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Abstract

Background: We analyze phylogenetic tree building methods frommolecular sequences (PTMS). These are methods
which base their construction solely on sequences, coding DNA or amino acids.

Results: Our first result is a statistically significant evaluation of 176 PTMSs done by comparing trees derived from
193138 orthologous groups of proteins using a new measure of quality between trees. This new measure, called the
Intra measure, is very consistent between different groups of species and strong in the sense that it separates the
methods with high confidence.
The second result is the comparison of the trees against trees derived from accepted taxonomies, the Taxon measure.
We consider the NCBI taxonomic classification and their derived topologies as the most accepted biological
consensus on phylogenies, which are also available in electronic form. The correlation between the two measures is
remarkably high, which supports both measures simultaneously.

Conclusions: The big surprise of the evaluation is that the maximum likelihood methods do not score well, minimal
evolution distance methods over MSA-induced alignments score consistently better. This comparison also allows us
to rank different components of the tree building methods, like MSAs, substitution matrices, ML tree builders, distance
methods, etc. It is also clear that there is a difference between Metazoa and the rest, which points out to evolution
leaving different molecular traces. We also think that these measures of quality of trees will motivate the design of
new PTMSs as it is now easier to evaluate them with certainty.

Keywords: Phylogenetic trees, Tree building methods, Maximum likelihood, Distance measures, Multiple sequence
alignments, Substitution matrices, Molecular sequences

Background
Phylogenetic tree reconstruction from molecular se-
quences (PTMS) was first suggested by Emile Zuckerkandl
and Linus Pauling [1] and is now one of the major tools
in the arsenal of bioinformatics. By PTMS we will under-
stand methods which build a phylogenetic tree based
solely on sequences, either coding DNA or amino acids.
Of the many people who have contributed to this field, J.
Felsenstein deserves special mention for his many contri-
butions summarized in his book [2].
Computing phylogenies is ubiquitous, and not only of

academic interest, but also quite practical: selectingmodel
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organisms [3], tracing disease [4], finding vectors [5],
finding suitable defenses to new viruses [6], maximizing
diversity for species conservation, [7] tracing ancestry and
populationmovements [8,9] andmany other problems are
solved with the aid of good phylogenetic trees.
The state of testing of PTMS is far from satisfactory.

This is obvious when we see the discrepancies between
the results from bioinformatics and the accepted tax-
onomies produced by biologists, and the high confidence
measures that bioinformatics has tried to attach to their
results [10-12]. In short, in our experience, the distrust
that biologists may have on PTMS is justifiable.
Most results in the literature supporting PTMSs use:(i)

extensive simulations, (ii)measures of quality, (iii) small
scale comparisons of some specific trees, (iv) some intu-
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ition. These techniques are useful, but limited. Specif-
ically, simulations are excellent to discover errors and
to find the variability that we may expect from the
methods. Yet simulations usually rely on a model of evo-
lution (e.g. Markovian evolution). It is then expected
that a method which uses the same model will per-
form best. Measures of quality include bootstrapping,
branch support confidence and indices on trees (like
least squares error in distance trees or likelihood in
maximum likelihood (ML) trees). These measures also
rely on some statistical model which is essentially an
approximation of reality. Bootstrapping values have suf-
fered from over-confidence and/or misinterpreted and
are sensitive to model violations [13-16]. Furthermore
these techniques are directed towards assessing a partic-
ular tree rather than assessing the methods. Small scale
comparisons are valuable but usually lack the sample
size to make the results statistically strong. We con-
sider any evidence which is in numbers less than 100
to be “anecdotal”. Any study where a subset of cases
is selected is a candidate to suffer from the bias aris-
ing from an author trying to show the best examples
for his/her method. Finally, intuitions are very valuable,
but cannot stand scientific scrutiny. We refer as intu-
itions, decisions which are not based on strict optimality
criteria. E.g. character weights in traditional parsimony
methods; using global or local alignments; various meth-
ods for MSA computation; various measures of distances,
etc.
The main problem is that there is no “gold-standard”

against which methods can be evaluated. Hopefully this
paper will provide two such standards.
Computing phylogenetic trees consumes millions of

hours in computers around the world. Because some of
these computations are so expensive and not reliable, biol-
ogists are tempted to use faster, lower quality, methods.
This evaluation (which itself consumed hundreds of thou-
sands of hours) will help bioinformaticians extract the
most of their computations. In particular, as we show,
some of the best PTMS are remarkably fast to compute.
We measure the quality of the PTMS in two ways, by

their average difference on trees which have followed the
same evolution and by their average distance to taxonomic
trees. This allows us to find the best methods, and by
averaging in different ways, the best components of the
methods.
There is no single method that is best in all circum-

stances. Some of the classes of species show a preference
for a particular method. This should not come as a sur-
prise, different organisms may leave different molecular
imprints of their evolution.

Results
We now introduce the two measures on PTMSs.

The Intra measure
For a given PTMS and several orthologous groups (OGs)
we can construct a tree for every OG. The trees should
all follow the same evolutionary history, hence the trees
should all be compatible (Figure 1, shaded yellow). The
average distance between trees built from different OGs is
thus a measure of quality of the method (the smaller the
distance, the better the method). We call this measure the
Intra measure. Since the PTMS does not get any informa-
tion about the species of the input sequences, the only way
for it to produce a smaller distance between trees is by
extracting information from the sequences. In this sense,
the best algorithm is the algorithm which extracts the
most relevant information from the sequences to derive
the phylogeny; which is exactly what we want. In math-
ematical terms the Intra measure of a PTMS M is the
expected value:

Intra(M) = E
[
d

(
M

(
gi

)
,M

(
gj

))]

where gi and gj are two different orthologous groups.
The distance d (., .) is the Robinson-Foulds distance [17]
between two trees built with the same PTMS over differ-
ent OGs. It is computed only over the species appearing
in both OGs (Figure 2). We estimate this expected value
from all the available pairs of OGs. The measure will be
incorrect for the cases of lateral gene transfers (LGT),
where sequences do not follow the same evolution. LGT
events will be few and since all methods will be affected
we do not expect a bias from them.

The Taxonmeasure
This measures how far the computed tree is from the
true taxonomic tree. A smaller distance, averaged over
a large number of OGs, means a better method. For a
given PTMS and several orthologous groups (OGs) we
compute the distance between the tree built on each
OG and the true taxonomic tree (or its approxima-
tion from NCBI, Figure 1, shaded blue). We call this
average distance the Taxon measure. The trees derived
from the taxonomy represent the consensus and sum-
mary of many scientific papers, databases and experts
and could be described as the “state of the art”. Errors
in the taxonomy should affect all methods equally and
will be like random noise.(Biases derived from the use
of these methods for building the Taxonomy are dis-
cussed in the Caveats (iv) section.) In mathematical
terms the Taxon measure of a PTMS M is the expected
value:

Taxon(M) = E
[
d

(
M(g),Tg

)]

where d(., .) is the RF distance between two trees, g is
an orthologous group, M(g) is the tree produced by M
applied to the sequences in g and Tg is the taxonomic
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Figure 1 The process of computation of the Intra measure (shaded yellow, vertical) and the Taxonmeasure (shaded blue, horizontal).

tree for the species in the group g. We estimate the
expected value by the average over all the orthologous
groups available to us. Notice, that while the taxonomic

tree is a single tree, we will be sampling tens of thou-
sands of different subsets of this single tree (and many
hundreds of totally independent subsets). See Methods,
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Figure 2 An example of the evolution of several species recovered by two proteins and the basis for the Intra measure.
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Table 1, for full results. In [18,19] a similar idea is used,
that of comparing the trees against a small, indisputable,
topology.
To achieve statistical significance we consider complete

genomes and apply the methods to all the OGs possible
(with at least 4 species) according to the OMA database
[20,21]. This gives us very large sample sizes and an unbi-
ased sample, as almost nothing is excluded (see methods
for details).
To describe the PTMSs unambiguously we need to use a

descriptive name for each one. The convention that we use
describes the steps which are used to build the tree. For
example, ClustalW InducDist BioNJ stands for the
name of the procedure which starts by making a multiple
sequence alignment (MSA) using ClustalW, then derives
the distances from the pairwise alignments induced by the
MSA and finally builds a tree from these distances using
the BioNJ algorithm. Amethod is then a sequence of com-
ponents which start from the molecular sequences and
end with a phylogenetic tree. The components of the tree
building methods used here are listed in Table 2.
Most of the possible compatible combinations were

tried. Notice that the total number of methods can grow
very quickly, for this study 176 PTMSs were tested.
Our main results are: the introduction of the Intra and

Taxon measures to evaluate PTMSs; the excellent corre-
lation between them; the top rated PTMSs for Metazoa
and non-Metazoa; the results on best components, i.e.
best MSA methods, best tree building methods and best
pairwise alignment methods.
Figure 3 shows a plot of the PTMSs on their Intra vs

Taxon measures. It can be seen that the two measures are
extremely well correlated. Table 3 shows the same corre-
lation in numerical form and for each species class. Here
a “class” means a convenient group of related species,
explained in more detail in the methods section.
It should be noted that, for a given class or set of classes,

the numerical values of the Intra measure for all the
PTMSs are comparable (lower values mean better meth-
ods). So are the values of the Taxon measure. But, for a
given class, the Intra and Taxon measures are not numer-
ically comparable, as they are taken over different sets, in
one case over all the pairs of OGs which intersect on 4
or more leaves in the second case over all the OGs. This
is why we compare the orderings (usually by computing
Pearson’s correlation coefficient) of the PTMSs by each
measure, but not the corresponding numerical values.
Tables 4 and 5 show the best (Taxon) scoring PTMS.

The first table shows the top 3 methods for Metazoa
and for non-Metazoa. The results group well in two sets.
Metazoa favors codon-based methods whereas the rest
favor induced distance methods. In terms of sample sizes
this division is quite even, the number of OGs are in a 1:2
relation but since Metazoa has larger groups and longer

sequences, the total amino acids involved are close to 1:1
(Table 6).
The symbol “�” stands for a method which is better

than another with statistical significance better than 1 in a
million (p-value < 1e-6). The symbol “>” stands for a p-
value< 0.05 and the symbol “≥” means its p-value> 0.05.
To justify the grouping of the classes we have computed

the correlations between the classes. Table 7 shows Pear-
son’s correlation coefficients of the Intra measures for all
the classes against each other.
The average correlation for non-Metazoa is 0.9867 in

a tight range, from 0.9696 to 0.9964. Notice also that
OtherEukaryota share the same preferences for the meth-
ods as Archaea and Bacteria away from Metazoa. All the
correlations with Metazoa are much lower. The natural
grouping of the classes is to have one group with Metazoa
and another group with the rest. The very high correla-
tions of the different non-Metazoa classes are the main
argument supporting the quality of the Taxon measure.
The measure is strong enough to replicate the rankings
on several groups. This is a form of bootstrapping, as the
results are replicated from independent different samples.

Averaging over the component methods
Tables 8, 9, 10, 11, 12 and 13 show results over component
methods for the Taxon measure. We are working under
the assumption that better trees derived from variants
of the components (e.g. MSAs) mean better components
(e.g. better MSAs). While this may be controversial, it
is very difficult to argue the opposite, see [19]. These
results are aggregations of various classes and various
methods. In all cases care is taken to include the same
companion methods for each comparison. The numeri-
cal value � shows the difference of the Taxon measures
(and its 95% confidence margin) between the methods. It
measures the average difference of RF distances or wrong
splits, e.g. � = 1 means that on the average one method
makes one additional mistake per tree. n indicates the
number of OGs which have been used to measure this dif-
ference (in some cases the OGs end up used more than
once, for example for differentMSAs when comparingML
methods). See Methods, Table 14.
PhyML is the best tree builder using MSAs (Table 8).

The results are consistent accross classes except for a
significant worsening of Parsimony and Gap for Metazoa.
Global alignments [22] dominate the pairwise align-

ments methods (Table 9). The most significant difference
between Metazoa and non-Metazoa is that CodonPAM
is propelled to the front by a significant margin in Meta-
zoa. It should be noted that the CodonPAM mutation
matrix is an empirical mutation matrix based on data
from vertebrates [23]. The genomes included in Metazoa
have diverged more recently than for other classes, like
Archaea, which also explains the better performance of
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Table 1 Taxon and Intra measure, output 1

Average absolute/relative Taxon/Intra distances per method for non-Metazoa

133525 orthologous groups

Method Taxon RF Taxon 0-1 Intra

Mafft InducDist BioME 1.4254 16.75% 0.4631 1.6124 29.23%

Mafft InducDist FastME 1.4258 16.76% 0.4632 1.6137 29.25%

ClustalO InducDist BioME 1.4262 16.77% 0.4634 1.6137 29.25%

ClustalO InducDist FastME 1.4266 16.77% 0.4634 1.6147 29.26%

ClustalW InducDist BioME 1.4277 16.78% 0.4637 1.6147 29.31%

ClustalW InducDist FastME 1.4278 16.78% 0.4638 1.6156 29.32%

Probcons InducDist BioME 1.4286 16.80% 0.4647 1.6164 29.31%

Probcons InducDist FastME 1.4288 16.81% 0.4648 1.6178 29.32%

Poa InducDist BioME 1.4298 16.86% 0.4654 1.6166 29.38%

Mafft InducDist BioNJ 1.4307 16.74% 0.4630 1.6240 29.37%

Poa InducDist FastME 1.4311 16.88% 0.4656 1.6178 29.39%

Prank InducDist BioME 1.4314 16.81% 0.4643 1.6173 29.27%

Prank InducDist FastME 1.4315 16.82% 0.4644 1.6177 29.28%

ClustalO InducDist BioNJ 1.4318 16.76% 0.4632 1.6240 29.36%

Probcons InducDist BioNJ 1.4336 16.79% 0.4646 1.6266 29.40%

Prograph1 InducDist FastME 1.4338 16.90% 0.4659 1.6211 29.40%

Prograph1 InducDist BioME 1.4340 16.89% 0.4658 1.6206 29.39%

ClustalW InducDist BioNJ 1.4342 16.77% 0.4638 1.6245 29.38%

Poa InducDist BioNJ 1.4348 16.84% 0.4651 1.6251 29.41%

Prank InducDist BioNJ 1.4367 16.80% 0.4641 1.6264 29.35%

Prograph1 InducDist BioNJ 1.4408 16.89% 0.4659 1.6326 29.54%

Probabilistic InducDist BioME 1.4416 16.94% 0.4670 1.6317 29.65%

Probabilistic InducDist FastME 1.4420 16.94% 0.4670 1.6325 29.65%

ClustalW InducDist LST 1.4430 16.80% 0.4643 1.6317 29.41%

Global BioME 1.4435 17.01% 0.4682 1.6373 29.82%

GlobalWAG BioME 1.4435 17.02% 0.4687 1.6372 29.84%

Global FastME 1.4436 17.01% 0.4682 1.6388 29.83%

GlobalWAG FastME 1.4439 17.03% 0.4688 1.6388 29.86%

Prank PrankGuide 1.4444 16.76% 0.4625 1.6272 29.17%

Mafft InducDist LST 1.4450 16.78% 0.4635 1.6340 29.39%

ClustalO InducDist LST 1.4454 16.79% 0.4635 1.6342 29.40%

Prank InducDist LST 1.4459 16.83% 0.4645 1.6337 29.37%

GlobalJTT BioME 1.4465 17.07% 0.4694 1.6429 29.99%

Probcons InducDist LST 1.4468 16.83% 0.4649 1.6361 29.43%

Poa InducDist LST 1.4468 16.88% 0.4655 1.6341 29.46%

GlobalJTT FastME 1.4473 17.07% 0.4693 1.6441 30.01%

Global BioNJ 1.4474 16.99% 0.4678 1.6454 29.86%

LogDelGlobal BioME 1.4474 17.13% 0.4708 1.6448 30.17%

GlobalWAG BioNJ 1.4480 17.00% 0.4683 1.6445 29.86%

ClustalO CodonDist BioME 1.4481 16.80% 0.4650 1.6571 30.04%

ClustalW CodonDist BioME 1.4481 16.81% 0.4653 1.6584 30.10%

ClustalO CodonDist FastME 1.4483 16.81% 0.4653 1.6588 30.06%
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Table 1 Taxon and Intra measure, output 1 (Continued)

LogDelGlobal FastME 1.4483 17.14% 0.4710 1.6464 30.19%

Mafft CodonDist FastME 1.4485 16.80% 0.4649 1.6580 30.04%

PartialOrder InducDist FastME 1.4488 17.32% 0.4736 1.6414 30.18%

PartialOrder InducDist BioME 1.4489 17.31% 0.4734 1.6408 30.17%

Probabilistic InducDist BioNJ 1.4489 16.94% 0.4671 1.6444 29.78%

Mafft CodonDist BioME 1.4490 16.80% 0.4649 1.6569 30.03%

GlobalLG BioME 1.4490 17.10% 0.4700 1.6490 30.13%

Global NJ 1.4490 17.02% 0.4683 1.6483 29.94%

ClustalW CodonDist FastME 1.4492 16.82% 0.4654 1.6602 30.12%

Prograph1 InducDist LST 1.4503 16.92% 0.4660 1.6397 29.56%

GlobalLG FastME 1.4504 17.11% 0.4704 1.6505 30.14%

Probcons CodonDist BioME 1.4505 16.83% 0.4660 1.6598 30.11%

GlobalJTT BioNJ 1.4507 17.05% 0.4693 1.6496 29.99%

Probcons CodonDist FastME 1.4509 16.83% 0.4659 1.6615 30.13%

Poa CodonDist FastME 1.4513 16.89% 0.4669 1.6624 30.18%

Poa CodonDist BioME 1.4514 16.89% 0.4671 1.6608 30.16%

LogDelGlobal BioNJ 1.4518 17.12% 0.4709 1.6525 30.21%

Prank CodonDist FastME 1.4534 16.88% 0.4664 1.6605 30.04%

Prank CodonDist BioME 1.4538 16.87% 0.4663 1.6592 30.02%

PartialOrder InducDist BioNJ 1.4538 17.29% 0.4731 1.6478 30.18%

GlobalLG BioNJ 1.4543 17.08% 0.4696 1.6571 30.15%

Prograph1 CodonDist BioME 1.4580 16.94% 0.4678 1.6625 30.11%

Prograph1 CodonDist FastME 1.4583 16.94% 0.4679 1.6642 30.12%

Probabilistic InducDist LST 1.4584 16.96% 0.4672 1.6511 29.77%

GlobalWAG LST 1.4593 17.02% 0.4685 1.6526 29.86%

Global LST 1.4595 17.01% 0.4682 1.6532 29.87%

PartialOrder InducDist LST 1.4609 17.28% 0.4730 1.6524 30.13%

GlobalJTT LST 1.4623 17.07% 0.4694 1.6570 29.99%

Mafft CodonDist BioNJ 1.4625 16.83% 0.4651 1.6723 30.15%

Probabilistic CodonDist FastME 1.4626 16.99% 0.4691 1.6753 30.42%

ClustalO CodonDist BioNJ 1.4629 16.84% 0.4653 1.6742 30.20%

Probabilistic CodonDist BioME 1.4630 16.98% 0.4690 1.6742 30.40%

LogDelGlobal LST 1.4632 17.13% 0.4705 1.6594 30.19%

ClustalW CodonDist BioNJ 1.4634 16.84% 0.4653 1.6761 30.24%

Probcons CodonDist BioNJ 1.4642 16.85% 0.4659 1.6754 30.25%

GlobalLG LST 1.4647 17.10% 0.4700 1.6630 30.13%

Poa CodonDist BioNJ 1.4654 16.93% 0.4673 1.6777 30.30%

ClustalW CodonDist LST 1.4671 16.82% 0.4653 1.6623 30.02%

Prank CodonDist BioNJ 1.4679 16.89% 0.4668 1.6761 30.18%

Mafft CodonDist LST 1.4705 16.82% 0.4649 1.6620 29.96%

ClustalO CodonDist LST 1.4705 16.85% 0.4657 1.6631 30.00%

Prograph1 CodonDist BioNJ 1.4717 16.95% 0.4676 1.6798 30.26%

Probcons CodonDist LST 1.4728 16.85% 0.4660 1.6654 30.05%

Poa CodonDist LST 1.4730 16.94% 0.4676 1.6656 30.10%

Prank PhyML 1.4733 17.30% 0.4738 1.7164 31.22%
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Table 1 Taxon and Intra measure, output 1 (Continued)

Local BioME 1.4738 17.32% 0.4733 1.6832 30.69%

Prank CodonDist LST 1.4739 16.88% 0.4663 1.6636 29.96%

LocalWAG BioME 1.4748 17.35% 0.4739 1.6850 30.74%

Local FastME 1.4750 17.34% 0.4736 1.6851 30.71%

LocalWAG FastME 1.4753 17.36% 0.4739 1.6865 30.76%

PartialOrder CodonDist BioME 1.4753 17.42% 0.4773 1.6835 30.95%

PartialOrder CodonDist FastME 1.4763 17.43% 0.4773 1.6850 30.98%

Prank RAxMLG 1.4780 17.34% 0.4744 1.7235 31.30%

Probabilistic CodonDist BioNJ 1.4781 17.00% 0.4692 1.6935 30.57%

Prograph1 CodonDist LST 1.4782 16.94% 0.4676 1.6682 30.07%

Local BioNJ 1.4785 17.31% 0.4733 1.6903 30.74%

LocalWAG BioNJ 1.4799 17.35% 0.4739 1.6928 30.80%

Mafft PhyML 1.4804 17.49% 0.4767 1.7262 31.56%

Local NJ 1.4806 17.33% 0.4735 1.6930 30.78%

ClustalO PhyML 1.4809 17.49% 0.4778 1.7271 31.62%

GlobalCodonPAM BioME 1.4815 17.17% 0.4725 1.6941 30.87%

GlobalCodonPAM FastME 1.4821 17.16% 0.4724 1.6956 30.89%

ClustalW PhyML 1.4823 17.55% 0.4790 1.7292 31.69%

Prograph1 PhyML 1.4828 17.50% 0.4771 1.7259 31.49%

Poa PhyML 1.4832 17.54% 0.4783 1.7297 31.63%

Probcons PhyML 1.4837 17.56% 0.4788 1.7296 31.70%

LogDelLocal BioME 1.4837 17.55% 0.4774 1.6970 31.16%

Probabilistic CodonDist LST 1.4843 17.01% 0.4689 1.6812 30.38%

LogDelLocal FastME 1.4856 17.55% 0.4775 1.6987 31.18%

LocalLG BioME 1.4859 17.53% 0.4768 1.7014 31.13%

Mafft RAxMLG 1.4862 17.53% 0.4773 1.7361 31.67%

LocalLG FastME 1.4866 17.54% 0.4770 1.7023 31.14%

LocalJTT BioME 1.4872 17.57% 0.4776 1.6980 31.04%

Local LST 1.4879 17.31% 0.4731 1.6956 30.70%

Prograph1 RAxMLG 1.4880 17.54% 0.4778 1.7351 31.59%

ClustalO RAxMLG 1.4882 17.55% 0.4782 1.7371 31.72%

LocalWAG LST 1.4883 17.34% 0.4733 1.6966 30.74%

Probabilistic PhyML 1.4885 17.63% 0.4802 1.7342 31.77%

PartialOrder CodonDist BioNJ 1.4885 17.44% 0.4770 1.7003 31.06%

LocalJTT FastME 1.4887 17.58% 0.4776 1.6998 31.06%

Poa RAxMLG 1.4889 17.58% 0.4789 1.7402 31.74%

ClustalW RAxMLG 1.4894 17.62% 0.4796 1.7392 31.79%

LogDelLocal BioNJ 1.4895 17.56% 0.4774 1.7034 31.19%

ClustalO RAxML 1.4897 17.80% 0.4823 1.7384 31.95%

Probcons RAxMLG 1.4901 17.60% 0.4791 1.7408 31.82%

ClustalW RAxML 1.4904 17.83% 0.4832 1.7400 32.00%

LocalLG BioNJ 1.4917 17.53% 0.4771 1.7085 31.15%

PartialOrder CodonDist LST 1.4918 17.41% 0.4765 1.6844 30.78%

LocalJTT BioNJ 1.4927 17.56% 0.4774 1.7053 31.07%

Probcons RAxML 1.4929 17.89% 0.4836 1.7420 32.07%
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Table 1 Taxon and Intra measure, output 1 (Continued)

Prank Parsimony 1.4934 17.36% 0.4730 1.7379 31.34%

Poa RAxML 1.4939 17.85% 0.4830 1.7441 32.07%

Prograph1 RAxML 1.4942 17.82% 0.4821 1.7412 31.95%

LogDelLocal LST 1.4944 17.50% 0.4765 1.7047 31.06%

Prograph1 Parsimony 1.4948 17.40% 0.4742 1.7366 31.30%

Probabilistic RAxMLG 1.4950 17.67% 0.4804 1.7439 31.86%

GlobalCodonPAM BioNJ 1.4951 17.18% 0.4723 1.7056 30.91%

Prank RAxML 1.4956 18.17% 0.4878 1.7357 31.96%

LocalLG LST 1.4973 17.48% 0.4762 1.7086 31.04%

LocalJTT LST 1.4986 17.52% 0.4765 1.7063 30.96%

Mafft RAxML 1.5006 18.30% 0.4898 1.7437 32.22%

GlobalCodonPAM LST 1.5022 17.16% 0.4717 1.6930 30.68%

Probabilistic RAxML 1.5074 18.40% 0.4921 1.7490 32.32%

ClustalW Parsimony 1.5105 17.63% 0.4786 1.7603 31.90%

Probabilistic Parsimony 1.5109 17.56% 0.4770 1.7618 31.88%

PartialOrder PhyML 1.5153 18.37% 0.4923 1.7581 32.53%

Mafft Parsimony 1.5220 17.75% 0.4804 1.7713 32.10%

ClustalO Parsimony 1.5226 17.75% 0.4803 1.7728 32.12%

PartialOrder RAxMLG 1.5231 18.38% 0.4923 1.7681 32.61%

Poa Parsimony 1.5257 17.87% 0.4823 1.7779 32.28%

Probcons Parsimony 1.5301 17.84% 0.4823 1.7823 32.32%

PartialOrder RAxML 1.5374 19.12% 0.5039 1.7771 33.18%

PartialOrder Parsimony 1.5543 18.08% 0.4873 1.8205 32.79%

LocalCodonPAM LST 1.5741 18.29% 0.4886 1.7544 32.02%

LocalCodonPAM BioME 1.5749 18.54% 0.4916 1.7766 32.63%

LocalCodonPAM FastME 1.5749 18.54% 0.4917 1.7788 32.66%

LocalCodonPAM BioNJ 1.5913 18.60% 0.4924 1.7853 32.58%

Prograph1 Gap 1.9433 21.39% 0.5260 2.4423 45.15%

Prank Gap 1.9785 21.75% 0.5299 2.4897 46.18%

Poa Gap 2.3287 25.84% 0.5777 2.7803 52.61%

Probabilistic Gap 2.3428 26.34% 0.5818 2.7972 53.64%

PartialOrder Gap 2.4197 24.94% 0.5591 2.8379 51.69%

ClustalW Gap 2.5021 27.89% 0.5982 2.9157 56.10%

Mafft Gap 2.5251 27.01% 0.5850 2.9296 55.42%

ClustalO Gap 2.5572 27.63% 0.5921 2.9586 56.38%

Probcons Gap 2.5816 28.39% 0.6012 2.9752 57.11%

GlobalSynPAM LST 2.6621 30.23% 0.6191 2.5864 48.01%

LocalSynPAM LST 2.6831 30.51% 0.6209 2.6048 48.36%

GlobalSynPAM BioNJ 2.8077 30.97% 0.6218 2.8184 51.99%

LocalSynPAM BioNJ 2.8226 31.21% 0.6238 2.8305 52.25%

GlobalSynPAM BioME 2.8493 31.80% 0.6272 2.8923 54.71%

GlobalSynPAM FastME 2.8601 31.88% 0.6276 2.9101 55.07%

LocalSynPAM BioME 2.8607 31.97% 0.6285 2.9007 54.80%

LocalSynPAM FastME 2.8773 32.07% 0.6289 2.9244 55.25%
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Table 1 Taxon and Intra measure, output 1 (Continued)

Method Taxon RF Taxon 0-1 Intra

PartialOrder CodonDist BioNJ 2.2812 20.25% 0.5524 3.1378 39.11%

PartialOrder CodonDist BioME 2.2940 20.43% 0.5551 3.1490 39.43%

Prank CodonDist BioNJ 2.2949 20.18% 0.5500 3.1932 39.45%

PartialOrder CodonDist FastME 2.3042 20.47% 0.5554 3.1604 39.52%

PartialOrder CodonDist LST 2.3069 20.24% 0.5509 3.1061 38.65%

Prank CodonDist BioME 2.3103 20.37% 0.5533 3.2056 39.60%

Prank CodonDist LST 2.3123 20.15% 0.5492 3.1532 38.89%

GlobalCodonPAM BioNJ 2.3155 20.47% 0.5545 3.1970 39.76%

Prank CodonDist FastME 2.3202 20.40% 0.5532 3.2164 39.67%

GlobalCodonPAM BioME 2.3320 20.67% 0.5565 3.2058 40.05%

Prograph1 CodonDist BioNJ 2.3362 20.19% 0.5491 3.2380 39.58%

GlobalCodonPAM LST 2.3393 20.42% 0.5521 3.1599 39.25%

GlobalCodonPAM FastME 2.3445 20.73% 0.5566 3.2180 40.16%

Prograph1 CodonDist BioME 2.3482 20.35% 0.5514 3.2457 39.71%

Prograph1 CodonDist FastME 2.3570 20.38% 0.5512 3.2527 39.76%

Prograph1 CodonDist LST 2.3604 20.19% 0.5477 3.2084 39.14%

LocalCodonPAM BioNJ 2.3634 20.89% 0.5579 3.2110 40.02%

LocalCodonPAM BioME 2.3766 21.07% 0.5604 3.2148 40.23%

LocalCodonPAM LST 2.3785 20.78% 0.5559 3.1685 39.43%

Mafft CodonDist BioNJ 2.3811 21.00% 0.5577 3.3489 41.02%

Probabilistic CodonDist BioNJ 2.3833 20.91% 0.5558 3.3162 40.94%

LocalCodonPAM FastME 2.3873 21.12% 0.5605 3.2262 40.33%

Mafft CodonDist LST 2.3935 20.94% 0.5563 3.3051 40.47%

Mafft CodonDist BioME 2.4052 21.21% 0.5600 3.3661 41.25%

Probabilistic CodonDist BioME 2.4062 21.12% 0.5582 3.3381 41.24%

Probabilistic CodonDist LST 2.4081 20.89% 0.5546 3.2916 40.52%

Probcons CodonDist BioNJ 2.4086 21.00% 0.5561 3.3803 41.23%

Mafft CodonDist FastME 2.4146 21.24% 0.5598 3.3771 41.33%

Probabilistic CodonDist FastME 2.4165 21.16% 0.5583 3.3514 41.34%

Probcons CodonDist LST 2.4188 20.93% 0.5549 3.3364 40.70%

ClustalO CodonDist BioNJ 2.4205 21.26% 0.5583 3.4025 41.60%

ClustalO CodonDist LST 2.4294 21.16% 0.5567 3.3563 41.01%

Probcons CodonDist BioME 2.4393 21.24% 0.5593 3.4079 41.57%

ClustalO CodonDist BioME 2.4480 21.52% 0.5611 3.4249 41.86%

Probcons CodonDist FastME 2.4500 21.26% 0.5591 3.4202 41.65%

ClustalO CodonDist FastME 2.4595 21.56% 0.5611 3.4370 41.95%

Poa CodonDist BioNJ 2.4992 21.91% 0.5629 3.4742 42.31%

Poa CodonDist LST 2.5005 21.85% 0.5617 3.4225 41.76%

Poa CodonDist BioME 2.5280 22.17% 0.5653 3.5039 42.68%

Poa CodonDist FastME 2.5356 22.20% 0.5651 3.5138 42.76%

Prank RAxMLG 2.5551 21.40% 0.5417 3.8823 45.94%

Prank PhyML 2.5564 21.40% 0.5424 3.8813 45.93%
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Table 1 Taxon and Intra measure, output 1 (Continued)

Prank RAxML 2.5871 22.23% 0.5539 3.9048 46.68%

Mafft PhyML 2.6215 22.03% 0.5475 3.9799 47.06%

Mafft RAxMLG 2.6283 22.05% 0.5468 3.9867 47.14%

ClustalW CodonDist BioNJ 2.6422 22.47% 0.5631 3.7195 44.12%

Probabilistic PhyML 2.6445 22.01% 0.5471 3.9893 47.09%

PartialOrder PhyML 2.6466 22.06% 0.5491 3.9623 47.03%

Mafft RAxML 2.6470 22.74% 0.5565 3.9980 47.78%

Probabilistic RAxMLG 2.6494 21.98% 0.5465 3.9974 47.17%

Probcons PhyML 2.6509 22.16% 0.5482 4.0128 47.39%

ClustalW CodonDist LST 2.6516 22.41% 0.5623 3.6854 43.66%

PartialOrder RAxMLG 2.6543 22.10% 0.5492 3.9743 47.17%

Prograph1 PhyML 2.6589 21.77% 0.5434 4.0053 46.91%

Prograph1 RAxMLG 2.6618 21.76% 0.5435 4.0155 47.02%

Probabilistic RAxML 2.6641 22.60% 0.5558 4.0059 47.75%

Probcons RAxMLG 2.6653 22.25% 0.5477 4.0258 47.53%

ClustalO PhyML 2.6661 22.44% 0.5504 4.0345 47.66%

ClustalW CodonDist BioME 2.6729 22.74% 0.5662 3.7448 44.39%

Probcons RAxML 2.6758 22.82% 0.5563 4.0312 48.04%

PartialOrder RAxML 2.6764 22.87% 0.5594 3.9887 47.83%

ClustalO RAxMLG 2.6768 22.45% 0.5497 4.0466 47.81%

ClustalW CodonDist FastME 2.6829 22.78% 0.5662 3.7554 44.47%

Prograph1 RAxML 2.6848 22.49% 0.5534 4.0284 47.66%

ClustalO RAxML 2.6859 22.95% 0.5578 4.0453 48.22%

Poa PhyML 2.7723 23.26% 0.5574 4.1128 48.54%

Poa RAxMLG 2.7870 23.33% 0.5573 4.1280 48.70%

Poa RAxML 2.7972 23.77% 0.5641 4.1323 49.10%

PartialOrder InducDist BioNJ 2.8486 22.72% 0.5518 4.0863 47.74%

PartialOrder InducDist BioME 2.8513 22.82% 0.5532 4.0824 47.73%

PartialOrder InducDist LST 2.8539 22.67% 0.5509 4.0550 47.26%

PartialOrder InducDist FastME 2.8566 22.83% 0.5531 4.0869 47.77%

ClustalW PhyML 2.8682 23.54% 0.5572 4.2573 49.54%

Prank InducDist LST 2.8697 22.53% 0.5476 4.0833 47.19%

Prank InducDist BioME 2.8739 22.66% 0.5492 4.1142 47.54%

Prank InducDist BioNJ 2.8750 22.63% 0.5485 4.1233 47.68%

Prank InducDist FastME 2.8788 22.69% 0.5495 4.1202 47.60%

ClustalW RAxMLG 2.8821 23.54% 0.5562 4.2710 49.65%

Prank PrankGuide 2.8831 22.46% 0.5464 4.0804 47.16%

ClustalW RAxML 2.8915 23.90% 0.5613 4.2771 50.04%

Prograph1 InducDist BioME 2.9224 22.65% 0.5473 4.1828 47.96%

Prograph1 InducDist BioNJ 2.9236 22.62% 0.5466 4.1902 48.12%

GlobalJTT LST 2.9260 23.21% 0.5547 4.1389 48.32%

Prograph1 InducDist FastME 2.9286 22.66% 0.5473 4.1872 47.99%

GlobalJTT BioNJ 2.9316 23.34% 0.5552 4.1770 48.81%

Prograph1 InducDist LST 2.9324 22.57% 0.5458 4.1685 47.77%

GlobalJTT BioME 2.9341 23.43% 0.5567 4.1737 48.83%
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Table 1 Taxon and Intra measure, output 1 (Continued)

GlobalWAG BioNJ 2.9416 23.34% 0.5544 4.1848 48.88%

GlobalWAG LST 2.9424 23.27% 0.5543 4.1488 48.39%

GlobalJTT FastME 2.9441 23.48% 0.5571 4.1841 48.92%

GlobalWAG BioME 2.9444 23.44% 0.5562 4.1813 48.84%

GlobalLG LST 2.9502 23.48% 0.5577 4.1604 48.68%

Global BioNJ 2.9526 23.48% 0.5563 4.1963 48.99%

Global LST 2.9530 23.38% 0.5550 4.1574 48.50%

GlobalWAG FastME 2.9560 23.49% 0.5565 4.1937 48.95%

Global BioME 2.9562 23.54% 0.5570 4.1932 48.98%

GlobalLG BioNJ 2.9566 23.58% 0.5580 4.2009 49.19%

Global FastME 2.9651 23.57% 0.5570 4.2033 49.08%

GlobalLG BioME 2.9675 23.71% 0.5600 4.2011 49.22%

GlobalLG FastME 2.9754 23.73% 0.5600 4.2117 49.32%

Global NJ 2.9831 23.65% 0.5571 4.2241 49.39%

Mafft InducDist LST 2.9880 23.41% 0.5536 4.2495 48.94%

LocalJTT LST 2.9926 23.63% 0.5582 4.1898 48.96%

Mafft InducDist BioNJ 2.9979 23.51% 0.5538 4.2970 49.46%

LogDelGlobal BioME 3.0003 23.90% 0.5606 4.2157 49.62%

Mafft InducDist BioME 3.0031 23.58% 0.5549 4.2901 49.32%

LogDelGlobal LST 3.0041 23.74% 0.5594 4.1930 49.20%

Probabilistic InducDist BioME 3.0041 23.75% 0.5574 4.2610 49.52%

Probabilistic InducDist BioNJ 3.0045 23.69% 0.5561 4.2621 49.55%

LogDelGlobal FastME 3.0052 23.91% 0.5606 4.2223 49.67%

Probabilistic InducDist FastME 3.0086 23.75% 0.5573 4.2673 49.56%

LocalWAG LST 3.0094 23.66% 0.5582 4.2019 49.06%

Probabilistic InducDist LST 3.0094 23.63% 0.5561 4.2414 49.22%

Mafft InducDist FastME 3.0124 23.60% 0.5547 4.2986 49.39%

LogDelGlobal BioNJ 3.0127 23.83% 0.5593 4.2454 49.82%

LocalJTT BioNJ 3.0132 23.82% 0.5595 4.2476 49.65%

LocalJTT BioME 3.0143 23.87% 0.5601 4.2352 49.53%

Local LST 3.0154 23.67% 0.5572 4.2069 49.07%

LocalLG LST 3.0189 23.81% 0.5597 4.2167 49.33%

LocalWAG BioME 3.0214 23.88% 0.5598 4.2421 49.55%

LocalJTT FastME 3.0218 23.91% 0.5604 4.2426 49.60%

LocalWAG BioNJ 3.0260 23.83% 0.5588 4.2574 49.71%

Probcons InducDist LST 3.0276 23.47% 0.5530 4.2897 49.24%

Local BioME 3.0277 23.87% 0.5588 4.2485 49.61%

Local BioNJ 3.0294 23.81% 0.5582 4.2636 49.75%

LocalWAG FastME 3.0294 23.90% 0.5598 4.2506 49.63%

Local FastME 3.0370 23.92% 0.5592 4.2565 49.67%

LocalLG BioME 3.0403 24.10% 0.5619 4.2607 49.91%

LocalLG BioNJ 3.0424 24.00% 0.5606 4.2776 50.06%

Probcons InducDist BioNJ 3.0435 23.58% 0.5530 4.3357 49.75%

LogDelLocal LST 3.0466 24.00% 0.5606 4.2283 49.59%

Probcons InducDist BioME 3.0490 23.66% 0.5542 4.3342 49.70%
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Table 1 Taxon and Intra measure, output 1 (Continued)

Local NJ 3.0493 23.95% 0.5591 4.2748 49.97%

LogDelLocal BioME 3.0518 24.18% 0.5620 4.2584 50.05%

ClustalO InducDist LST 3.0520 23.70% 0.5546 4.3168 49.59%

LocalLG FastME 3.0524 24.14% 0.5619 4.2721 50.00%

Probcons InducDist FastME 3.0593 23.71% 0.5544 4.3447 49.80%

ClustalO InducDist BioNJ 3.0623 23.82% 0.5552 4.3603 50.07%

LogDelLocal FastME 3.0628 24.22% 0.5621 4.2679 50.13%

ClustalO InducDist BioME 3.0674 23.90% 0.5565 4.3558 50.01%

LogDelLocal BioNJ 3.0684 24.16% 0.5610 4.2913 50.31%

ClustalO InducDist FastME 3.0739 23.94% 0.5567 4.3618 50.06%

Poa InducDist LST 3.1107 24.27% 0.5591 4.3594 50.08%

Poa InducDist BioNJ 3.1240 24.38% 0.5593 4.3979 50.51%

Poa InducDist BioME 3.1344 24.49% 0.5605 4.4035 50.54%

Poa InducDist FastME 3.1409 24.51% 0.5607 4.4117 50.62%

ClustalW InducDist LST 3.2044 24.57% 0.5585 4.5147 51.29%

ClustalW InducDist BioNJ 3.2100 24.69% 0.5597 4.5406 51.66%

ClustalW InducDist BioME 3.2189 24.79% 0.5609 4.5416 51.61%

ClustalW InducDist FastME 3.2252 24.80% 0.5608 4.5485 51.67%

GlobalSynPAM LST 3.5173 31.10% 0.6338 3.9687 50.34%

LocalSynPAM LST 3.5271 31.11% 0.6334 3.9732 50.35%

Prograph1 Parsimony 3.6661 27.24% 0.5749 4.8664 55.21%

GlobalSynPAM BioNJ 3.7288 31.89% 0.6350 4.1870 52.87%

LocalSynPAM BioNJ 3.7325 31.85% 0.6342 4.1860 52.82%

LocalSynPAM BioME 3.9135 32.87% 0.6370 4.4534 55.73%

GlobalSynPAM BioME 3.9186 32.95% 0.6384 4.4700 56.00%

LocalSynPAM FastME 3.9554 33.01% 0.6372 4.4974 56.11%

GlobalSynPAM FastME 3.9586 33.08% 0.6386 4.5120 56.32%

Prank Parsimony 4.1293 30.16% 0.5895 5.2537 59.34%

Probabilistic Parsimony 4.2511 31.26% 0.5968 5.3638 60.93%

ClustalW Parsimony 4.2646 31.42% 0.5993 5.3851 61.15%

Mafft Parsimony 4.3086 31.86% 0.6027 5.3770 61.22%

ClustalO Parsimony 4.3105 31.79% 0.6007 5.3842 61.27%

Probcons Parsimony 4.3464 32.23% 0.6050 5.4023 61.60%

Poa Parsimony 4.3852 32.52% 0.6067 5.4298 61.97%

PartialOrder Parsimony 4.4223 32.34% 0.6057 5.4796 62.40%

Prograph1 Gap 4.8752 35.60% 0.6223 5.8352 67.80%

Prank Gap 5.6787 40.79% 0.6442 6.3558 73.73%

PartialOrder Gap 5.7425 41.19% 0.6477 6.3644 74.18%

Probabilistic Gap 5.9593 45.15% 0.6773 6.4529 76.15%

Poa Gap 6.2008 46.51% 0.6820 6.5492 77.39%

ClustalW Gap 6.2522 47.55% 0.6892 6.5718 77.93%

ClustalO Gap 6.2747 47.15% 0.6837 6.5759 77.85%

Mafft Gap 6.2803 46.87% 0.6813 6.5867 77.88%

Probcons Gap 6.3514 48.04% 0.6901 6.6129 78.48%
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Table 2 Classification of component methods of the PTMS
(seemethods for full details)

Description Methods

Multiple sequence ClustalO, ClustalW, Mafft, PartialOrder,

alignment

Poa, Prank, Probabilistic, Probcons,

Prograph

Methods on MSAs Gap, Parsimony, PhyML, RAxML, RAxMLG

Pairwise alignments GlobalCodonPAM, GlobalJTT, GlobalLG,

GlobalSynPAM, GlobalWAG, GlobalGCB,

LocalCodonPAM, LocalJTT, LocalLG,

LocalSynPAM, LocalWAG, LocalGCB,

LogDelGlobal, LogDelLocal

Pairwise alignments CodonDist, InducDist

from MSAs

Distance methods BioME, BioNJ, FastME, LST, NJ

the codon-basedmethods. From an information-theoretic
point of view, codons are over an alphabet of size 61 as
opposed to 20 for amino acids, so they must carry more

Table 3 Intra/Taxon correlation coefficients over all PTMS

Class Pearson’s

non Metazoa 0.9771

Actinobacteria 0.9807

Archaea 0.9655

Firmicutes 0.9810

Metazoa 0.9505

OtherBacteria 0.9698

OtherEukaryota 0.9841

Proteobacteria 0.9800

information. Regardless of the reason, the advantage of
codon-based methods is an order of magnitude larger
than the differences between the other methods. Hence
codon-based methods appear unavoidable for Metazoa.
Table 10 confirms the same difference at the level of
MSA-induced alignments.
The distance methods, Table 11, see LST changing from

last position in non-Metazoa to first position in Metazoa.
In this case the absolute differences are relatively small.
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Table 4 The top PTMS according to the Taxonmeasure

Class Best 3 methods

Metazoa PartialOrder CodonDist BioNJ > PartialOrder CodonDist BioME ≥ Prank CodonDist BioNJ

non Metazoa Mafft InducDist BioME ≥ Mafft InducDist FastME ≥ ClustalO InducDist BioME

Table 5 The top PTMS according to the Taxonmeasure

Class Best 3 methods

Actinobacteria Probcons InducDist BioME ≥ Mafft InducDist BioME ≥ Prank InducDist BioME

Archaea Mafft InducDist BioNJ ≥ Mafft InducDist FastME ≥ Mafft InducDist BioME

Firmicutes Probcons CodonDist FastME ≥ Mafft CodonDist FastME ≥ ClustalO CodonDist FastME

OtherBacteria ClustalO InducDist FastME ≥ Mafft InducDist FastME ≥ Mafft InducDist BioME

OtherEukaryota ClustalO InducDist BioME ≥ ClustalO InducDist FastME ≥ ClustalO InducDist BioNJ

Proteobacteria Mafft InducDist BioME ≥ Mafft InducDist FastME ≥ ClustalW InducDist FastME

Table 6 Sizes of the classes

Class species OGs OMA OGs kept seqs seqs/grp aa/seq

Actinobacteria 80 41823 18877 199556 10.57 353.74

Archaea 81 23276 11032 115290 10.45 304.97

Firmicutes 89 31599 14526 172326 11.86 323.69

Metazoa 70 149311 59613 773920 12.98 526.86

OtherBacteria 131 38073 15484 150934 9.75 362.63

OtherEukaryota 39 71641 22745 151693 6.67 498.26

Proteobacteria 265 103585 50861 692257 13.61 342.44

Total 755 459308 193138 2255976 11.68 415.19

Table 12 shows the comparisons of empirical substitu-
tion matrices. The differences between the best and the
worst matrix are statistically significant but very minor.
Table 13 shows the results for MSAs. PartialOrder,

which is an algorithm designed to deal with alternative
splicings, works better for Metazoa. ClustalW, from a
middle ranking in non-Metazoa, drops to a clear last for
Metazoa. The rest of the rankings remain quite consistent
for all species.
The most important message coming out of these

results is that the best methods are minimal evolution
(distance) methods over pairwise alignments induced
by MSAs. A method like Mafft InducDist BioME is 2-3
orders of magnitude faster than ML methods and outper-
forms them all by a good margin.

Discussion
It may appear surprising that the best method for non-
Metazoa starts by using Mafft which is not the best MSA
(Table 13). In general, the best PTMS may not include the
best components, and vice-versa, the best individual com-
ponents may not give the best PTMS. Components may
combine/exploit their abilities/weaknesses. For example,

an MSA method which does a very good job with amino
acids but a mediocre job with gaps, may compose very
well withMLmethods but poorly with Gap trees.We have
to remember that the analysis of components, Tables 8,
9, 10, 11, 12 and 13 is done over an average of many
situations.
The statistical significance of the difference between

methods is one aspect, the magnitude of the difference
is also important. The testing was done over such large
samples that often minor differences are still statistically
significant. We consider that a difference of less than
� = 0.01 (that is in 100 trees, on the average, we get one
less error) is without practical significance. A � = 0.05
difference, on the other hand, means that one method will
produce one better branch every 20 trees, which can be
considered significant.
Mafft InducDist BioME is the top method for non-

Metazoa under the Taxon measure and is ahead of
the top ML method, Prank PhyML, by � = 0.048
correct branches per tree. The number of incorrect
branches per tree of each method is 1.425 and 1.473
respectively. (For Metazoa the best methods are Par-
tialOrder CodonDist BioNJ and Prank RAxMLG with
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Table 7 Correlation of the Intra measure of all PTMS between classes

Class Acti Arch Firm Meta OBac OEuk Prot

Actinobacteria 1.000 0.970 0.979 0.574 0.978 0.986 0.995

Archaea 1.000 0.993 0.540 0.996 0.979 0.986

Firmicutes 1.000 0.599 0.994 0.984 0.993

Metazoa 1.000 0.531 0.539 0.582

OtherBacteria 1.000 0.988 0.991

OtherEukaryota 1.000 0.987

Proteobacteria 1.000

errors 2.281 and 2.555 respectively.) This shows that there
is a long way to perfection. Some of this distance (the
1.425 or 2.281 in these cases) is due to the inherent ran-
domness of the molecular mutations left by evolution,
some of it may be due to imperfect PTMSs.

Caveats, what can go wrong?
Here we describe some problems that may affect the
power/correctness of the PTMS evaluation (for depen-
dencies on absolute/relative distances, number of leaves
and sequence length see Methods).

i The OGs should follow the same evolutionary
history. This is normally the case, except when we
have lateral gene transfers (LGT) or OGs which do
not follow Fitch’s definition of orthology [24]
precisely. For the purpose of testing the methods, it is
much better to skip dubious OGs. The OMA
orthologous database fits best our needs [25,26], as it
sacrifices recall in favor of precision.

ii The Intra test measures the ability of recovering a
phylogenetic signal from sequences. Other reasons
for mutation of the sequences may leave their trace in
the conclusions. For example, it is known that the
environmental temperature affects the GC content of

Table 8 Ranking and differences among tree builders
based onMSAs

� n

non Metazoa

PhyML � RAxMLG -0.0063±0.0005 1201725

RAxMLG � RAxML -0.0084±0.0007 1201725

RAxML � Parsimony -0.0180±0.0010 1201725

Parsimony � Gap -0.8350±0.0044 1201725

Metazoa

PhyML � RAxMLG -0.0083±0.0017 536517

RAxMLG � RAxML -0.0166±0.0019 536517

RAxML � Parsimony -1.5305±0.0085 536517

Parsimony � Gap -1.7256±0.0081 536517

the sequences due to DNA stability [27].
Consequently, we will expect a bias at the codon level
that will tend to group together organisms that live in
a high-temperature environment.

iii The methods should produce trees with complete
structure, i.e. no multifurcations, all nodes must be
binary. A method which produces a tree with
multifurcations will have an advantage as it will
normally make fewer mistakes. In the extreme, a star
tree is always correct.

iv Since PTMSs have been in use for many years, the
preferred methods of the community may show an
undeserved good performance under the Taxon
measure (but not under the Intra measure!). This is
not unreasonable, since for bacteria many classical
phylogenetic methods do not apply (e.g. bacterial
paleontology has very few results), and taxonomies
may have been constructed with some of these
methods. A method which has been the favourite of
the taxonomists will be displaced to the left of the
main line in Figure 3 (it reduces the Taxon measure
and leaves the Intra unchanged). We can see that
parsimony, RaxML and PhyML show a small shift to
the left and hence it is possible that these methods
have biased the building of the Taxonomies. This
shift is noticeable but quite small, so we can conclude
that this is not a major bias.

v Finally, the Intra measure, by being a consistency
measure, may be insensitive to systematic mistakes of
the tree building. This would be something that
affects the Intra measure but not the Taxon measure.
Stephane Guindon suggested that long branch
attraction (LBA) could mislead the Intra measure for
methods that suffer from it, by systematically
computing one of the incorrect trees. To study this
properly we generated a new class called
LBAExamples which is composed of a quartet
((A,C),(B,D)), where the branches leading to the
leaves C and D are much longer than the other
branches. This quartet is sometimes called the
“Felsenstein example” and is used to demonstrate
how some methods, like parsimony, systematically
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Table 9 Ranking and differences among pairwise alignments

� n

non Metazoa

Global � LogDelGlobal -0.0042±0.0009 534100

LogDelGlobal � Local -0.0261±0.0012 534100

Local � LogDelLocal -0.0095±0.0009 534100

LogDelLocal > GlobalCodonPAM -0.0019±0.0017 534100

GlobalCodonPAM � LocalCodonPAM -0.0886±0.0015 534100

LocalCodonPAM � GlobalSynPAM -1.2160±0.0077 534100

GlobalSynPAM � LocalSynPAM -0.0161±0.0014 534100

Metazoa

GlobalCodonPAM � LocalCodonPAM -0.0436±0.0028 238452

LocalCodonPAM � Global -0.5803±0.0074 238452

Global � LogDelGlobal -0.0488±0.0035 238452

LogDelGlobal � Local -0.0218±0.0037 238452

Local � LogDelLocal -0.0300±0.0032 238452

LogDelLocal � GlobalSynPAM -0.7234±0.0112 238452

GlobalSynPAM ≥ LocalSynPAM -0.0013±0.0028 238452

will reconstruct the wrong tree (and hence the name
LBA). See Figure 4.
We built 500 such quartets for random values of α
(the length of the shortest branches) and for 5
different sets of leaves C and D with the values
f = 5, 7, 5, 10, 12.5 and 15 (the ratio of the long
branches to the short branches). That is 100
examples of each quartet. The results are available in
their entirety in the same website repository as all the
other results. The most significant results of the study
of these quartets are:

vi a There is a clear division of methods under the
Taxon measure (in this case the taxonomic
tree is the correct topology) and the Intra
measure. All the methods using Parsimony,
Gap, SynPAM and PrankGuide suffer from
LBA (and score a high value, Taxon ≥ 0.16
and Intra ≥ 0.252). All the other methods
(which do not suffer from LBA) score much
lower, Taxon ≤ 0.036 and Intra ≤ 0.0697.
Remember that there are only 3 possible
quartets and that an error in a quartet gives a

Table 10 Ranking and differences among pairwise
alignments derived fromMSAs

� n

non Metazoa

InducDist � CodonDist -0.0257±0.0005 4806900

Metazoa

CodonDist � InducDist -0.5896±0.0024 2146068

distance of 1, hence for quartets the values of
the Taxon measure coincide with the number
of incorrect trees. The gap that separates the
non-LBA from LBA methods is large in
absolute and in relative values. So we can
conclude that LBA is successfully detected by
both measures.

b Methods based on k-mer statistics (not
reported here, but also evaluated in our
computations) fare much worse than all the
other methods in general. These are methods
which count the number of, for example,
tri-mers, and use as distances a statistical test
(like chi-squared) on the tri-mer frequencies.

Table 11 Ranking and differences among tree building
methods based on distances

� n

non Metazoa

BioME � FastME -0.0013±0.0002 4272800

FastME � BioNJ -0.0043±0.0004 4272800

BioNJ > NJ -0.0018±0.0010 267050

NJ � LST -0.0089±0.0014 267050

Metazoa

LST � BioNJ -0.0125±0.0011 1907616

BioNJ � BioME -0.0195±0.0010 1907616

BioME � FastME -0.0108±0.0006 1907616

FastME � NJ -0.0151±0.0036 119226
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Table 12 Ranking and differences among empirical
substitutionmatrices

� n

non Metazoa

GCB ≥ WAG -0.0005±0.0005 1068200

WAG � JTT -0.0076±0.0006 1068200

JTT > LG -0.0007±0.0006 1068200

Metazoa

JTT � WAG -0.0116±0.0017 476904

WAG � GCB -0.0082±0.0015 476904

GCB � LG -0.0084±0.0017 476904

For example, a method based on DNA tetra-
mers scores 0.952 for the Taxon measure (it
gets 95.2% of the quartets wrong!) but scores
0.0917 in the Intra measure. This is quite
extreme, (the method is very poor in every
context) but supports the observation that the
Intra measure is a consistency measure and if
the method systematically fails and there is
only one way of failing, then the consistency is
good. In terms of the plot of Figure 3, these
cases will be points displaced to the right of
the main line. This extreme case reinforces
our recommendation of using both measures
to conclude the performance of methods.

c This side study showed additional surprises.
The guide tree produced by Prank, usually
quite good, but unfortunately it suffers
severely from LBA (Taxon = 0.532). We were
also unaware that the SynPAMmethods,
which are maximum likelihood methods, also
suffer from LBA.

The above caveats indicate that the problems are rel-
atively few and seldom apply to both measures. Conse-
quently a method which does well under both measures is
a very strong candidate.

Conclusions
We show, through a comparison of methods against trees
involving tens of millions of data points, which are the
most effective PTMSs. This uncovers a big surprise as one
of the favorite methods among the community, the ML
methods, score poorly. Methods based on MSA induced
pairwise alignments and minimal evolution not only pro-
duce better trees, but are 100 to 1000 times faster to
compute. This should revolutionize this niche of bioinfor-
matics.
We also show that a new measure of quality, the Intra

measure, is highly correlated with the Taxon measure
(closeness to taxonomic trees) and it does not suffer from

the biases of the practice. These newmeasures are likely to
be extremely helpful in the development of new and better
algorithms.

Methods
We cannot show all the computations and results in this
publication because of their size (about 57Gb). We have
developed a web site which allows the exploration of all
the data and all the results to their most minute detail.
We intend to maintain this website for as long as possible,
and to upgrade it periodically both with new genomes and
with new methods. It contains very useful information in
our view. This can be found in:

http://www.cbrg.ethz.ch/services/
toolcompare

Source data
The study was done over complete genomes for three
reasons: species coverage is quite ample, 755 complete
genomes were used, we can obtain a large number of very
reliable OGs and since all OGs from entire genomes are
used, no selection bias is possible. A complete descrip-
tion of the classes can be found in the OMA1000 database
which is accessible at:

http://www.biorecipes.com/Orthologues/
status.html

Table 13 Ranking and differences amongMSAs

� n

non Metazoa

Prank > Prograph -0.0011±0.0006 1735825

Prograph � Poa -0.0289±0.0008 1735825

Poa � Probabilistic -0.0092±0.0007 1735825

Probabilistic > ClustalW -0.0009±0.0007 1735825

ClustalW � Mafft -0.0028±0.0006 1735825

Mafft � ClustalO -0.0021±0.0005 1735825

ClustalO � Probcons -0.0043±0.0006 1735825

Probcons � PartialOrder -0.0107±0.0007 1735825

Metazoa

Prograph � Prank -0.0451±0.0024 774969

Prank � PartialOrder -0.0382±0.0021 774969

PartialOrder � Probabilistic -0.0823±0.0023 774969

Probabilistic � Mafft -0.0210±0.0020 774969

Mafft � Probcons -0.0388±0.0015 774969

Probcons > ClustalO -0.0032±0.0017 774969

ClustalO � Poa -0.0684±0.0020 774969

Poa � ClustalW -0.0885±0.0024 774969

http://www.cbrg.ethz.ch/services/toolcompare
http://www.cbrg.ethz.ch/services/toolcompare
http://www.biorecipes.com/Orthologues/status.html
http://www.biorecipes.com/Orthologues/status.html
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Table 14 Output of the comparison of Mafft against Probcons over Metazoa

Metazoa: Mafft CodonDist BioNJ - Probcons CodonDist BioNJ, 59613 OGs

Metazoa: Mafft CodonDist FastME - Probcons CodonDist FastME, 59613 OGs

Metazoa: Mafft CodonDist LST - Probcons CodonDist LST, 59613 OGs

Metazoa: Mafft Gap - Probcons Gap, 59613 OGs

Metazoa: Mafft InducDist BioNJ - Probcons InducDist BioNJ, 59613 OGs

Metazoa: Mafft InducDist FastME - Probcons InducDist FastME, 59613 OGs

Metazoa: Mafft InducDist LST - Probcons InducDist LST, 59613 OGs

Metazoa: Mafft Parsimony - Probcons Parsimony, 59613 OGs

Metazoa: Mafft PhyML - Probcons PhyML, 59613 OGs

Metazoa: Mafft RAxML - Probcons RAxML, 59613 OGs

Metazoa: Mafft RAxMLG - Probcons RAxMLG, 59613 OGs

Mafft is strongly better than Probcons

Mafft - Probcons: -0.0390 +- 0.0017, n=655743

Sample output showing the selection of which methods to compare when summarizing results, Table 14. The difference of the Taxon measures is taken over
corresponding pairs of trees. These corresponding pairs differ only in the components we want to compare. Furthermore, they will be computed over exactly the
same population of OGs.

To do the analysis, the genomes were grouped in the
classes shown in Table 6 (in this work we will call any
of these groups a “class”). The column “OGs kept” shows
the number of groups which had 4 or more acceptable
sequences.
The study includes all the publicly available genomes

as of Nov/2010, the release of OMA1000 [21]. For
proteobacteria and firmicutes, which are relatively over-
represented and many species sequenced multiple times
(e.g., there are 26 genomes of different strains of E.coli),
only 265 genomes of 452 were chosen for proteobacte-
ria (89 of 177 for firmicutes) as follows: For each pair
of genomes an average evolutionary distance was com-
puted. Iteratively, one of the members of the closest pair
of genomes was discarded. The discarded one was the
one with lower “quality index” (a simple ad-hoc measure
of quality of complete genomes). In this way we retained

A C

DB

X

Y

f

f

Figure 4 An extreme tree with 4 leaves illustrating the problems
of Long Branch Attraction (LBA).

the “best”, most diverse, 265 proteobacteria and the most
diverse 89 firmicutes. All the major versions of model
organisms ended up in these classes. As a control, we
also computed the same trees over all the genomes of
firmicutes (177). The correlation coefficient of the Taxon
measure between the full class of all firmicutes and the
class with 89 genomes is 0.994058. Knowing this value we
are confident that the results are not affected by removing
very similar (or repeated) genomes.
Comparing within classes is better than grouping the

classes together for the following reasons:

- The classes are more uniform and may reveal biases
(as they do) specific to the classes.

- The missing relations - between classes - are usually
so obvious that almost no method will get them
wrong. It is the fine grain differences that matter.

- The computation time would be out of reach for
some methods.

- The problems of some well documented LGTs, like
proteins of mitochondrial origin, are avoided.

The selection of the OMA[20] database of OGs was
done because OMA is particularly careful about removing
paralogous sequences at the expense of sometimes split-
ting groups (precision at the expense of recall). A split OG
is aminor loss of data, of little consequence given our sam-
ple size, whereas the inclusion of paralogous sequences
breaks the basic assumption for the correctness of the
Taxon and Intra measures. The main assumption that
links the Intra measure with the quality of the methods
is that any pair of groups represents the same evolution
path. If one group contains an orthologous pair and the
corresponding pair in another group is paralogous, these
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will correspond to different evolutionary histories and the
comparison is wrong.

Sequence/group cleanup
Only the OGs with 4 or more sequences are used (2 or 3
sequences will never show different unrooted topologies).
We also removed all but one copy of identical sequences.
A method which is given a few identical sequences will
most likely place them all in a single subtree. The shape
of this subtree will be unrelated to the phylogeny of the
sequences (there is no information available to make a
decision). Since this adds noise to the results (not nec-
essarily bias), we remove all identical sequences but one
from the OGs. Additionally we remove sequences for
which more than 5% of their amino acids or codons are
unknown (“X”) as this is a sign of poor quality of the
sequence. Both policies together remove about 3.5% of
the sequences.

Bayesian methods
Bayesian methods for tree building have not been
included in this study because they do not follow the
PTMS definition. In principle a bayesian tree building
method produces a probability distribution over all trees
given the corresponding priors. If the priors are ignored
and only the tree with highest probability is selected, then
this is ML, not bayesian. Approaches which build consen-
sus trees from several of the most probable trees produce
multifurcating trees which contain less information and
hence are not comparable to fully determined trees. Any
prior which contains information about the tree which is
not extracted from the sequences themselves will violate
our assumptions for PTMS.

Tree building methods
We have computed 176 trees per OG, that is a total of 176
× 193138 trees or about 34 million trees. The tree build-
ing methods are a combination of several components,
for example Mafft PhyML represents the method com-
posed of building an MSA with Mafft and then using the
PhyML program. The component methods are only a sub-
set of the existing methods. The ones chosen are the ones
that we perceive as the most popular and effective in the
community plus the ones which have been written locally.
We welcome suggestions of promising new components
to test.
Multiple sequence alignment methods from amino acid

sequences:

- ClustalW - a widely used MSA program based on a
guide tree computed from pairwise alignments,
version 2.0.10 [28]

- ClustalO - a recent improvement of ClustalW, [29]

- Mafft - a rapid MSA based on fast Fourier
transforms, version 6.843 [30,31]

- PartialOrder - A method based on partial order
graphs, currently being developed at the CBRG in the
ETH Zurich, designed to accommodate alternative
splicings.

- Poa - a progressive multiple sequence alignment
based on a graph representation where each new
sequence is aligned by pairwise dynamic
programming [32]

- Prank - a phylogeny-aware gap placement MSA,
version 100802 [33]. The guide tree used by Prank
has its own merits and is used as one of the possible
trees, under the name PrankGuide.

- Probabilistic - A method based on probabilistic
ancestral sequences developed for the Darwin system.
[34-36]

- Probcons - a probabilistic consistency-based MSA,
version 1.12 [37]

- Prograph - a method of progressive graph alignment,
similar to Prank, currently under development at the
CBRG in the ETH Zurich.

Methods which produce a tree from an MSA:

- Gap - produce a tree by parsimony, replacing all
amino acids by a single symbol [19]. In this way the
only information left is gap or no-gap.

- Parsimony - equal character cost, counting gaps as a
special character, as implemented in Darwin [36]

- PhyML - a fast and accurate heuristic for estimating
ML phylogenies, version 3.0 [38,39], used with
gamma corrections and the LG [40] matrices.

- RAxML - randomized accelerated ML for high
performance computing, version 7.0.4 [41], uses a
substitution matrix described in [42]

- RAxMLG - randomized accelerated maximum
likelihood for high performance computing, version
7.0.4 [41], used with gamma corrections and a
substitution matrix described in [42]

Pairwise alignment methods which compute a distance
and variance matrix from amino acid or coding-DNA
sequences. Every sequence is aligned to every other
sequence. In all cases, after the alignments are done, the
distances between pairs of sequences are estimated by
ML:

- GlobalCodonPAM, LocalCodonPAM - global/local
alignments using a codon substitution matrix
(61 × 61) [23]

- GlobalJTT, GlobalLG, GlobalWAG, GlobalGCB,
global alignments [22] using the JTT [43], GCB [44],
WAG [45] and LG [40] substitution matrices
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- LocalJTT, LocalLG, LocalWAG, LocalGCB, local
alignments [46] using the JTT [43], GCB [44], WAG
[45] and LG [40] substitution matrices

- LogDelGlobal, LogDelLocal - global/local alignments
using GCB and a special deletion cost function based
on the observed zipfian distribution of gap lengths
[47].

- GlobalSynPAM, LocalSynPAM - global/local
alignments using a codon substitution matrix
(61 × 61) which ignores all mutations except the
synonymous ones [48].

Pairwise alignment methods which compute a distance
and variance matrix from the sequences in an MSA:

- CodonDist - estimate the ML CodonPAM distance
from pairwise alignments induced by an MSA. The
MSA is over amino acids, and the corresponding
codons from the protein are used to replace the
amino acids. [23]

- InducDist - estimate the ML distance from pairwise
alignments induced by an MSA with the GCB rate
matrices.

Distance methods which produce a tree from a dis-
tance/variance matrix:

- BioNJ - an improved version of the NJ algorithm, [49].
- FastME - build a tree using the minimum evolution

principle, version 2.07, [50].
- BioME - a version of FastME with iterative

improvements
- LST - build a tree using the least squares principle,

with the distances weighted by the inverse of their
variance [36,51].

- NJ - the neighbor joining method, [52].

Taxonomies database
We chose the NCBI [53,54] taxonomies to build the
taxonomic trees, the basis of our Taxon measure. The
NCBI database is detailed and extensive and it covers all
the species that were included in OMA1000. The ITIS
database[55], another well known taxonomic database, is
not as complete, in particular for bacteria, where many of
the entries we need are absent.

Computation
The computations were carried out in our own cluster of
Linux machines, about 300 cores. These were done using
Darwin [36] as a host system. Additionally we used the
Brutus cluster, a central service of ETH. We estimate that
we used about 646,000 hours of individual CPUs. Table 15
shows the top most time consuming tasks.
Of the classes, most of them took time proportional to

the number of OGs. The exception being Metazoa, which

Table 15 Top uses of cpu time

Task cpu

PhyML 135833 hrs

RAxMLG 111432 hrs

Parsimony 86882 hrs

Intra measure 63713 hrs

Prank 54101 hrs

RAxML 34673 hrs

PartialOrder 20132 hrs

Gap 8707 hrs

Taxon measure 5389 hrs

has bigger OGs and longer sequences. As a consequence
the lion’s share of computation was taken by Metazoa.

Correlations as the main test
As mentioned above, the Intra and Taxon measures are
not directly comparable (they are expected values over
very different populations). Any of the measures is not
comparable accross classes of species either. This is shown
to be the case with Metazoa which behaves differently to
the others classes. The distances are also radically differ-
ent for different classes. On the other hand we are always
measuring an average RF distance, hence there should be
a linear relation between the different measures for differ-
ent classes when comparing the different PTMSs. In other
words, a suitable comparison could be through a linear
transformation or a linear regression of one into the other.
For the regression, the coefficients are not important, the
quality of the fit is the important aspect. This is exactly
what is captured by Pearson’s correlation coefficient, and
hence this is the main tool we use to compare measures of
different PTMS accross different populations.

Distances between trees
We use the Robinson-Foulds (RF) [17] distance to mea-
sure distances between trees. The RF distance basically
counts how many internal branches of the unrooted trees
do not have a corresponding branch which divides the
leaves in the same two sets. For trees with n leaves, the RF
distance may be as high as n − 3.
When the taxonomic tree is not completely determined

(that is, some nodes have more than two descendants), we
have to correct the computation of the RF distance. This
is relatively straightforward to fix. The maximum distance
in these cases is less than n − 3.

Absolute vs relative distances vs 0-1 distances
There are arguments to use the absolute RF distance
and arguments to use relative RF distances (the abso-
lute distance divided by n − 3). Fortunately, the results
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Table 16 Correlations between the absolute and relative distances (all leaves)

Taxon Intra

Class Pearson’s Spearman’s Pearson’s Spearman’s

Actinobacteria 0.9963 0.9171 0.9988 0.9888

Archaea 0.9969 0.8825 0.9978 0.9414

Firmicutes 0.9973 0.9765 0.9997 0.9973

Metazoa 0.9851 0.9775 0.9893 0.9574

OtherBacteria 0.9827 0.9570 0.9965 0.9736

OtherEukaryota 0.9944 0.8710 0.9948 0.9490

Proteobacteria 0.9946 0.8834 0.9993 0.9852

are remarkably consistent for the absolute and relative
RF distance. Table 16 shows Pearson’s and Spearman’s
correlation coefficients between the absolute and relative
measures, per class for all PTMSs. Clearly the rankings are
not affected by this choice.
There are also arguments that the RF distance may

not reflect evolutionary distance. That is to say, that
sometimes a small evolutionary change produces a tree
which has a large RF distance to the original and other
times a large evolutionary change produces a tree which
has a small RF distance. This has been recently discussed
in [56]. To take this concern in consideration we also com-
puted the 0-1 distances, a Hamming-style distance, 0 if the
trees are equal, 1 otherwise. The 0-1 distance may not be
as sensitive as other distances, since it collapses all wrong
trees into a single case, in particular it will give very little
information about large trees when there is almost always
some error. The correlation coefficients between the 0-1
distance and the RF distance for the Taxon measure are
0.9905 (non Metazoa) and 0.9004 (Metazoa). The correla-
tion is excellent for non Metazoa, and the rankings for the
Taxon or 0-1 distances have relatively insignificant differ-
ences. The correlation for Metazoa is good but lower and
some methods, notably ML methods, move ahead. If we
take as an example Prank RAxMLG in Metazoa, we find
that its 0-1 distance is 0.5417. Excluding the trees with
10 or less leaves, it is 0.9614 and excluding the trees with
20 or less leaves it is 0.9824. Even medium size trees are

Table 17 Correlation of the Taxonmeasure of all PTMS for
OGs with 15 or less leaves and the rest

Class Pearson’s

Actinobacteria 0.9930

Archaea 0.9925

Firmicutes 0.9933

Metazoa 0.9143

OtherBacteria 0.9785

OtherEukaryota 0.9846

Proteobacteria 0.9887

mostly wrong. Clearly the 0-1 measure loses too much
information for large trees and reflects the quality of small
trees alone. This has motivated us to study the impact of
the distance functions used for the Taxon and Intra mea-
sures in depth, which will be reported in a future work.
The 0-1 distances are shown as a separate column in the
full Tables 1 and 14. To make safer conclusions about
comparisons of methods, we should use the Taxon, Intra
and 0-1 measures.

Large trees vs small trees
It may be argued that small trees are too simple and big-
ger trees are the important ones. To analyze this effect we
divide the OGs into two groups, the ones with 15 or fewer
leaves and the ones with more than 15 leaves. We then
compute the correlation coefficient for themeasures on all
PTMS for these two groups. Table 17 shows the results for
each of the classes. All the correlations are high, and those
for the nonMetazoa are remarkably high. From these cor-
relations we can conclude that the number of leaves used
for the quality analysis does not influence the results.

Long sequences vs short sequences
In a similar way it may be argued that groups with
long sequences behave differently than groups with short
sequences. To analyze this effect we again divide the OGs
into two groups, the ones with average sequence length
less or equal to the median and those with average above

Table 18 Correlation of the Taxonmeasure of all PTMS for
OG above and below the average sequence lengthmedian

Class median Pearson’s

Actinobacteria 305.4 0.9971

Archaea 258.0 0.9902

Firmicutes 283.2 0.9950

Metazoa 360.0 0.9600

OtherBacteria 309.1 0.9907

OtherEukaryota 419.3 0.9928

Proteobacteria 295.6 0.9972
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the median. We then compute the correlation coefficient
for the measures on all PTMS for these two groups.
Table 18 shows the results for each of the classes. As
above, the correlations are high and even higher for non
Metazoa. From these correlations we can conclude that
the average length of the sequences used for the quality
analysis does not influence the results. In these last two
comparisons, where we select the groups based on prop-
erties of the OG (like number of sequences and average
length), we have to use the Taxon measure which is based
on distances of a single group. The Intra measure is based
on pairs of groups, and hence not suitable for these splits.

Variance reduction techniques
To compare two building methods in the Taxon measure,
we can use the average distances to the taxonomic tree
over all the OGs. These averages will have a relatively
large variance and the difference may not be statistically
significant. To refine the comparison of two particular
methods, we study the difference of distances of the two
methods for each OG. The expected value of the differ-
ence coincides with the difference of the averages, but the
confidence margins are much better because the variance
of the difference is normally smaller. This is a well known
variance reduction technique [57].
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