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Abstract

Background: Clustering is a fundamental operation in the analysis of biological sequence data. New DNA
sequencing technologies have dramatically increased the rate at which we can generate data, resulting in datasets
that cannot be efficiently analyzed by traditional clustering methods.
This is particularly true in the context of taxonomic profiling of microbial communities through direct sequencing
of phylogenetic markers (e.g. 16S rRNA) - the domain that motivated the work described in this paper. Many
analysis approaches rely on an initial clustering step aimed at identifying sequences that belong to the same
operational taxonomic unit (OTU). When defining OTUs (which have no universally accepted definition), scientists
must balance a trade-off between computational efficiency and biological accuracy, as accurately estimating an
environment’s phylogenetic composition requires computationally-intensive analyses. We propose that efficient and
mathematically well defined clustering methods can benefit existing taxonomic profiling approaches in two ways:
(i) the resulting clusters can be substituted for OTUs in certain applications; and (ii) the clustering effectively
reduces the size of the data-sets that need to be analyzed by complex phylogenetic pipelines (e.g., only one
sequence per cluster needs to be provided to downstream analyses).

Results: To address the challenges outlined above, we developed DNACLUST, a fast clustering tool specifically
designed for clustering highly-similar DNA sequences.
Given a set of sequences and a sequence similarity threshold, DNACLUST creates clusters whose radius is
guaranteed not to exceed the specified threshold. Underlying DNACLUST is a greedy clustering strategy that owes
its performance to novel sequence alignment and k-mer based filtering algorithms.
DNACLUST can also produce multiple sequence alignments for every cluster, allowing users to manually inspect
clustering results, and enabling more detailed analyses of the clustered data.

Conclusions: We compare DNACLUST to two popular clustering tools: CD-HIT and UCLUST. We show that
DNACLUST is about an order of magnitude faster than CD-HIT and UCLUST (exact mode) and comparable in speed
to UCLUST (approximate mode). The performance of DNACLUST improves as the similarity threshold is increased
(tight clusters) making it well suited for rapidly removing duplicates and near-duplicates from a dataset, thereby
reducing the size of the data being analyzed through more elaborate approaches.

Background
Clustering of sequences (DNA or protein) is a common
and basic analysis in bioinformatics that underlies many
biological analyses. Clustering can be used to reveal
underlying natural groupings of data. Clustering can
also be used to simply reduce the size of a large dataset,
such that a slower, more accurate, analysis can be

applied [1]. The results of the slower analysis can then
be carried over to the rest of the sequences. In this
paper we focus on one application of DNA sequence
clustering; namely the analysis of 16S ribosomal RNA
(rRNA) data. The algorithms and principles underlying
our tool should, however, be applicable to a wider range
of sequence clustering tasks.
Sequence analysis of the 16S rRNA is one of the most

commonly used methods for measuring microbial diver-
sity and taxonomic composition of an environment.
There are two complementary approaches to the
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analysis of 16S data: comparative classification, and
unsupervised clustering. In the comparative approach,
the taxonomic identity of a new sequence can be deter-
mined if it is similar to some of the sequences present
in a curated database [2]. This approach, however, can
not be reliably used for the analysis of novel sequences,
thus scientists frequently rely on methods based on the
unsupervised clustering of sequences [3-5]. Our work is
specifically targeted at unsupervised methods. Note,
however, that clustering of 16S sequences can be used
as a pre-processing step even in the case of database-
based methods in order to reduce the size of the data-
sets being analyzed and to speed up the classification
process.
The traditional approach for clustering 16S rRNA

sequences involves building a multiple sequence align-
ment (MSA) of all sequences, computing a pairwise dis-
tance matrix based on the MSA and clustering the
resulting matrix [6]. The clustering algorithm is often a
greedy hierarchical clustering algorithm which produces
a rooted tree. The tree is then cut at some level, based
on a specified similarity threshold, in order to construct
a collection of clusters. Alternatively, if the taxonomic
annotation of some of the sequences is known, the tree
can be used in a more elaborate semi-supervised cluster-
ing algorithm [7].
Since the latest DNA sequencing technologies have

become faster and cheaper, we are now faced with very
large volumes of sequence data. Newer generations of
sequencing technologies, e.g., 454 Life Sciences sequen-
cing machines, can generate millions of sequences per
run, each of which has a length of hundreds of base
pairs. Such datasets cannot be easily clustered using the
traditional approach outlined above.
First of all , f inding the best multiple sequence

alignment is computationally intractable - this pro-
blem falls into the category of NP-hard problems, i.e.
problems that can only be solved by exploring an
exponential number of possible solutions. Multiple
sequence alignment tools rely on heuristic alignment
algorithms that are not guaranteed to generate an
optimal alignment (which is not a well defined con-
cept, anyway).
The most common heuristic involves building a guide

tree (a preliminary hierarchical clustering of the
sequences) that then guides the construction of the mul-
tiple alignment. Often, the guide tree is constructed
from a preliminary distance matrix constructed from
pairwise alignments of the sequences - for large data
this matrix is impractical (its size, and therefore time
needed to construct it, grows with the square of the size
of the datasets). Furthermore, determining a guide tree
is difficult for large datasets since there could be many
trees that fit the distance matrix equally well.

An alternative to the traditional clustering approaches
that rely on multiple alignments, is a simple, yet
effective, greedy clustering strategy. The process starts
by selecting a sequence as a “seed” for a cluster. Addi-
tional sequences are added to this cluster if they fall
within a certain distance from the seed. The process
continues by selecting an unclustered sequence as the
seed for a new cluster, and so on until all sequences
have been clustered. This basic approach is employed by
the programs CD-HIT [8],
UCLUST [9], and our own work. The main difference

between these programs is in the way the clusters are
constructed, specifically, how a program identifies all
sequences that are nearby a cluster seed. As we will
describe in more detail below, both CD-HIT and
UCLUST search each sequence against a database of all
previously constructed clusters. If the sequence does not
have a good match against any of the existing clusters,
it forms the seed for a new cluster.
The approach we present in this paper involves

searching each cluster seed against a database of all
unclustered sequences, thereby “recruiting” a set of
sequences to the newly created cluster. We will show
that this approach allows us to leverage an efficient
search data structure to rapidly cluster large sets of
sequences. Our approach is particularly well suited for
high-stringency clustering (high similarity between the
clustered sequences), intended to remove redundancy in
the dataset by co-clustering sequences that are identical
or whose differences are primarily due to sequencing
errors. Representative sequences from each cluster can
then be used as input to more computationally intensive
analyses.

Related Work
There are two popular tools designed for clustering
large number of sequences: CD-HIT and UCLUST.
CD-HIT [8] has been widely used in practice and is
cited by hundreds of scientific articles. UCLUST [9] is a
newer clustering tool. UCLUST is based on a fast
sequence search algorithm (which is also used in the
related USEARCH program), and can be more than an
order of magnitude faster than CD-HIT. In the follow-
ing we briefly review the algorithms used by these tools.
CD-HIT
CD-HIT uses a greedy incremental clustering algorithm.
First the sequences are sorted in non-increasing order
of their lengths. The first sequence becomes the first
cluster representative. Each consecutive sequence is
compared to all previously discovered cluster represen-
tatives, and is added to a cluster if it is within a user-
selected distance threshold from the corresponding
representative. Otherwise the sequence becomes the
seed for a new cluster.
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CD-HIT uses a “short word filtering” heuristic to
avoid computing many of the costly pairwise alignments.
Specifically, each sequence is represented as a k-mer
spectrum (an array containing the number of occur-
rences of all substrings of length k in the sequence), and
the initial comparison between sequences is performed
between the corresponding spectra. If the k-mer counts
differ significantly, it is unlikely that the sequences
match each other well. CD-HIT relies on a statistical
analysis to estimate the minimum number of k-mers
that two sequences are expected to have in common,
assuming they have a certain similarity to each other.
This filtering approach can be computationally expen-

sive as it requires counting the number of k-mers shared
by each sequence and all previously selected cluster
representatives.
UCLUST
UCLUST follows virtually the same algorithm as
CD-HIT, with two major exceptions: (i) sequences can
be sorted in different ways, rather than simply by length
(as done by CD-HIT); (ii) the mapping of sequences to
existing cluster representatives is performed with a new
search heuristic called USEARCH.
By default, UCLUST operates in an inexact mode. In

the inexact mode each sequence is not aligned to all
cluster centers found so far. Instead UCLUST sorts the
cluster centers based on the number of “words” they
have in common with the query. Each query sequence is
thus aligned only with a few of the cluster representa-
tives (up to a predefined constant), which are presumed
most likely to be close to it. In the exact mode UCLUST
operates more or less like CD-HIT, i.e. each query
sequence is aligned to all cluster centers found so far. In
this mode the word based filter is not used.
The inexact heuristic guarantees that the number of

pairwise alignments is linear (and, thus, the algorithm is
fast). In practice, this approximation could result in many
more clusters than the exact mode, however the extent of
this “blow-up” depends on the stringency of the clustering.

Results
We describe the algorithms used by our tool in the fol-
lowing section. In the Testing section we evaluate the
performance and quality of our implementation.

Algorithm
The main goal in the design of our algorithms is com-
putational efficiency and scalability. In this section we
present a simple greedy clustering algorithm which
avoids most of the pairwise comparisons in practice.
The clustering algorithm uses an alignment search algo-
rithm and a k-mer based filter which are also described
in this section. Some definitions and general concepts
are covered first.

Definitions
Distance measure Clustering is intimately intercon-
nected with the definition of the distance or similarity
measure used to compare the objects being clustered.
Several distance measures have been commonly used to
compare sequence data, including edit distance (also
called Levenshtein distance) - a measure that counts the
minimum number of insertions, deletions, or substitu-
tions that are required to transform a sequence into the
other; k-mer distance - a measure of the number of sub-
strings of length k that are shared (or differ) between
two sequences; and evolutionary distance - an estimate
of the number of evolutionary events (usually substitu-
tions) that explain the differences between two
sequences. In many cases more than one distance mea-
sure is used during clustering, e.g. a k-mer approach can
be used to quickly discard sequences that should not
belong to a same cluster, then a more precise, but slow,
algorithm is applied (this combination is used by our
algorithm as well as by CD-HIT and UCLUST).
Our approach defines the distance between two

sequences to be the corresponding edit-distance where
the cost function is simply unit cost for each gap or
mismatch, and zero cost for matches. In the case of
sequences of different lengths, we may want to allow
gaps at the end and/or the beginning of the shorter
sequence in the alignment, without penalty. This type of
alignment is referred to as semi-global alignment. The
default behavior of DNACLUST is to allow gaps at the
end of a sequence but not at the beginning (aligned
sequences are anchored at their 5’ end), however other
alignment policies can be selected through command-
line parameters.
Clustering parameters We define the diameter of a
cluster as the maximum distance between any two
sequences in the cluster. Our algorithm (like CD-HIT
and UCLUST) returns one sequence per cluster as clus-
ter representative. There is another related but slightly
different concept of the cluster center, usually picked in
such a manner that the maximum or average distance
from it to the rest of the items in the cluster is mini-
mized. In the following we sometimes loosely use the
term cluster center to refer to the cluster representative.
Given a cluster representative, the cluster radius can be
defined as the maximum distance from the cluster
representative to any sequence in that cluster. Given
that the edit distance measure is a metric (follows
triangle inequality) we also guarantee that the cluster
diameter is at most twice the cluster radius.
Sequence similarity and sequence identity The criter-
ion used by UCLUST and CD-HIT to evaluate distance
between sequences is the amount of sequence “identity”,
i.e. the fraction of characters that match exactly between
the two sequences being aligned. This measure also
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defines the clustering stringency, e.g. a clustering
threshold of 99% implies that the sequences within a
cluster have 99% or higher identity. In an evolutionary
sense identity is a natural definition of the similarity
between two sequences, primarily because insertions
and deletions are difficult to fit within evolutionary
models - DNADIST [5] usually ignores any gaps when
computing the distance matrix. The identity measure,
however, can lead to unintuitive alignments, especially
when comparing sequences of different lengths. In addi-
tion, identity is not a transitive measure, i.e. the fact
that sequence A and B are identical (have zero distance
according to the identity measure), and sequences B and
C are identical, does not imply that sequences A and C
are also identical. More generally, identity does not fol-
low triangle inequality (A distance measure obeys trian-
gle inequality if, for every three sequences A, B, and C,
dist(A, B) + dist(B, C) ≤ dist(A, C)), implying that even
though the cluster radius is small the cluster diameter
may be high, i.e. while the distance between all the
sequences in the cluster and the cluster representative is
small, individual sequences may differ significantly from
each other. As a result, the cluster is not as “tight” as
would be implied by the distance threshold used.
Furthermore, the resulting multiple alignment is of
lower quality. (See Additional file 1, Figure S1.)
To avoid these problems we rely on a different mea-

sure of distance between sequences: the (semi-)global
alignment score. In this context, the “similarity” between
two sequences can be defined as:

similarity = 1 − edit distance
length of the shorter sequence

Here the “length of the shorter sequence” refers to the
length before alignment and does not include the gaps
induced by the alignment.
Note, however, that due to the different definitions

of distance, the clusterings produced by DNACLUST,
CD-HIT, or UCLUST cannot be directly compared at a
given clustering threshold.
Clustering properties The clustering problem that we
study in this work has the following form: given a set of
sequences and a threshold on the cluster radius, group
these sequences into clusters, and identify one sequence
within each cluster as the cluster representative.
Given a metric distance between a set of items, any

clustering of these items can have one or more of the
following properties:

1. The radius of every cluster is less than or equal to
the specified threshold.
2. The distance between any two cluster centers is
strictly greater than the threshold.

3. The distance between any clustered item and any
cluster center (except the center of the cluster to
which the item belongs) is strictly greater than the
threshold. This implies that the closest center to any
item is the center of its cluster.

A clustering is valid if it satisfies property 1. A valid
clustering with the minimum number of clusters is
called an optimal clustering. Unfortunately, finding an
optimal clustering (assuming a general metric distance
between items,) is NP-hard [10]. A clustering that satis-
fies property 2 in addition to 1 is called an exact cluster-
ing. Our search and filter algorithms are designed to be
able to create exact clusterings.
A clustering that satisfies property 3 is called a well-

separated clustering. (For illustrations of exact and well-
separated clusterings see Additional file 1, Figure S2.)
Note that an exact clustering does not guarantee that
the clusters are well separated. Also it is not always pos-
sible to cluster all of the items into well separated clus-
ters. Below, we will describe an algorithm (that can be
selected through command-line parameters) that pro-
vides well-separated clusterings.
Clustering Algorithm
The foundation of DNACLUST is a simple greedy clus-
tering algorithm, which is similar to the algorithms used
by CD-HIT and UCLUST.
In practice, the sequences are first sorted based on

their length in a non-increasing order. Then at each
iteration the longest remaining sequence is picked as
the new cluster center. We form the largest possible
cluster with this cluster center by searching through the
set of unclustered sequences for all sequences that are
less than a user-selected distance threshold from the
cluster center. The clustered sequences are marked and
are not taken into consideration any longer. (Pseudo-
code of this algorithm is provided in Additional file 1,
Algorithm S1.)
Picking the longest unclustered sequence as the

cluster center is necessary to ensure the correctness of
clustering when the lengths of the sequences are not
equal. Specifically if two sequences, both of which are
longer than the cluster center, are clustered together, it
is not possible to guarantee that they align well to each
other, i.e. these sequences could be incorrectly placed in
the same cluster even if they differ significantly.
In the case that all the sequences have (or are

trimmed to have) the same length, it has been proposed
that ordering the sequences by abundance results in a
better clustering [11,12], especially in the presence of
sequencing errors. The abundant sequences can be
inferred to be the correct molecules that are surrounded
by a “cloud” of imperfect sequences due to sequencing
errors. This approach makes most sense if the data
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contain high coverage and relatively well separated
sequences (e.g. data from a low-complexity community).
In diverse communities, however, it can be difficult to
distinguish between experimental noise and true geno-
mic variation. In addition, determining “abundance”
requires some form of clustering, either exact (counting
the number of exact copies of each sequence in the
data), or by allowing a small amount of error. DNA-
CLUST is specifically targeted at such high stringency
clustering applications, and, thus, could be used as an
initial step in a more elaborate clustering scheme that
takes abundance into account.
Note, however, that a full evaluation of the phyloge-

netic interpretation of clustering strategies is beyond the
scope of our work. Our main goal was to develop an
efficient and mathematically well-defined clustering
approach. More complex analyses of the data that, e.g.,
take into account phylogenetic signal, can be performed
by post-processing the output of our software. In order
to generate an exact clustering, the search step must
find all the unclustered sequences that are within the
specified radius from the cluster center. In this context
we refer to the cluster center as the query sequence. The
distance measure can be based on either global align-
ment cost, or semi-global alignment cost, in which case
the gap costs at one or both ends of the shorter
sequence are ignored. Either of these policies can be
picked by the user using the command line options.
This search is the most time consuming step of the
algorithm, and is described in more detail in the next
section.
This algorithm can be easily modified to construct

well separated clusters (property 3 in the previous sec-
tion) as follows. Each time a new cluster of radius r is
constructed, we also flag every unclustered sequence
within distance 2r from the center of the new cluster.
The flagged sequences can not be picked as cluster cen-
ters in subsequent iterations of the greedy algorithm,
but may be included in a cluster constructed around an
unflagged cluster center. This approach ensures that the
distance between two cluster centers can not be less
than two times the cluster radius. In order to implement
this algorithm all we need to do is to double the search
radius but only cluster the sequences that fall within the
clustering threshold.
Alignment Search Algorithm
Our alignment search algorithm is designed to find all
good (semi-) global alignments of the query sequence to
a large set of sequences simultaneously. The main speed
up is achieved by taking advantage of the fact that we
are only interested in alignments that are high-quality:
have a cost which is less than or equal to a certain
threshold.

It is easier to explain this algorithm if we assume that
all the sequences are stored in a trie data structure [13].
We traverse the trie using a depth first search (DFS)
algorithm. At each internal node of the trie we compute
the cost of best alignment of the query sequence (the
representative for the current cluster) to the sequence
corresponding to the path from root to the current
internal node in the trie [14]. This corresponds to
simultaneously matching the (identical) prefixes of all
the sequences sorted in the trie within the subtree
rooted at the current node with the query.
The pairwise alignment and the cost are computed

using a dynamic programming algorithm, a variation of
the Needleman-Wunsch algorithm [15].
First we describe the alignment algorithm for two

complete sequences. Assume we are trying to align two
sequences S1 and S2 of lengths n1 and n2. We fill an n1
× n2 table of numbers, such that the element at position
(i, j) of the table - T(i,j) - contains the score (i.e. cost) of
the “best” alignment of the first i characters of S1 to the
first j characters of S2. In our case, the types of differ-
ences that are allowed are insertions, deletions and sub-
stitutions, and T(i ,j) depends on only three other
elements of the table:

T(i,j) = min

⎧⎨
⎩
T(i−1,j) + cost(S1[i], ′′gap′′)
T(i,j−1) + cost(“gap′′, S2[j])
T(i−1,j−1) + cost(S1[i], S2[j])

If the table is filled row-by-row (or column-by-col-
umn), the total amount of computation needed to fill
this table (and compute an alignment) is proportional to
n1 × n2.
The table is initialized as follows: If we are interested

in a semi-global alignment (as in Figure 1) the first row
is initialized to all zeros. On the other hand, if we
assume all the sequences start at the same position (i.e.
global alignment) the first row of the dynamic program-
ming table is initialized with the cost of gaps required at
the beginning of the alignment. The first column is
always initialized with the cost of the required gaps.
Since we are trying to simultaneously align a query

sequence to a set of sequences, we think of one of the
sequences as growing (and shrinking) as we backtrack
through the common prefixes of sequences in a suffix
trie, and update the table as necessary. On the horizon-
tal axis of the dynamic programming table (Figure 1)
the query sequence is fixed. On the vertical axis we
have the prefixes of the sequences in the trie. As we go
deeper in the trie, the dynamic programming table is
filled one row at a time. Each time the depth-first search
of the trie traverses an edge, we only need to update one
row of the table, namely the current top row. Also note
that at each point the cost of the best semi-global
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alignment of the current path to the query is the mini-
mum value on the top row.
Also, assuming unit cost for each gap (insertion or dele-

tion), we do not even have to update all of the cells on the
current row in the dynamic programming table after tra-
versing an edge in the trie [16]. As is shown in Figure 1,
the dynamic programming table updates need be per-
formed only for the cells whose bottom-left neighbor con-
tains a value no larger than the specified cluster radius.
This is due to the fact that for any two sequences S1

and S2, and any i and j, dist(S1 [1..i], S2[1..j]) ≥ dist(S1[1..
i - 1], S2[1..j - 1]) where dist() is the edit distance.
The main heuristic that speeds up this algorithm relies

on the observation that it is not always necessary to
compute the alignments of the query to all paths in the
trie all the way to each leaf. Instead, during the depth-
first search, if at any point the alignment cost of the
prefix is too high, the recursive search terminates with-
out further exploring the children of the current node
in the trie.
The trie data structure described above is not expli-

citly built in our implementation. Instead we keep a list
of the sequences in lexicographically sorted order. As we
proceed to align one of the sequences (S) to the query
we are also implicitly aligning all adjacent sequences
that share a common prefix with S. In other words,
each internal node of the virtual trie corresponds to a
unique consecutive sub-list of the sorted list of
sequences, in which the shared prefix of the sequences
corresponds to the path from the root of the trie to that
internal node.

Effectively we first try to align the first sequence to
the query (in our case the cluster representative). If the
alignment is good then the first sequence is added to
the search results. When aligning the second sequence,
and so on, we can avoid re-aligning its common prefix
with the previously aligned sequence, thereby reducing
the cost of computation. Note that if we fail to align the
first say a characters of sequence i (ith sequence in the
sorted list), and the common prefix of sequence i and
sequence i + 1 is longer than a, we do not need to try
to align sequence i + 1 at all. The search algorithm is
very similar to the algorithm in [17], except that the
backtracking threshold is fixed as the given radius of the
clusters. We use the ternary quick sort algorithm [18]
once, in the beginning, to sort the sequences lexicogra-
phically. The time spent for sorting the sequences is,
however, much less than the time spent during
clustering.
Star Multiple Sequence Alignment
One valuable output of a sequence clustering algorithm
is a multiple sequence alignment representing the global
relationship between the sequences present in the clus-
ter. Such a multiple alignment can be used by users to
manually inspect the quality of the clustering, and can
also represent the substrate for more complex analyses
(e.g. computation of evolutionary distances between the
sequences).
We rely on a “star” multiple alignment heuristic that

computes the multiple alignment from the pairwise
alignments between each of the sequences and the clus-
ter representative. The pairwise alignments between the
sequences and the representative are a byproduct of our
search algorithm. To construct the multiple alignment
we reconcile the differences between these pairwise
alignments by inserting gap characters as necessary. (For
more detail see part 1 of Additional file 1.)
This approach guarantees that the pairwise distance

between any two sequences in the alignment is at most
twice the cluster radius (maximum distance between
any sequence and the cluster representative).
Word-based Filter
Finding the best pairwise alignment of two sequences
using dynamic programming is computationally inten-
sive. It requires quadratic time in the length of the
input sequences, in the general case. In our clustering
application, however, it is possible to avoid calculating a
pairwise alignment altogether, if we are certain that no
good alignment exists. We use k-mer based filtering [8]
to speed up the search for sequences with good
alignment.
Given a sequence S of length n (e.g. one of the

sequences we are trying to cluster), a k-mer is a sub-
string of S of length k, where k is chosen to be much

sequencei

? ∞
G ∞ ∞ 2 1 2 ∞
T ∞ 2 1 2 ∞
C 2 1 1 2 2 2 . .
A 1 0 1 1 1 1 . .
- 0 0 0 0 0 0 0 0

- A T G G T . .
query

Figure 1 Dynamic programming table example. Partially filled
dynamic programming table. The query sequence is represented on
the horizontal axis. At this point the algorithm has computed the
alignment costs for a prefix of length 4 of the data sequences -
which is shown on the vertical axis. Since we are calculating semi-
global alignment the first row is initialized to all zeroes, i.e. The
alignment of the shorter data sequence can start at any position of
the longer query sequence without any penalty. In this figure, the
distance threshold is 2, and any values larger than this threshold are
set to the maximum value represented by ∞. To optimize the
running time, since there are only three valid values on the last
finished row, only the values for the three gray cells need to be
computed on row right above it.
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smaller than n. Sequence S contains n - k + 1 overlap-
ping k-mers, some of which may be identical.
The filter is based on the key intuition that if two

sequences are within a small edit distance from each
other, they must share most of their k-mers. In the fol-
lowing we formalize this idea.
Let us assign numbers from 1 to 4k to the possible k-

mers. Given a sequence s, by counting how many times
each one of the 4k k-mers appears in the sequence we
obtain a vector of non-negative integers of dimension 4k.
Namely the ith element of this vector, vi , counts the
number of times that k-mer number i appears in s. We
call this vector the k-mer spectrum of the sequence s, and
it is is denoted by spectrumk (s).
Given a vector of integer numbers, v, define pos(v) to

be the sum of the positive values in the vector. Similarly
define neg(v) to be the sum of the negative values. For
example, for any sequence s of length n, we have pos
(spectrumk (s)) = n - k + 1 and neg(spectrumk (s)) = 0.
Consider two sequences, s1 and s2, that are close to

each other. The following observation bounds the maxi-
mum difference between their k-mer spectra.
Observation 1. If s2 has edit distance d from s1, then,

for all k, pos(spectrumk(s1) - spectrumk (s2 )) ≤ k × d and
neg(spectrumk(s1 ) - spectrumk (s2)) ≥ -k × d.
Proof. See part 2 of Additional file 1. □
Since we want to be able to report sequences that

might have a good semi-global alignment to the query
sequence, we have to consider the case in which one
sequence is within a small edit distance from a substring
of the other sequence. The following observation helps
the handling of this case.
Observation 2. If a sequence s1 is a substring of s2,

then, for all k, neg(spectrumk(s2 ) - spectrumk (s1)) = 0.
Lemma 1. If s1 has edit distance d from s* and s* is a

substring of s2, then, for all k, pos (spectrumk(s1) - spec-
trumk(s2 )) ≤ k × d.
Proof. See part 2 of Additional file 1. □
Using Lemma 1, given a query sequence q, a sequence

s, and a distance threshold d, if for any k we have

pos (spectrumk(s) − spectrumk(q)) > k × d

then we can be certain that no semi-global alignment
of s to q exists which corresponds to a distance less
than or equal to d.
Lemma 1 can be extended to quickly determine

whether none of the sequences in a collection has a
good alignment to the query sequence. We build a bin-
ary search tree of the sequences, and using their k-mer
counts can quickly discard subtrees that do not have
any sequence close to the query. (The algorithms for
building and searching this binary tree are described in
part 3 of Additional file 1.)

Testing
In this section we compare clustering speed of DNA-
CLUST with other clustering tools on different datasets.
We also evaluate the quality of the multiple sequence
alignment that DNACLUST can produce for each
cluster.
Speed
DNACLUST and UCLUST can produce exact or
approximate (i.e. inexact) clusterings. (The definitions of
these terms are provided in the Algorithm section -
clustering properties.) Creating an exact clustering takes
more time. For these tools we have measured the run-
ning time in both settings.
We have created clusterings at different similarity/

identity thresholds for each tool and each setting.
(Sequence identity and sequence similarity are discussed
in detail in the definitions part of the Algorithm sec-
tion.) The radius of the clusters created range from 0.95
up to 0.995 similarity. (For a list of the parameters that
can be set by the user of DNACLUST see part 4 of
Additional file 1.)
In order to evaluate and compare the performance of

our program, we use two publicly available datasets. The
first dataset is from the gut microbiome of 154 indivi-
duals. These data were generated as part of a project to
evaluate the differences in the gut microbiome of obese
and lean twins [19]. The dataset contains 1.1 million
pyrosequencing reads from the V2 region of the 16S
rRNA gene. The reads have an average length of 231
base pairs. We refer to this dataset as the twins dataset.
The running time of various clustering tools using dif-
ferent setting and cluster radii on the twins dataset is
shown in Figure 2. The number of clusters generated
for each setting is shown in Table 1.
In exact mode the running time of UCLUST increases

rapidly as the radius of the clusters is decreased. This is
because a smaller cluster radius results in a large num-
ber of clusters (and hence cluster centers). In addition,
for highly-similar sequences, the search heuristic used
by UCLUST becomes less efficient. DNACLUST in
exact mode is faster than UCLUST for any similarity
threshold above 0.95.
UCLUST in inexact mode is much faster than in exact

mode, and thus faster than DNACLUST in most cases.
In inexact mode DNACLUST is faster than UCLUST
only for similarity thresholds greater than or equal to
0.98. Both DNACLUST and UCLUST in inexact mode
are roughly an order of magnitude faster than CD-HIT.
As seen in Table 1 the switch from exact to inexact

mode leads to a significant change in the number of
clusters generated by UCLUST, leading to up to 75%
more clusters at the same similarity threshold. In other
words, the improvement in speed comes at the cost of
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reduced cluster quality. In comparison, our k-mer filter-
ing strategy (DNACLUST in inexact mode) leads to
only a small increase in the number of clusters (<3%), i.
e. our inexact heuristic is more effective in terms of
speeding up the algorithm without significantly affecting
the results of the clustering.
The second dataset contains all full 16S rRNA

sequences from the Ribosomal Database Project [20].
We picked all of the sequences which were between
1300 and 1550 base pairs, covering almost the full
length of the gene (480,312 sequences).
This test is meant to evaluate the performance of our

algorithm on long sequences such as those that may be
generated by future sequencing technologies. The

running times of DNACLUST and UCLUST on the
RDP dataset are shown in Table 2.
The sequences in the RDP dataset are almost three

times longer than the earlier dataset, allowing us to eval-
uate how our approach scales with anticipated increases
in read length. The alignment algorithm is slower on
these data since, at the same level of similarity/identity
between sequences, the total number of differences is
higher. The trends in the performance are, however,
consistent with the results observed on the twins data-
set. DNACLUST still outperforms UCLUST for tighter
clustering thresholds (>0.95): UCLUST in the exact
mode takes more than 130 hours to cluster this dataset,
in contrast to just over 6 hours for DNACLUST.
Please note that the results shown above ignore any

connection between clusters and actual biological enti-
ties, i.e. we are primarily concerned with whether the
clustering is mathematically consistent instead of
whether clustering captures some underlying biological
truth. In general, no fixed clustering threshold ade-
quately captures the taxonomic structure in the data [6],
in part because “biological truth” is not a well defined
concept (at least not in mathematical terms). Addition-
ally, sequencing errors can blow up the number of clus-
ters especially if the sequencing error rate is of roughly
the same order of magnitude as the clustering threshold.
To estimate the true taxonomic composition of a

dataset we recommend a two step process that starts by
building tight clusters (e.g. at 0.99 similarity) with DNA-
CLUST, then uses the cluster representatives (and the
size of the clusters) as input for a more sophisticated
but slower algorithm which could not otherwise be
applied to the original dataset.
Multiple Sequence Alignment
In the following we compare the quality of the multiple
sequence alignment (MSA) produced by DNACLUST
and commonly-used multiple alignment algorithms. We
are defining the quality of a multiple sequence align-
ment in a very strict sense, specific to the analysis of
16S rRNA data: we measure how well the distance

Table 1 Number of clusters

0.99 0.97 0.95

DNACLUST exact 233879 73726 28241

DNACLUST inexact 240125 76391 28661

UCLUST exact 144339 48418 20039

UCLUST inexact 253108 71361 26685

CD-HIT 245851 100280 55208

The number of clusters produced by DNACLUST, UCLUST and CD-HIT at
various identity/similarity thresholds, on the twins dataset. Since each tool
uses slightly different distance measures, the number of clusters can not be
directly compared between different tools. (Namely the identity measure used
by UCLUST and CD-HIT underestimates the distance between two sequences,
as computed by the similarity measure used by DNACLUST). Instead we
compare the change in the number of clusters when switching between the
exact and inexact modes of each tool - a smaller change indicating better
performance.

Table 2 Running times on RDP dataset

0.99 0.97 0.95

DNACLUST exact 204 372 960

UCLUST exact 7800 5040

DNACLUST inexact 74 76 150

UCLUST inexact 43 29 16

The running times (minutes) of DNACLUST and UCLUST with various similarity
thresholds on the RDP dataset.

The running times were measured on a single 2.8GHz processor of an AMD64
Linux workstation. The command line options were:

dnaclust infile.fasta -l -s 0.9x -k 5 [–approximate-filter]
> outfile.cluster uclust –input infile-sorted.fasta –uc
outfile.cluster –id 0.9x [–exact]
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Figure 2 Running times. Plot of running time as a function of
cluster radius for various tools and settings, on the twins dataset.
The dataset contains 1.1 million pyrosequencing reads from the V2
region of the 16S rRNA gene. The reads have an average length of
231 base pairs. The running times were measured on a single 1.8
GHz processor of an Intel x86-64 Linux laptop with 4 GB RAM. The
command line options were: dnaclust infile.fasta -s
0.9x -k 3 [–approximate-filter] > outfile.cluster
uclust –input infile-sorted.fasta –uc outfile.
cluster –id 0.9x [–exact].
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matrix computed by DNADIST (a commonly used tool
that estimates evolutionary distances between sequences
in a multiple alignment) matches the clustering criteria:
i.e. if the clustering threshold (i.e. radius) is 99% iden-
tity, we expect the largest value in the distance matrix
(i.e. largest diameter) to be lower than 2%.
To evaluate the quality of the multiple sequence align-

ment produced by our program we compare it to two of
the most popular MSA tools, ClustalW [21] and MUS-
CLE [22]. Neither of these tools can handle as many
sequences as our largest clusters contain (the largest
cluster of the twins dataset at 95% similarity contains
74,465 sequences). Both of these tools crash when they
fail to allocate enough memory for an n × n matrix to
store the pairwise distances, where n denotes the num-
ber of input sequences.
For n ≥ 38, 000 ClustalW, and for n ≥ 22, 000 MUS-

CLE could not run on a machine with 4 GB of RAM.
Note that larger datasets could be aligned using MUS-
CLE given additional RAM or by specifying the main
memory limit (-maxmb parameter). The total memory
requirements, however, grow quadratically as a function
of the number of sequences being aligned, ultimately
limiting the size of datasets that can be analyzed on
commodity hardware.
To compare the multiple alignment routines, we

selected one of the clusters produced by DNACLUST
within the twins dataset. This cluster was constructed
with a 95% similarity threshold (5% cluster radius), and
contained 1117 sequences. These sequences were
aligned using MUSCLE and ClustalW (with and without
the “-quicktree” option), resulting in three multiple
sequence alignments. We compared these “traditional”
MSAs to those generated by DNACLUST and UCLUST.
A pairwise distance matrix was obtained based on each
MSA using DNADIST [5]. The maximum distance
between any pair of the sequences was then reported,
which corresponds to the diameter of the cluster in
terms of evolutionary distances inferred from the corre-
sponding MSA. The running time and the inferred clus-
ter diameter for different MSA tools are shown in
Table 3.

This experiment validates the clusters and correspond-
ing MSAs produced by DNACLUST using an indepen-
dent tool for measuring evolutionary distance between
DNA sequences. The DNADIST distance matrices are
the underlying data used in the “traditional” 16S rRNA
clustering approaches. The results also demonstrate that
commonly used multiple sequence alignment tools are
not well suited for the alignment of a large number of
sequences.
DNACLUST and UCLUST rely on a star-alignment

heuristic, and use the cluster representative as the one
sequence against which all the other sequences are
aligned. This approach guarantees that the distance
between any pair of sequences within the MSA is at most
twice the radius of the cluster. Furthermore, this
approach is efficient: building a star MSA only requires
time linear in the number of sequences, in contrast to
the quadratic time needed to construct the guide tree in
most traditional multiple alignment approaches. We
further compared multiple sequence alignments pro-
duced by DNACLUST and UCLUST. We built cluster-
ings using both programs (and multiple sequence
alignments for each cluster) from the twins dataset at the
thresholds 95%, 97% and 99% (6 clusterings in total).
Since computing pairwise distances is computationally
intensive especially for large clusters, from each cluster-
ing we randomly selected 50 clusters containing between
100 and 500 sequences. For each cluster we also built a
multiple alignment using ClustalW.
We generated the pairwise distance matrix for each

alignment using DNADIST, then computed the average
pairwise distance of the aligned sequences. Figure 3
show the distribution (relative frequency) of the align-
ments based on their average pairwise distance for each
threshold. The clusters produced by DNACLUST are
tighter than the clusters produced by UCLUST at the
same threshold because of the more stringent definition
of distance between sequences (we rely on full align-
ment score while, by default, UCLUST uses identity).
Closer examination of the multiple sequence alignments
produced by UCLUST shows that they tend to contain
more gaps (which is consistent with the UCLUST defi-
nition of distance as sequence identity). Average fre-
quencies of gaps in multiple sequence alignments
produced by DNACLUST and UCLUST at various
thresholds are shown in Table 4. Note that the gaps do
not affect the pairwise distance computation, as they are
not penalized by DNADIST.
Our results also show that the traditional approach for

computing multiple alignments (here using ClustalW)
results in an overestimate of the distances between the
aligned sequences (dashed lines in Figure 3), confirming
the observation that the star alignment strategy is more
appropriate for large sets of highly similar sequences.

Table 3 Multiple sequence alignment building times

MSA method Time (sec.) Diameter (DNADIST)

ClustalW 1545.5 0.251

ClustalW -quicktree 87.6 0.264

MUSCLE 197.8 0.198

UCLUST 0.1 0.156

DNACLUST 0.8 0.094

Time spent building a Multiple Sequence Alignment of a sample cluster using
different tools, and the diameter of the MSA produced, as reported by
DNADIST. The diameter is expected to be less that or equal to 0.10.
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Availability and requirements
Project name: DNACLUST
Project home page: http://dnaclust.sourceforge.net/
Operating system: Linux - x86/x86-64
Programming language: C++
Other requirements: Boost C++ libraries 1.34 or

higher
License: GNU GPL

Discussion
Clustering is a basic problem in computational biology
and other sciences. It is, however, a difficult problem.
Finding the optimal solution, even in very simple mod-
els, is computationally prohibitive. Considering the fact
that the amount of data created by sequencing machines
is growing at a rapid pace (outpacing, in fact, Moore’s
law at the moment), efficient algorithms for clustering
are needed.
In this paper we have focused on a simple greedy clus-

tering approach. Our algorithm’s running time depends
on the data and the cluster radius threshold, and is par-
ticularly effective at high clustering thresholds. The

efficiency of our algorithm is due to a new k-mer filter-
ing approach, and to an efficient search strategy that
allows us to quickly recruit sequences that could be
assigned to a cluster. The software implementation is
open-source and competitive with other commonly used
clustering tools.
It should be noted that our focus has been simplicity,

generality and performance. We do not claim to discover
the underlying biological “truth”. Such analysis require
more sophisticated algorithms and are much more com-
putationally intensive. Our tool can help in reducing the
size of the data so that these, more intensive, analyses
can be applied. What we provide is a mathematically well
defined clustering, which is the best we can hope for
given that the biological truth has yet to be unambigu-
ously characterized in mathematical terms.
We have compared our tool to state of the art software

for clustering large numbers of sequences. An interesting
observation is that the running time of DNACLUST
decreases as the radius of the cluster is decreased,
whereas the running time of UCLUST increases. Our
search algorithm is more effective at higher stringencies,
while the heuristics used by UCLUST are more effective
when sequences are more dissimilar. This suggests that a
faster algorithm could be developed that combines the
best properties of both approaches.
Our k-mer based filter and alignment search algo-

rithms can also be used for searching against databases
that contain a large number of short sequences. In this
scenario, the fact that our filter is completely sensitive is
very useful. If the sequence database is static, our search
data structures can be built once and stored on the disk
for subsequent queries. We hope to add this functional-
ity in future versions.
Finally, it is important to point out that there is still

the need for even faster clustering tools. For very large
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Figure 3 Distribution of cluster MSAs based on their average pairwise distance. Figures 3a, 3b and 3c show the distribution of sampled
cluster multiple sequence alignments based on their average pairwise distance for thresholds 99%, 97% and 95%, respectively. The figures show
that DNACLUST cluster MSAs (thick blue line) are tighter (i.e. have smaller average pairwise distance) than UCLUST cluster MSAs (thick red lines).
Furthermore computing a “traditional” MSA using ClustalW from the clusters produced by DNACLUST and UCLUST results in an overestimation
of the distances between sequences (dashed lines).

Table 4 Average frequency of gaps in the multiple
sequence alignments

0.99 0.97 0.95

DNACLUST 0.016 0.071 0.103

UCLUST 0.071 0.117 0.146

The average frequency of gaps in multiple sequence alignments for sampled
clusters at various similarity thresholds. For each MSA, the frequency of gaps
is the number of gaps divided by the total number of characters in the MSA.
Gaps before the beginning and after the end of each sequence are excluded.
Note that since an insertion in one sequence results in a gap in all other
sequences in the MSA, the ratio of gaps may be higher than the clustering
threshold. Since the sequence identity measure used by UCLUST does not
take gaps into account the number of gaps in UCLUST MSAs are higher than
the gaps in DNACLUST MSAs, specially at more stringent thresholds.
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datasets (over several million sequences), such as the
ones produced by Human Microbiome Project, all avail-
able tools take more than a few days to run. Higher per-
formance can possibly be achieved through parallel
computation, and we intend to explore such approaches
in future versions of our software.

Conclusions
The datasets analyzed by biologists are rapidly increas-
ing in size and efficient clustering algorithms are neces-
sary to help reduce the effective size of these datasets.
Here we presented a novel approach for sequence clus-
tering that is particularly well suited for high-stringency
clustering, outperforming other state of the art cluster-
ing tools in this context. While our focus has been the
analysis of 16S rRNA sequences, the algorithms we
describe can be applied in other contexts as well, e.g. to
identify duplicates in high-throughput sequencing data.
While more relaxed clustering thresholds are often

used in metagenomic studies (≤ 97% similarity), using
any fixed threshold is not a good approach for creating
biologically meaningful clusters [6]. Here we have
focused on creating rigorously defined, tight clusters.
The representatives of these clusters can be used in
further analysis (e.g. to create phylogenetically-informa-
tive clusters using more computationally intensive meth-
ods), in effect reducing the size of the original dataset.
The software implementing our clustering approach is

freely available under an open-source license.

Additional material

Additional file 1: Additional information. Proofs of the lemmas, details
of the k-mer filter algorithm, pseudocode, illustrations and description of
the program arguments are provided in the additional information.
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