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Abstract

Background: Conserved gene clusters are groups of genes that are located close to one another in
the genomes of several species. They tend to code for proteins that have a functional interaction.
The identification of conserved gene clusters is an important step towards understanding genome
evolution and predicting gene function.

Results: In this paper, we propose a novel pairwise gene cluster model that combines the notion
of bidirectional best hits with the r-window model introduced in 2003 by Durand and Sankoff. The
bidirectional best hit (BBH) constraint removes the need to specify the minimum number of shared
genes in the r-window model and improves the relevance of the results. We design a subquadratic
time algorithm to compute the set of BBH r-window gene clusters efficiently.

Conclusion: We apply our cluster model to the comparative analysis of E. coli K-12 and B. subtilis
and perform an extensive comparison between our new model and the gene teams model
developed by Bergeron et al. As compared to the gene teams model, our new cluster model has a
slightly lower recall but a higher precision at all levels of recall when the results were ranked using
statistical tests. An analysis of the most significant BBH r-window gene cluster show that they
correspond to known operons.

Background of genetic markers - reveal segments with homologous
It is well-known that the differences between the  gene content. These segments are commonly referred to
genomes of extant species can be attributed to both  as conserved gene cluster.

small and large-scale mutations [1]. Large-scale muta-

tions or rearrangements are relatively rare but they affect =~ These homologous regions may have resulted from
the content and order of the genomes, thereby obscuring ~ functional pressure to keep sets of genes in close
the relationship between species. Comparison of multi-  proximity across multiple species. The most well studied
ple genomes based on their gene orders - the sequence = examples are co-transcribed genes, also known as
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operons, in prokaryotes [2]. In addition, [3] showed that
genes in the same cluster tend to code for proteins that
have a functional interaction. Gene clusters can also
result from the evolutionary proximity of the genomes
being analyzed. Such clusters provide important phylo-
genetic information which can be used to infer the gene
order of the ancestral genomes [4] and identify ancestral
homologs among genes from the same family [5].

Intuitively, a conserved gene cluster represents a compact
region which contains a large proportion of homologous
genes separated by regions that do not contain any
shared homologs. Developing a formal definition of
such clusters is a non-trivial task due to conflicting
cluster properties. Two cluster definitions that are
commonly used in practice are max-gap clusters and
r-window clusters [6].

The gene teams model [7,8], a formalization of max-gap
clusters, allows for gaps of length at most J between
adjacent genes in a team. [9] further generalized the
model by introducing a quorum parameter, ¢, to allow
gene teams which may be found in at least g input
genomes. Efficient algorithms to find all gene teams have
been proposed in [7,8,10].

While the gene teams model imposes a constraint on the
distance between adjacent genes in a cluster, the size
(number of genes) and length (distance between the two
furthest genes) of the resulting clusters are unbounded.
In contrast, under the r-window model [11], clusters
have length at most r and contains at least k genes. The
statistical properties of r-window gene clusters are also
better understood and the significance of discovered
clusters can be evaluated using statistical tests proposed
in [11]. Exact computation of the significance of gene
teams is still an open problem, but upper and lower
bounds have been developed in [12].

The r-window model was first used in the study of block
duplications [13,14], by comparing all pairs of windows
of length r. To the best of our knowledge, no formal
algorithms has been presented for computing all -
window gene clusters. In addition, although several
models of conserved gene clusters have been proposed in
the literature, there are few published results which
compares different models empirically on real genomes.
[6] laid the groundwork by providing a characterization
of the desirable properties of gene clusters and a detailed
analysis of the difference between max-gap clusters
based on the gene teams model and those produced by
heuristics.

In this paper, we propose an improvement to the
r-window gene cluster model [11] by imposing the
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bidirectional best hit (BBH) criteria from sequence
homology. We formulate the clustering problem for-
mally and design an efficient subquadratic time algo-
rithm to compute all BBH r-window gene clusters
between two gene orders based on a sliding window
technique. Finally, we give an empirical comparison
between our new cluster model and the gene teams
model.

Notation

Our model of a genome is as a sequence of genomic
markers for which homology information across the
genomes of interest are available. The most common and
well annotated type of genomic markers are protein
coding genes. A homology family is a groups of genes
that are descended from a common ancestral gene [15].

Let X denote the set of homology families. We are
interested in the homology families that contains at least
one gene in each of the genomes under consideration. A
gene, g is denote by f’ where f € T is the homology
family which the gene belongs to and p € R is the
position the gene.

The distance between two genes g = a” and h = b7, A(g, h),
is simply the absolute difference in their position, i.e.
|p-g|. This represents the number of elements located
between the two genes of interest. In our experiments,
gene positions are assigned based on the index of the
gene in the complete genome. Hence, the distance
between two genes reflect the number of genes between
them. We make use of the notion of distance to constrain
the maximum length of a gene cluster.

A gene order, G, is a sequence of genes (g, g2, ..., §u) IN
increasing order of their position. A uni-chromosomal
genome can be directly represented as a gene order.
Genomes with multiple chromosomes can be repre-
sented as a gene order by concatenating the chromo-
somes together in an arbitrary order and inserting an
appropriate gap to separate genes from different chro-
mosomes.

A r-window [11], G [i, j] = (i &+1/ --» &), ON a gene order
G is a substring of G. The length of a window, defined by
the distance between the first and last gene, is at most r,
i.e. A(g;, &) <7.In[11], a gene cluster is defined as a set of
k genes that are found in a r-window. When extended to
two gene order, this definition imposes a constraint on
the number of common genes between two r-windows.
However, it is unclear how to determine the minimum
number of genes in a gene cluster as it is affected by the
actual length of the clusters and the evolutionary
distance between the genomes. Too low a value will
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introduce too many false positives, while a more
conservative value may exclude weakly similar clusters.

Problem definition

In this paper, we adopt a different constraint on the
r-window gene cluster, namely, bidirectional best hit.
This circumvents the problem of having to decide the
number of common genes in a cluster by making use of
the relative similarities between the r-windows. The
bidirectional best hit (BBH) criteria is routinely used
when identifying homologous DNA sequences between
two species using BLAST. We feel that it is natural to
extend this criteria to the identification of conserved
gene clusters, as they are essentially homologous
chromosomal segments.

In order to apply the BBH criteria, we will need a
measure of similarity between two windows. A straight-
forward method is to count the number of genes that
come from a common homology family, we call this the
shared gene count.

Definition 1 (Shared gene count). Given two windows,
we = G i, j| and wy = H|k, 1], the shared gene count of wy
with respect to wg is the number of genes in wy; that comes
from a homology family that is also present in wg.

Based on the shared gene count, we define the notion of
a best hit from one genome to another genome.

Definition 2 (Best hit). Given a window wg and a collection
of windows Wy, the best hit is a window wy in Wy with the
highest shared gene count with respect to wg. If there are
multiple windows with the same shared gene count, then the
best hit is the shortest one.

Although we define the best hit in terms of the shared
gene count, it is possible to replace it with other more
sophisticated similarity measures. The simplicity of the
shared gene count makes it easy to understand and
allows us to design an efficient algorithm to find all
clusters.

The following definition formally defines our BBH
r-window gene cluster model.

Definition 3 (BBH r-window gene cluster). Given two gene
orders, G and H, and a maximum window length, r, let W¢
denote the set of r-windows in G and Wy the set of r-windows
in H. A pair of r-windows, (G [i, j|, H[k, I]) € W x Wy, isa
bidirectional best hit r-window gene cluster if it satisfies
the following properties:

e H |k, I] is the best hit for G [i, j]
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® G [i, j| is the best hit for H [k, 1]

e (G [i, j], H [k, 1]) is maximal with respect to substring

inclusion, i.e. there is no other BBH r-window gene cluster

(Gl j’l, Gk, I']) such thati’<i<j<j and k' <k<I<I.
A BBH r-window gene cluster is trivial if it contains a
single pair of genes.

Example. Consider the following two gene orders,
123 5 36 ,9 10 311 12 413

G:<a ,b>,¢,d%,e’,cV,b " ,a b >

H=<cl a3 d* b8 e b8 2 all d12>

where the letters represent homology families and the super-
scripts denote the position.

The non-trivial BBH 3-window gene clusters of G and H are:

° ((CS, d6>, <C1, 613, d4>)
° (<€9, Clo, b11>, <b6, 67, b8[ C9>)

Given the above model of conserved gene clusters, the
task is to compute all occurrences of BBH r-window gene
clusters between two given gene orders. Formally, we
define the BBH r-window gene clustering problem as
follows:

BBH r-window gene clustering problem Given two gene
order, G = { g1, & - & H = (hy, hy, ..., hy), and a
maximum window length, r, compute the set of non-
trivial BBH r-window gene clusters.

Methods

In this section, we describe our algorithm for solving the
BBH r-window clustering problem described in the
previous section. We start off with a simple quadratic
time algorithm and show how it can be improved using
a sliding window technique. Finally, we present an
efficient data structure that allows us to obtain a
subquadratic time algorithm.

A simple quadratic time algorithm

A straightforward algorithm is to generate both sets of
windows W and Wy, then for each window in W¢,
compute its best hit in Wi by going through each window
in Wy and vice versa. For simplicity, we assume that there
are at most r genes in a window of length . Therefore, the
size of W¢ and Wy is O(nr) and O(mr) in the worst case
and comparing two windows take O(r) time. This simple
algorithm has a time complexity of O(nmr?).

A sliding window algorithm
We first show how we can find the best hits for each
window in Wg efficiently. Finding the best hits for
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windows in Wy; is done in the same way. After that, we
go through the hits and keep only the bidirectional best
hits.

One problem in the previous algorithm is that many of
the comparisons between two windows would result in a
shared gene count of zero. Therefore, instead of storing
all the r-windows, we generate them one-the-fly to avoid
comparing two windows with no common homology
family.

We enumerate the windows in W, by starting from each
gene and incrementally add genes in increasing order of
their position as long as the window length is less than
or equal to 7. We use a data structure T to maintain the
set of windows Wy that have a non zero shared gene
count with respect to the current window in Wg,.

Each time we consider a different window w, we need to
update our data structure by adding the corresponding
genes in H from the same family to our data structure. To
determine the list of genes to be added, we preprocess H
to compute the list of genes for each homology family.
Finally, for each window W, we make use of our data
structure to determine the best hit in H.

The pseudo code for this algorithm is shown in
Algorithm 1.

Putting it all together, we first find the best hits from G to
H and vice versa, then filter the results to only retain the
bidirectional best hits. We store the best hits from H to G
in a hash table and for each best hit from G to H, we access
the table to check if it is also a best hit from H to G.

The pseudocode for the algorithm is shown in Algorithm 2.

Data structure for Wy

Observe that for a given window W¢ in W, most of the
windows in Wy; do not have any genes in common with
Wg. Hence, instead of finding the best hit by checking
against all windows in Wy, we only represent

Algorithm 1 BestHitWindows(G, H, 1)

Ensure: Determine for each window in W, the best hit in
Wh

BH := & {set of best hits from G to H}

{Determine list of genes for each family in H and store
in gs}

for i from 1 to ny do
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h; := ith gene in H
f; == family of h;
8 [fil = gs [fil v {hi}
end for
{Enumerate r-windows in G and compute best hits}
for i from 1 to ng do
{g: is the ith gene in G}
e=1i-1
=
initialize T
while A (g;, g..1) <7 do
e=e+1
we = we U {8}
f. := family of g,
for each gene g € gs [f,] do
insert(T, g)
end for
wy, := besthit(T)
BH := BH U {(We, W)}
end while
end for
return BH
Algorithm 2 BBHWindows(G, H, 1)

Ensure: Compute the set of BBH r-window gene clusters
between G and H

BBH := & {set of bidirectional best hits}
BH ¢, i := BestHitWindows(G, H, r)

BH y, ¢ := BestHitWindows(H, G, r)
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{Store the best hits from H to G in a hash table M}
for each (Wy, W¢) in BH ¢ do

M [wy] := Wg
end for
{Compute the bidirectional best hits}
for each (W¢, Wy) in BH ¢, y do

if M [Wy]| = Wthen

BBH := BBH U {(W¢, W;))}

end if
end for
return BBH

the windows that have at least one gene in common

This is achieved by storing the genes in H that share a
family with w, in a balanced binary search tree, T, using
the position of the gene as the key. Each gene represents
the start of a window, thus each node in the data
structure represents a window of length r in H.

We need to be able to insert/delete genes in this structure
and find the largest window. To find the largest window
efficiently, we maintain the shared gene count, s, of each
window as an additional attribute of each node.

Insertion and deletion of a gene follows from the
algorithm for standard binary search tree. Unfortunately
these two operations cause the shared gene count of up
to r contiguous windows to change. Instead of updating
these windows one by one, we make an update to the
roots of the subtrees that contains only these windows to
indicate the change in shared gene count to all the
windows in the subtrees. For this to work, we need to
keep track of the range of windows in a subtree by
storing the minimum and maximum position of genes,
(min,, max,), and the adjustment to the shared gene
count, A,. This is similar to the canonical decomposition
technique used in segment trees [16]. Hence, the number
of nodes affected is at most O(lg |T|), where |T| is the
number of nodes in the tree.

To find the window with the highest shared gene count,
we need to keep store the maximum shared gene count
in each subtree. Then the maximum shared gene count in
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the whole tree is found in the root. Finding the best hit is
done by traversing only those nodes whose maximum
shared gene count is equal to the maximum in the whole
tree. The complexity of this step is therefore O(lg |T]).

In summary, to make the three operations efficient, we
augment each node of the tree with the following
attributes:

s — shared gene count for the window of length r starting
at this gene

max,; - maximum shared gene count of windows in this
subtree

(min,, max,) - minimum and maximum position of
genes in this subtree; used to determine the windows
under this subtree

As - adjustment in shared gene count made to all
windows in this subtree

When rotations are necessary to maintain the balance of
the tree, the additional attributes in the nodes can be
updated in constant time as they can be computed from
the attributes in the left and right subtrees.

Time complexity

The first part of the algorithm determine the list of genes
in H for each homology family. This has a worst case
time complexity of O(m). The complexity of the
operations on the data structure T, depends on its size,
which is O(r). Hence, the complexity of determining the
best hits for each window in W, is O(m + nrlg r) and the
complexity for determining the best hits in both
directions is O((n + m)r lg r). The number of results
for BestHitWindows(G, H, r) and BestHitWindows(H, G,
r) is O(nr) and O(mr) respectively. Creating the
associative array to index the best hits from H to G
takes O(mr) time on average using a hash table. Going
through the best hits from G to H and keeping only the
bidirectional best hits takes O(nr) time on average,
assuming expected O(1) time to access the hash table.

Therefore, the time complexity of the whole algorithm is
dominated by the time taken to compute the best hits
which is O((n + m)r 1g r).

Results and discussion

We investigated the power of our BBH r-window model
by applying it to the analysis of conserved gene clusters
between E. coli K-12 and B. subtilis and comparing our
results with that obtained by [8] based on the gene teams
model [7].
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It has been shown that in prokaryotic genomes,
conserved gene clusters can be used to identify co-
transcribed genes, known as operons [8]. However, we
note that methods for finding operons often make use of
machine learning techniques that incorporate multiple
sources of information in addition to the spatial
proximity of the genes. Our experiments indicate that
the kind of spatial conservation modelled by conserved
gene clusters provides some signal that can be used for
identifying operons.

We implemented our subquadratic time algorithm,
which finds all BBH r-window gene clusters between
two gene orders, in Java. All computations were
performed on a Intel Core 2 Duo E6550 (2.33 GHz)
processor with 2 GB of RAM running Linux.

In the E. coli K-12 and B. subtilis dataset from [8],
homology families were assigned to each gene based on
the COG database [17]. Originally, there are 4289 genes
in E. coli K-12 and 4100 genes in B. subtilis, after removing
the genes which are unique to each genome, we are left
with 2339 genes in E. coli K-12 and 2332 genes in B.
subtilis from 1137 homology families. Gene positions are
assigned based on the index of the gene in the complete
genome, thus the distance between two genes represents
the number of intervening genes, including those genes
that are not shared between the two genomes.

We computed the BBH r-window gene clusters between
these two genomes and compared our results against
known E. coli K-12 operons from RegulonDB [18]. As it
is difficult to obtain an exact match, we compute the
Jaccard score for each operon based on the Jaccard
coefficient between the operon and one of the clusters
we computed.

Definition 4 (Jaccard coefficient [19]). The Jaccard
|oNe|
[oUe]
value between zero and one. A value of one indicates a perfect
match.

coefficient of two sets o and c is defined as . It gives

Definition 5 (Jaccard score). The Jaccard score of an
operon o with respect to a set of gene clusters C is the highest
Jaccard coefficient between o and some cluster in C.

We consider an operon to be identified if its Jaccard
score is above a certain minimum Jaccard score thresh-
old. Figure 1 shows the number of identified operons for
difierent values of the threshold when the maximum
window length is 6.

Based on Figure 1, we chose a value of 2/3 for the
threshold. There are 253 operons with at least two genes
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250 F T T =

200 B

Number of identified operons

0 I 1

1
0 0.2 0.4 06 0.8 1
Minimum Jaccard score threshold

Figure |

Effect of Jaccard score threshold. Plot of the number
of identified operons versus Jaccard score threshold for
BBH r-window gene clusters, where the maximum window
length is 6.

and at least 2/3 of its genes are common to both E. coli K-
12 and B. subtilis. This is an upper bound on the number
of operons that can be identified based on the input.

Effect of window length

Our gene cluster model has a single parameter r, which is
the maximum length of a window. A natural question
that arises is the effect of this parameter on the resulting
clusters. We ran our algorithm for a range of window
lengths from 1 to 30, each run took approximately 8
seconds to complete.

As shown in Figure 2, the percentage of identified
operons increases as the window length increases from 1
to 6 and decreases for larger values of r. At the peak,
when the maximum window length is 6, our method
identified 34% of the operons (85 out of 253). It is
interesting to note that there is a core of about 60
operons that are identified across the entire range of the
parameter . The dashed line shows the number of BBH
r-window gene clusters that are not matched to any
operon; it ranges between 70% to 80%. This illustrates
the difficulty of using only spatial information to
distinguish between the two kinds of genes clusters:
those that are due to the evolutionary proximity of the
two species and those that are under selective pressure.

Comparison with gene teams

In this section, we present the first empirical comparison
between two different conserved gene cluster models
that takes into account gene position and the distance
between genes.
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Figure 2

Effect of window length. Plot of the percentage of
identified operons and percentage of non-operon clusters
versus maximum window length for our BBH r-window gene
clusters model.

We compared our results against the gene teams model.
The gene teams model has a single parameter §, which is
the maximum distance between adjacent genes in a
cluster. We computed the gene team tree [20] for our
dataset (ignoring singleton teams) and found that a
maximum of 47% of the operons (119 out of 253) was
identified when 0 is 3 (see Figure 3).

This is slightly higher than the 34% achieved by our BBH
r-window model, however, at all parameter values the

100 T T T T ™ 100

80 -~ 80

60 Percentage of identified operons
Percentage of non-operon clusters -------

40;_-%——\_‘1 4 40
20 - ;L\ 4 20

Percentage of identified operons (out of 253)
Percentage of non-operon clusters

L,
O 1 1 1 1 ‘\—|_|— D
5 10 15 20 25 30
Maximum distance between adjacent genes in a team, §
Figure 3

Effect of maximum gap length. Plot of the percentage of
identified operons and percentage of non-operon clusters
versus maximum distance between adjacent genes in a team
for the gene teams model.
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percentage of non-operon teams is much higher for the
gene teams model. This suggests that only a small
percentage of the gene teams are identified as operons,
due to the property that gene teams always form a
partition of the set of genes. In addition, we observe that
over the same range of parameter values, variation in the
number of identified operons for our BBH r-window
gene clusters is lower than that for gene teams. This
means that our model is more robust to changes to the
value of its parameter as compared to the gene teams
model.

Figure 4 consists of two Venn diagrams which illustrates
the overlap between the operons identified by our BBH
r-window gene cluster model and the gene teams model
for a single value of the parameter and over a range of
parameter values. Considering a range of different
parameter values for both models did not significantly
increase the number of identified operons as most
operons can be modelled by a small range of parameters.

The operons identified using BBH r-window gene cluster
are mostly a subset of the ones identified using the gene
teams model. Both models agree on a common set of 86
operons. This result is expected since our BBH r-window
model is more restrictive. Hence, the recall, which is
percentage of identified operons, is lower as compared to
gene teams.

However, an advantage of r-window gene clusters is the
availability of exact statistical tests to evaluate the
significance of putative clusters. We computed the
expected number of r-window gene clusters with k
genes between two random genomes (equation 55 in
[11]) and use it to rank the BBH r-window gene clusters
when ris 6. We also ranked each of the gene teams when
0 is 3 following [8] by using the probability of forming a
gene team of size k (equation 3 in [8]). Given these two
list of ranked gene clusters, we computed the precision
and recall at all possible cut-offs. For a set of top p gene

BBH r-window
7 from 1 to 30

Gene team
§ from 1 to 32

BBH r-window Gene team
r==6 0=3

Figure 4

Overlap in operons identified by the two cluster
models. Venn diagram showing the overlap between the
operons identified based our BBH r-window gene cluster
model and the gene teams model for a single parameter
value (r = 6, 6 = 3) and over a range of parameter values
(re[l,30],0€ [l 32]).
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l I I ' BBH r-window, r=6 ——
geneteam, §=3 ---—----
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0.7 /
/
06 | |

Precision

o1 b - ; T
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Recall

Figure 5

Comparison of precision versus recall curves.
Precision versus recall curve for BBH r-window gene clusters
(r = 6) and gene teams (J = 3) for identification of E. coli K-12
operons.

clusters, C,, and a set of operons, O, the precision is
defined as |C, n O|/|C,| and the recall is defined as |C, n
0]/]0]. Although our BBH r-window gene clusters had a
slightly lower recall as compared to gene teams, our
model has a much higher precision. Figure 5 plots the
precision versus recall curve for both gene cluster
models; it clearly shows that at any given recall, the
precision of our model is always higher than the gene
teams model. For example, at a recall of 0.05, 65% of the
BBH r-window gene clusters match 5% of the identifi-
able operons, whereas only 20% of the gene teams
match the same number operons. Similarly, at a recall of
0.1, 50% of the BBH r-window gene clusters match 10%
of the identifiable operons, while only 13% of the gene
teams match the same number operons.

Analysis of significant clusters

Table 1 shows nine of the top twelve BBH r-window gene
cluster in increasing order of log E, the logarithm of the
expected number of clusters between two random
genomes.

Most of the clusters are an exact match to a specific
operon, except for the second cluster which consists of a
combination of two operons. Two of our clusters contains
an additional gene that is not part of the operon.

The fliE-K cluster includes the additional fliE gene that is
not part of the fliF operon. The fliE gene is known to be a
monocistronic transcriptional unit that is adjacent to the
fliF operon, it forms part of the flagellar of E. coli K-12
together with the fliF operon [21]. This evidence supports
our grouping of fliE together with the fliF operon.

http://www.biomedcentral.com/1471-2105/11/S1/S63

Table I: Significant BBH r-window gene clusters and correspond-
ing operons. Nine out of the top twelve based on log E value and
corresponding operons. Numbers in brackets indicate number of

genes in the cluster over number of genes in the operon

log E BBH r-window gene Operon
cluster
-13 atpC, atpD, atpG, atpA, atp|lBEFHAGDC (8/8)
atpH, atpF, atpE, atpB
-12 secE, nusG, rplK, rplA, rpl), secE-nusG (2/2),
rplL, rpoB, rpoC rplKAJL-rpoBC (6/6)
-1 hisG, hisD, hisB, hisH, hisA, hisLGDCBHAFI (7/8)
hisF, hisl
-10 fliE, fliF, fliG, fliH, flil, fli), fliK fliFGHIJK (7/6)
-9 menE, menC, menB, yfbB, menFD-yfbB-menBCE (6/6)
menD, menF
-9 rbsD, rbsA, rbsC, rbsB, rbsDACBKR (6/6)
rbsK, rbsR
-8 pnp, rpsO, truB, rbfA, infB,  metY-yhbC-nusA-infB-rbfA-
nusA, yhbC truB-rpsO-pnp (7/7)
-8 dppF, dppD, dppC, dppB, dppABCDF (6/5)
dppA, yhjX
-7 oppA, oppB, oppC, oppD, oppABCDF (5/5)
oppF

The cluster matched to the dpp operon contains an
addition yhjX gene. yhjX is a hypothetical protein with
an unknown function predicted to be a transporter [22].
This prediction gives yhjX a similar function as the dpp
operon, which function as a dipeptide transporter, and
gives support to our cluster.

Conclusion

In this paper, we proposed a novel variant of the -
window gene cluster model based on the bidirectional
best hit constraint. The bidirectional best hit criteria is
most commonly used for identifying families of homo-
logous DNA sequences from BLAST hits. We extend this
notion to identify homologous chromosomal segments/
conserved gene clusters.

We developed a simple quadratic time algorithm to
compute the set of BBH r-window gene clusters from two
genomes and show how it can be improved to a
subquadratic time algorithm. The key insight is to use
a segment tree like data structure for maintaining a set of
windows and reporting the best hit.

Our comparative analysis of the E. coli K-12 and B.
subtilis dataset showed that the operons identified by our
more restrictive BBH r-window model is a subset of the
operons identified by the gene teams model. However,
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as a result of the BBH constraint, we were able to achieve
a higher level of precision at all levels of recall as
compared to the gene teams model. In addition, a
detailed analysis of the most significant BBH r-window
gene cluster show that the top ranking results match well
to known E. coli K-12 operons.
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