their scores for all the entities
in the Abstract and Introduction of each of the papers
associated with our three evaluation pathways. Results are
shown in Table 2.
Performance here is significantly higher than it was for

GENIA. It is worth noting that, in the case of BANNER,
the performance on this corpus is very similar to its per-
formance on gene/protein interaction corpora such as
AIMed [44] and the LLL training corpus created for the

Table 2 The tagging performance of BANNER and OSCAR3

Protein names tagged Small molecule names

by BANNER tagged by OSCAR3

Pantothenate and coenzyme A biosynthesis pathway

Recall(C) (%) 81 (112/139) 96 (329/343)

Precision (%) 85 (112/132) 86 (329/384)

F-score (%) 83 91

Tetrahydrofolate biosynthesis pathway

Recall(C) (%) 93 (250/268) 82 (528/647)

Precision (%) 76 (250/327) 95 (528/558)

F-score (%) 84 88

Aerobic fatty acid β-oxidation I pathway

Recall(C) (%) 91 (341/376) 81 (456/565)

Precision (%) 82 (341/414) 92 (456/494)

F-score (%) 86 86

The tagging performance of the NER tools when applied to the Abstracts and
Introductions from papers referenced in EcoCyc with respect to our three
evaluation pathways. Taking the BANNER column for the pantothenate and
coenzyme A biosynthesis pathway as an example, the numbers in brackets
indicate that BANNER correctly identified 112 out of the 139 protein names
(recall row); and of the 132 names it tagged, 112 were correct (precision row).
The OSCAR3 results are with a confidence threshold of zero.
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Table 3 The performance of our metabolic reaction
extractionmethod on three evaluation pathways

Correct reactions Correct

(ignoring enzyme) (including enzyme)

Pantothenate and coenzyme A biosynthesis pathway

Recall(P) (%) 78 (7/9) 56 (5/9)

Precision (%) 59 (24/41) 41 (17/41)

Tetrahydrofolate biosynthesis pathway

Recall(P) (%) 90 (9/10) 70 (7/10)

Precision (%) 60 (39/65) 38 (25/65)

Aerobic fatty acid β-oxidation I pathway

Recall(P) (%) 29 (2/7) 29 (2/7)

Precision (%) 30 (11/37) 14 (5/37)

Taking the “correct reactions (ignoring enzymes)” column for the pantothenate
and coenzyme A biosynthesis pathway as an example, the numbers in brackets
indicate that our algorithm correctly identified 7 out of the 9 reactions in the
curated EcoCyc pathway (recall row), giving 78%; and of the 41 identified
interactions (precision row), 24 were valid reactions (irrespective of whether
they belong to the pathway or not), giving 68%. A reaction for which the
susbtrate(s) and product(s) have been correctly assigned, but not the enzyme, is
deemed correct in column two, but incorrect in column three.

2005 LLL challenge [45], for which F-scores of 82.9% and
84.1% were reported in [20].

Relationship extraction
Our metabolic reaction extraction results (with and
without the correct assignment of enzymes taken into
account) for all three evaluation pathways, are shown
in Table 3. The same results broken down into binary
interactions (substrate–product, substrate–enzyme and
product–enzyme), along with the results for the Reac-
tome dataset, are shown in Table 4. Note that the number

of binary pairs is larger than the number of reactions,
because some reactions comprise multiple substrates
and/or products. A visual summary of the complete set
of results for the smallest of the three pathways (the pan-
tothenate and coenzyme A biosynthesis pathway) is given
in Figure 3. Equivalent figures for the tetrahydrofolate
biosynthesis and the aerobic fatty acid β-oxidation I path-
ways are given in Additional file 2, together with a set
of example sentences annotated with the putative entities
and relationships extracted by our system.
Fair andmeaningful comparisons within the field of bio-

logical text mining are extremely difficult; for example,
a single system may give a wide range of different per-
formances even when applied to different corpora within
the same sub-domain. In this research, a prominent fea-
ture of the results (as presented in Tables 3 and 4) is that
our algorithm performs noticeably less well on the aer-
obic fatty acid β-oxidation I pathway than on the other
two pathways. To a significant extent this appears to
be attributable to the distinctive ways that reactions in
fatty acid pathways are commonly described, for exam-
ple in terms of molecular addition (with no explicit
product mentioned):

Enoyl-CoA hydratase catalyzes the second reaction of
the fatty acid β-oxidation, i.e., the syn addition of water
to α,β-unsaturated fatty acyl-CoA thioesters.

However, in the absence of a substantially larger data set,
we are unable to draw firm conclusions.
Notwithstanding these caveats and challenges, we note

(with considerable caution) that our results appear to
be somewhat better than those achieved using the
EMPathIE system. However, no direct comparison is
possible.

Table 4 Binary interaction extraction for all three evaluation pathways

Substrate–product Substrate–enzyme Product–enzyme Total

Pantothenate and coenzyme A biosynthesis pathway

Recall(P) (%) 67 (10/15) 58 (7/12) 55 (6/11) 61 (23/38)

Precision (%) 59 (35/59) 65 (13/20) 59 (13/22) 60 (61/101)

Tetrahydrofolate biosynthesis pathway

Recall(P) (%) 82 (9/11) 64 (7/11) 70 (7/10) 78 (25/32)

Precision (%) 48 (55/114) 62 (28/45) 58 (26/45) 53 (109/204)

Aerobic fatty acid β-oxidation I pathway

Recall(P) (%) 20 (2/10) 38 (3/8) 38 (3/8) 31 (8/26)

Precision (%) 40 (12/30) 80 (8/10) 67 (6/9) 53 (26/49)

Reactome dataset

Recall(P) (%) 63 (737/1167) 37 (166/439) 36 (157/439) 52 (1060/2045)

Precision (%) 88 (749/856) 72 (169/235) 67 (157/234) 81 (1075/1325)

Numbers in brackets were calculated as for Table 3.
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Figure 3 A network showing the reactions predicted from the eight source papers for the pantothenate and coenzyme A biosynthesis
pathway. Squares are small molecules, circles are enzymes, and a pair of arrows is used to denote a single reaction (the first for the interaction
substrate-enzyme, and the second for the interaction enzyme-product). Items labeled green are correct; items labeled red are incorrect. The
number next to a reaction indicates the number of times that reaction was extracted from the set of source texts. The reactions on the right-hand
side of the figure (lying outside the blue rectangle) are reactions extracted by our algorithm that are not part of the manually-annotated
pantothenate and coenzyme A biosynthesis pathway from EcoCyc given in Figure 1.
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Of the 182 reactions extracted from the Reactome
dataset, 53 were perfect extractions. A manual analy-
sis on extracted reactions that matched poorly with the
gold-standard reactions showed that 41 of the reactions
in the dataset where described in a form unlikely to
be used in a journal article. Consider, for example, the
following passage:

At the beginning of this reaction, 1 molecule of
’Oxygen’, 1 molecule of ’H2O’, and 1 molecule of
’5-Hydroxytryptamine’ are present. At the end of this
reaction, 1 molecule of ’NH3’, 1 molecule of
’5-Hydroxyindoleacetaldehyde’, and 1 molecule of
’H2O2’ are present.

We should, of course, be even more cautious when
making comparisons between different sub-domains and
where the evaluation strategies are different. Nevertheless,
we think it is useful to consider how the performance of
our method for extracting metabolic reactions compares
to that in the well-studied sub-domain of gene/protein
interaction extraction. Here (in Table 5) we briefly com-
pare the performance of our method with the reported
performance of three contrasting gene/protein interac-
tion tools: the rule-based RelEx method [46], which was
the best-performing method in the evaluation reported in
[20]; the NLP tool AkanePPI [47] trained on the BioInfer
corpus [48]; and the simple baseline(k) algorithm in [20].
These results suggest both that our method performs

reasonably well when placed in the wider context of

Table 5 Performance comparison of gene/protein
extraction tools with our metabolic reaction extraction
method

Range of scores on

different corpora (%)

Method Interaction type Precision Recall

RelEx Protein-protein 39-80 45-72

Baseline(k) Protein-protein 23-54 52-67

AkanePPI

(trained on BioInfer) Protein-protein 29-77 40-56

Method described

in this paper Substrate-product 40-88 20-82

Method described

in this paper Substrate-enzyme 62-80 37-64

Method described

in this paper Product-enzyme 58-67 36-70

The range of scores for the gene/protein extraction tools are for five corpora as
evaluated in [20]. The scores for our metabolic reaction extraction method
summarize those in Table 4, i.e. they are broken down into the same three binary
interactions and the range is for the three evaluation corpora and the Reactome
dataset.

biomedical relationship extraction, and that metabolic
reaction extraction is more tractable than has hitherto
been assumed.
There are a number of ways that the method could

be improved, for example by incorporating techniques
for handling negation (and speculation) and resolving
anaphora, and the system might benefit from using
more sophisticated tools in place of our present simple
strategies, such as the widely-used Acronym Resolving
General Heuristic (ARGH) program [49]. More gener-
ally, we should anticipate that more sophisticated NLP
approaches will give better precision at the potential cost
of lost recall and greater complexity. But perhaps more
interesting is the fact that our relatively simple method
performs so well, especially in light of prior assumptions
that this is a particularly challenging sub-domain. There
are several reasons why this may be the case:

• Whole reactions are commonly described in a single
sentence.

• A single sentence commonly describes a single
reaction and nothing else.

• Entity taggers appear to be reasonably accurate in a
metabolic context, with most enzyme names having
the ending “-ase” or “-ases”.

• Keyword lists appear reasonably discriminatory when
distinguishing metabolites from non-metabolites and
substrates from products.

• Most reactions are described multiple times in the
literature; typically at least one occurrence will be
worded in such a way that the information is
relatively easy to extract.

Conclusions
In this paper we have presented a simple method for
extracting metabolic reactions from free text. We have
shown that it successfully extracted a high percentage of
reactions for two out of three pathways; the third pathway,
dealing with fatty acid metabolism, proved particularly
challenging owing to the distinctive way in which reac-
tions are described (for example, in terms of molecular
addition). In so far as comparisons with broadly compa-
rable methods are possible, it appears that our approach
performs rather well; that, at least, is what our brief com-
parison with the performance of gene/protein interaction
extraction methods suggests, with both precision and
recall at comparable levels.
Given that information about secondary metabolites

such as ATP is frequently omitted from source papers,
we have focussed on the extraction of primary metabo-
lites, rather than side metabolites, in the evaluations we
present here. Clearly, this lack of information about side
metabolites in the literature is an obstacle to the fully
automated construction of complete metabolic pathways
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using text-miningmethods. However, a more realistic goal
for a metabolic text mining system is to support manual
curation. In this latter context, we believe our evaluations
show that our method could prove immediately useful
to database curators, who are already used to having to
infer the side metabolites when metabolic reactions are
incompletely specified in the literature.
Ultimately, we believe there is one overriding impli-

cation of this research: that the extraction of metabolic
reactions may be more tractable than previously assumed
and therefore worthy of more widespread attention within
the biological text-mining community in the immediate
future.

Additional files

Additional file 1: ReactionExtractor. An example Java program,
provided as a runnable .jar file, implementing the algorithm described in
the paper. The program takes a plain text file as input and outputs all
predicted reactions from the input text. Running instructions are included
in the archive. The open source tools described in the paper (BANNER,
OSCAR3 and OpenNLP) are all included in the archive.

Additional file 2: SupplementaryMaterial. An archive containing a
detailed, worked example of the algorithm and the reconstructions of the
tetrahydrofolate biosynthesis pathway and the fatty acid β-oxidation I
pathway, together with a set of example sentences annotated with the
putative entities and relationships extracted by our system.
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