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Abstract

Background: Post-translational modifications (PTMs) have a key role in regulating cell functions.
Consequently, identification of PTM sites has a significant impact on understanding protein function
and revealing cellular signal transductions. Especially, phosphorylation is a ubiquitous process with a
large portion of proteins undergoing this modification. Experimental methods to identify
phosphorylation sites are labor-intensive and of high-cost. With the exponentially growing protein
sequence data, development of computational approaches to predict phosphorylation sites is highly
desirable.

Results: Here, we present a simple and effective method to recognize phosphorylation sites by
combining sequence patterns and evolutionary information and by applying a novel noise-reducing
algorithm. We suggested that considering long-range region surrounding a phosphorylation site is
important for recognizing phosphorylation peptides. Also, from compared results to AutoMotif in
36 different kinase families, new method outperforms AutoMotif. The mean accuracy, precision,
and recall of our method are 0.93, 0.67, and 0.40, respectively, whereas those of AutoMotif with a
polynomial kernel are 0.91, 0.47, and 0.17, respectively. Also our method shows better or
comparable performance in four main kinase groups, CDK, CK2, PKA, and PKC compared to six
existing predictors.

Conclusion: Our method is remarkable in that it is powerful and intuitive approach without need
of a sophisticated training algorithm. Moreover, our method is generally applicable to other types
of PTMs.
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Background
Post-translational modifications (PTMs) have important
implication on the protein functions involved in signal
transductions and many human diseases. Especially,
phosphorylation is one of the most ubiquitous of these
processes with a reported 30 ~50% of eukaryotic
proteins undergoing this modification. For this reason,
identifying phosphorylation sites is important for under-
standing functional role of proteins and cell signalling
networks. In order to determine phosphorylation sites
several experimental tools such as mass spectrometry
have been used. Experimental efforts using those
techniques have made it possible to construct several
databases for phosphorylation sites, such as Phospho.
ELM [1,2], PhosphoSite [3], and PhosPhAt [4]. However,
those techniques are time-consuming and high cost
approaches. Due to such practical limitation, an efficient
computational algorithm to recognize phosphorylation
sites is highly desirable.

Previously, several methods to predict phosphorylation
sites have been developed by probing evolutionary
information, using physicochemical properties, or
searching motif patterns. The most successful algorithms
are machine learning-based approaches. Using the
artificial neural network (ANN) models, NetPhosYesat
[5] predicts phosphorylation sites in yeast, and NePhosK
[6] provides a sequence-based phosphorylation site
prediction service. Examples of support vector machine
(SVM)-based approaches are PredPhospho [7], Auto-
Motif [8,9], and kinasePhos2.0 [10] which trains SVM by
using amino acid coupling patterns and solvent accessi-
bility. Recently, probabilistic frameworks and new kernel
methods were suggested. PPSP [11] used Bayesian
decision theory to predict PK-specific phosphorylation
sites, and SiteSeek [12] was implemented with a high
search sensitivity by introducing a new adaptive locally-
effective kernel method with hydrophobic information.
In addition, conditional random field model was
applied to predict kinase-specific phosphorylation [13].

Despite high performance of those machine learning or
statistical approaches, development of simple, intuitive,
and generally applicable algorithms has been pursued.
A group-based approach, GPS, simply and intuitively
recognizes phosphorylation sites by calculating peptide
similarities with BLOSUM62 matrix and deciding which
group is closest to the given peptide after clustering
known peptide groups [14]. Our study aimed to develop
a new algorithm by inventing a new scoring method, as
well as by introducing an effective noise-reducing
system, which can be applied to different types of
modifications. We developed a new scoring scheme to
measure the sequence similarity by combining pairwise
sequence similarity scores and profile-profile alignment

scores. Basic assumption was that physicochemical
information, motif information, and evolutionary infor-
mation could be retrieved by measuring sequence
similarities. We also generalized the motif scoring
method, which has been conventionally used for
predicting phosphorylation sites, by performing pro-
file-profile alignments with gaps. It turned out that such
generalization significantly improved the prediction
accuracy. Considering both features together, we devel-
oped a new peptide sequence similarity scoring method.
We then applied a noise-reducing system exploiting
indirect relationships among peptide sequences. When
we tested our new method on 48 different kinase groups,
the results indicated that the two innovative features of
our present work, i.e., a new sequence similarity scoring
method and the noise-reducing system, both contributed
to the outstanding performance of the new method in
recognizing phosphorylation sites correctly, showing
better performance than AutoMotif which is one of the
best-performing methods. Also, by testing unbiased data
set we can achieve better or comparable performance
compared to six existing predictors.

Methods
Datasets
We developed our new method using Phospho.ELM
(released in December 2008) database [2]. The database
contains experimentally validated phosphorylation sites
for 254 different kinases. From the database we selected
kinase groups which contained more than 20 known
phosphorylation sites, resulting in 48 different kinase
groups in our test set. To develop and evaluate the new
method, positive (phosphorylation) and negative (non-
phosphorylation) peptides were needed to make the
‘reference set’. For a specific phosphorylation type,
positive peptides were all peptides in Phospho.ELM
database that had the same type of phosphorylation.
Negative peptides were randomly selected from
sequences which shared the same phosphorylation
residue types with positive peptides. We selected
negative peptides 10 times more than the number of
positive peptides. The whole dataset can be downloaded
from our web server.

Peptide sequence similarity scoring scheme
Our scoring system was designed to give a high score
when two peptides have high similarity, indicating that if
a query peptide gets high scores with known phosphor-
ylation peptides, the query peptide is predicted to be a
peptide with the same type of phosphorylation. To
calculate peptide similarities we combined two different
sequence similarity measures, one using BLOSUM62
matrix [15] and the other using profile-profile alignment
which contains evolutionary information. Both
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measures are widely used to calculate sequence simila-
rities. We assumed that comparing sequence similarity
with BLOSUM62 matrix could provide similarity mea-
sure for physicochemical properties of the two sequences
and motif patterns indirectly. Similarity score using
BLOSUM62 matrix, SBLOSUM62, between peptides A and
B with fixed window size 7 was defined as

S score A BBLOSUM A B i i

i

62

1

7

( , ) ( , )=
=
∑

The score(Ai, Bi) is the substitution scores between two
amino acids Ai and Bi in BLOSUM62 matrix. The
window size 7 was determined by referencing a
previously developed method, GPS [14]. If the candidate
phosphorylation sites were near the N or C terminus, we
represented the absent terminal sequences as X.

The second component of our new scoring scheme is the
profile-profile alignment scores. The conventional way
to measure sequence similarity for the purpose of
predicting PTM sites is to use motif scoring methods
where gapless alignments were typically assumed. We
generalized the motif scoring method by performing
profile-profile alignments allowing gaps. To calculate
similarity scores based on profile-profile alignment we
first generated the position specific scoring matrix
(PSSM) and the position specific frequency matrix
(PSFM) for a protein sequence which contained a given
peptide by using PSI-BLAST [16]. We used blastpgp
version 2.2.15 with default parameters except the
options for the number of iterations (j = 5) and the
cutoff E-value value (h = 0.001). Then we extracted PSSM
and PSFM corresponding to the given peptide. Using
both matrices we computed profile-profile alignment
scores for the position i of a peptide A and the position j
of a peptide B (PPAij) as follows,

PPA f S S fij ik jk ik jk

k

= +
=

∑[ ]
1

20

where, fik and fjk are the frequencies of PSFM matrix at
the position of i and j, and Sik and Sjk represent the scores
of PSSM matrix at the position of i and j. The detail
procedure was reported in our previous work [17]. We
aligned both peptides A and B and calculated similarity
scores by using dynamic programming with gap penalty
of 3.0 and gap extension penalty of 0.75. We referred to
this profile-profile alignment scores as Sprofile. During
profile-profile alignment we selected the window size as
41 after trying several different window sizes such as 7,
19, 41, and 101. In previous works, wide ranges of values
from 7 to 19 have been used as a window size for

calculating the sequence similarity. We increased the
window size from 7 up to 101 to evaluate effect of
considering long-range region surrounding phosphor-
ylation sites. The performances for PKB-group with
different window sizes were measured, and then 41
was selected as the optimal window size for calculating
the profile-profile alignments. Once having calculated
both types of similarity scores, SBLOSUM62 and Sprofile, we
multiplied both scores to calculate the final similarity
score (Scombined) of the two peptides as follows,

S S Scombined BLOSUM profile= ×62

The positive effect of combined-measure is described in
Result and discussion section. We also tried a linear
combination of SBLOSUM62 and Sprofile as the final
similarity score and found that the multiplicative form
of the two scores showed better performance.

Noise reduction scheme utilizing indirect relationships
By using similarity scores we can rank all reference
peptides for a given query peptide. If a scoring system is
perfect, it would give higher scores to all true phosphor-
ylation peptides than to any of non-phosphorylation
peptides. However, our scoring system is obviously
imperfect, partly because our current scoring system
only considers sequence features. We may be able to
improve the accuracy by adding new features, but in this
work we focused on designing noise-reducing system by
considering indirect relationships among reference pep-
tides. Basic idea is that if highly ranked reference
peptides tend to be known phosphorylation peptides,
the query peptide is likely to be a phosphorylation site,
otherwise a non-phosphorylation site.

Figure 1 illustrates the noise-reducing scoring system of
this work. In step 1, for a given query (in this example, a
phosphorylation peptide), we calculate Scombined scores
for all peptides in the reference set, and select the top a
highly ranked peptides (in this example, a = 5,
consisting of 2 phosphorylation peptides (Pj) and 3
non-phosphorylation peptides (Nj)). Next in step 2,
indirect relationship matrix is constructed by calculating
Scombined scores between those top a hits and all peptides
in the reference set (in this example, there are 5
phosphorylation and 5 non-phosphorylation peptides).
When constructing the matrix, if a peptide i is not
included in the top 5 hits for a peptide j, the score (j, i) of
the matrix is set to zero. In step 3, indirect scores are
calculated by using indirect relationship matrix. We
assume that scores between positive (or negative)
peptides are signal, while those between positive (or
negative) and negative (or positive) are noise. According
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to our hypothesis, indirect scores can be calculated as
follows,

S P S P P S P N

S

indirect i combined i j

j

combined i j

j

ind

( ) ( ; ) ( ; )= × −∑ ∑10

iirect i combined i j

j

combined i j

j

N S N N S N P( ) ( ; ) ( ; )= − ×∑ ∑10

where we give the weight of 10 to positive peptides since
the number of negative peptides is 10 times that of
positive peptides. For example, suppose that P2 recog-
nized P

1
and P4 as signal, and N3 as noise. Then, the final

indirect score of P2 (5.70) is calculated by adding P1 and
P4 with weight 10 (10*(0.61+0.01)) and subtracting N3

(0.50). Finally, from the indirect scores we consider the
top b hits (in this example, b = 4) as query related
peptides. Then, if the number of positive peptides are
greater than g (in this example, g = 2), we predict the
query peptide as a phosphorylation peptide. In this
example P2, P3, P4, and N2 are the top 4 hits, and thereby
we predict that the query peptide is a phosphorylation
peptide.

There existed several parameter determination issues in
constructing the noise-reducing system such as the
number of highly ranked peptides a, the value of b
and g. To determine those parameters we searched the
optimized parameter set using PKB-group. It is obvious
that different kinase groups have the different optimized
parameters but we applied the same parameters to all
cases to avoid over-fitting. As a result, for the number of

highly ranked peptides we selected the value of half
number of positive peptides in the reference set. For the
value of b and g we used value of one-third and one-
fourth of positive peptides, respectively.

Performance assessment
We assessed the prediction performance with leave-one-
out cross validation (LOOCV). We used all dataset
except one as the reference set and tested our scoring
system with left-out one peptide. The accuracy (ACC),
precision (P), and recall (R) were calculated to measure
the performance. The equations are as follows.

ACC
TP TN

TP FP TN FN

P
TP

TP FP

= +
+ + +

=
+

We define phosphorylation peptides as a positive class,
and TP, TN, FP, and FN

R
TP

TP FN
=

+

denote true positives, true negatives, false positives, and
false negatives, respectively. We benchmarked another
prediction server, AutoMotif [8,9]. We directly compared
the performance of our method to that of AutoMotif
since our dataset and evaluation scheme were same as
AutoMotif. The performance data of AutoMotif were
extracted from website [18]. Furthermore, to test
unbiased data set we used new data set constructed by

Figure 1
Illustration of the noise-reducing system. Illustration of the noise-reducing system. In step 1, we find the top 5 hits for
a given query, where Pj is a phosphorylation peptide and Nj is a non-phosphorylation peptide. Next, Scombined scores are
calculated between the top 5 hits and all peptides in a reference set (10 peptides), where if a peptide i is not included in top
5 hits for a peptide j the score (j, i) is set to zero. In step 3, by summing each row of indirect relationship matrix we calculate
indirect scores. During summation we assume that scores between positive (or negative) peptides are signal, while those
between positive (or negative) and negative (or positive) are noise. Finally, we check the number of phosphorylation peptides
among the top 4 hits by indirect scores. In this example P2, P3, P4, and N2 are recognized as the top 4 hits, and among them
3 peptides are phosphorylation peptides, and thereby we predict that the query peptide is a phosphorylation peptide.
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Wan et al. [19]. We calculated ROC score defined as the
areas under the ROC curves, the plot of true positives as
a function of the number of false positives [20], and
compared our result to PPSP, PredPhospho, GPS,
KinasePhos 1.0, NetPhosK, and Scansite.

Results and discussion
Performance variation of various features for PKB-group
We evaluated the ability of different level of similarity
measures to discriminate phosphorylation and non-
phosphorylation peptides. As we described in Method
section, we tested four different types of scores,
SBLOSUM62, Sprofile, Scombined, and our noise-reducing
system. We selected PKB-group (protein kinase B) as a
toy example to select parameters and to test performance
variation of various features. The serine/threonine kinase
PKB has been shown to play a crucial role in the control
of diverse and important cellular functions such as cell
survival and glycogen metabolism [21]. The result of
performance comparison for PKB-group is shown in
Table 1. In the aspect of precision and recall, Scombined was
significantly better than SBLOSUM62 and Sprofile. The
precision and recall were increased more than 22% and
54%, respectively from those of SBLOSUM62 by combining
Sprofile. This indicates that combining both similarity
measures lead to significant positive effect. The positive
effect is likely to be originated from removing ambig-
uous cases such as high score in SBLOSUM62 but low score
in Sprofile, and vice versa. Furthermore, the noise-reducing
system highly increased recall (24% increased) com-
pared to Scombined at the similar level of precisions (0.87
at Noise-reducing, 0.84 at Scombined), indicating the noise-
reducing system filtered out many false positives and
rescued many true phosphorylation peptides which were
falsely recognized as non-phosphorylation peptides by
Scombined.

We also evaluated overall performance across 48 kinase
groups. The result is summarized in Table 2, showing
that in terms of overall performance our noise-reducing
system is most effective for identifying phosphorylation
sites. Especially, recall was increased about 15% from
Scombined at the 0.68 precision. Also significant perfor-
mance enhancement was occurred in Scombined compared
to both SBLOSUM62 and Sprofile. The results remark that
combining Sprofile with SBLOSUM62 is generally effective to
increase discriminate ability for phosphorylation sites.
Moreover, we expect that we can apply the same noise-
reducing system to other types of post-translation
modifications such as ubiquitination.

To better understand how the noise-reducing system
determines phosphorylation sites with higher accuracy,
we consider one specific example, the phosphorylation
peptide, [RGGSASRS]. The first and fourth hits (both are
non-phosphorylation sites, false positives) of the given
peptide are [DGTSLKV] and [VQDTYQI], respectively,
with Scombined. However, the first hit does not have any
indirect relationships with other highly ranked peptides,
thereby in the noise-reducing system its rank drops to
the 38th. Also the fourth hit shows indirect relationships
with highly ranked positive peptides (this is a false
relationship), therefore the rank of third hit also drops to
40th. On the other hand, the ranks of several positive
peptides are increased since several true indirect relation-
ships exist among highly ranked positive peptides. This
example shows exactly how the noise-reducing system
works to detect phosphorylation sites.

Importance of considering long-range region
surrounding a phosphorylation site
Several mechanisms have been proposed to understand
kinase specific binding properties. Protein kinase forms a
protein complex with its substrate through recognizing
phosphorylation binding domains or short sequence
patterns of substrates. To recognize kinase-specific motifs,
not only short sequence patterns but also local structure
around a phosphorylation site may be important. We
assume that this information can be measured by calculat-
ing similarities of long-range region surrounding phos-
phorylation sites with profile-profile alignment (PPA).

We evaluated our assumption by comparing perfor-
mance with various features. We drew number of true
matches (phosphorylation peptides) according to num-
ber of false matches (non-phosphorylation peptides) up
to 1000 false matches among 48 kinase families. The
results are shown in figure 2, and the performance varies
according to window size of peptides. In figure, values in
brackets represent number of windowed residues. Here,
SBLOSUM62 represents a short sequence pattern

Table 1: Performances of PKB-group kinases using different
features

SBLOSUM62 Sprofile Scombined Noise-reducing

ACC 0.92 0.91 0.94 0.95
P 0.69 0.60 0.84 0.87
R 0.24 0.04 0.37 0.46

Table 2: Performances of 48 kinase groups using different
features

SBLOSUM62 Sprofile Scombined Noise-reducing

ACC 0.92 0.91 0.93 0.93
P 0.59 0.43 0.68 0.68
R 0.24 0.31 0.34 0.39
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comparison scheme with BLOSUM62 matrix for 7
windowed residues. When we extended window size as
41 the performance was degraded, therefore we fixed
window size as 7 in SBLOSUM62. To evaluate effect of long-
range similarities first, we searched proper window size
of long-range region by using PPA based score (Sprofile)
alone. Among three different window sizes, Sprofile with
19 windowed residues provided more precise similarities
compared to 7 or 41 windowed residues. Sprofile (19
windowed residues), Sprofile (7 windowed residues), and
Sprofile (41 windowed residues) recognized 610, 567, and
539 true matches up to 500 false matches. Next, we
combined both SBLOSUM62 and Sprofile and measured
performance variations. In this case, the best perfor-
mance was occurred at the combination of SBLOSUM62

and Sprofile with 41 windowed residues. From the figure
we note that if we combined SBLOSUM62 and Sprofile, the
performance with Sprofile (41 windowed residues) was
increased more than other two cases even though it
showed worst performance when we considered Sprofile
score alone. Scombined with Sprofile (41 windowed residues)
detected 1613 true matches up to 1000 false matches,
while considering 19 and 7 windowed residues recog-
nized 1583 and 1485 true matches, respectively. The
results indicate that considering both short and long-
range properties important to increase search sensitivity.
When we search phosphorylation peptides the most

important property may be physicochemical properties
of adjacent residues to a phosphorylation site. However,
together with this information, considering long-range
region similarities can provide evolutionary or structural
similarities surrounding kinase binding sites. Thereby
both properties effectively contribute to measures pep-
tide similarities.

Performance comparison with AutoMotif
Our new method was applied to 48 kinase groups, and
the performance of 36 groups was compared to the
benchmarked results of AutoMotif. The performance
data of AutoMotif were extracted from AutoMotif web
server. The mean accuracy, precision, and recall of
AutoMotif with a polynomial kernel were 0.91, 0.47,
and 0.17, respectively, while those of the new method
were 0.93, 0.67, and 0.40, respectively. The performance
variations among 48 kinase groups are shown in Table 3.
We note that in general the new method shows better
performance than AutoMotif. Especially, 22 kinase
groups showed overall increased performance from
AutoMotif in all three aspects (accuracy, precision, and
recall).

From the individual performance variations, it is notable
that the new method was more effective for the kinase
groups that contain relatively a small number of positive
peptides. For the large kinase groups that contain more
than 100 positive peptides, such as CDK-group, CK2-
group, PKA-group, PKC-alpha, MAPK1, PKC_group, Src,
and CK2-alpha, only in three kinase groups (MAPK1, Src,
and CK2-alpha) our new method showed the perfor-
mance enhancement in all three aspects, while in a
majority of small kinase groups that contain less than
100 positive peptides, the new method achieved
significantly better performance than AutoMotif. This
tendency of performance improvement depending on
the number of positive peptides may have stemmed
from the amount of information. If we have many
positive peptides, we can easily recognize phosphoryla-
tion peptides since the search space of phosphorylation
peptides is dense. On the other hand, if we do not have
enough number of positive peptides, prediction meth-
ods based on the sequence information of positive
peptides inevitably contain much noise, making the
predictions unreliable. In this situation applying our
new method effectively reduces noise and retrieves weak
signals, resulting in high search sensitivity. In this regard
we expect that we can apply the new method to other
small PTM groups and equally achieve performance
enhancement.

Moreover, we conducted 10-fold cross validation to
measure the performance variation. The results are

Figure 2
ROC curves with various features. The figure shows
number of true matches (phosphorylation peptides)
according to number of false matches (non-phosphorylation
peptides) up to 1000 false matches among 48 kinase families.
In figure, values in brackets represent number of windowed
residues in peptides. From the figure we note that Scombined
with Sprofile (41 windowed residues) shows best performance.
The fact remarks that considering long-range region is
effective to identify phosphorylation peptides.
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shown in Table 4. The mean accuracy, precision, and
recall (0.93, 0.59 and 0.43, respectively) were compar-
able or slightly degraded from LOOCV of the new
method, but still the performance was better than
AutoMotif (LOOCV). The result indicates that the new
method performs well in an independent query set.

Performance assessment with independent test set
We also benchmarked our results to six existing methods,
GPS [14], KinasePhos [10], NetPhosK [6], PPSP[11],
PredPhospho [7], and Scansite [22] by using independent
test set created by Wan et al. [19]. The test set consists of
four main kinase families (CDK, CK2, PKA, and PKC) and

Table 3: Performance comparison with AutoMotif for 48 kinases

Kinase New method AutoMotif Kinase New method AutoMotif

ACC P R ACC P R ACC P R ACC P R

CDK_group(102) 0.93 0.57 0.85 0.94 0.80 0.46 Abl(48) 0.92 0.67 0.25 0.89 0.00 0.00
GSK-3_group(33) 0.91 0.56 0.15 0.91 1.00 0.03 PDK-1(35) 0.96 0.85 0.66 0.93 0.82 0.32
PLK1(42) 0.90 0.20 0.02 0.90 0.00 0.00 PKA alpha(31) 0.94 0.92 0.39 0.92 0.83 0.15
GRK_group(37) 0.91 0.67 0.05 0.89 0.00 0.00 IKK_group(35) 0.89 0.27 0.11 0.91 0.00 0.00
EGFR(61) 0.92 0.66 0.34 0.88 0.00 0.00 CaM-KIIalpha(34) 0.92 0.63 0.18 0.90 0.00 0.00
MAPK14(50) 0.92 0.57 0.50 0.90 0.22 0.04 GSK-3beta(52) 0.91 0.63 0.10 0.90 0.20 0.02
InsR(45) 0.92 0.60 0.36 0.83 0.60 0.07 CaM-KII_group(55) 0.92 0.63 0.18 0.92 0.89 0.15
CK2_group(248) 0.94 0.75 0.56 0.94 0.83 0.40 PKB_group(84) 0.94 0.87 0.46 0.95 0.87 0.57
AMPK_group(38) 0.93 0.86 0.32 0.91 1.00 0.06 CDK1(147) 0.94 0.63 0.84 0.92 0.65 0.28
MAPKAPK2(34) 0.92 0.62 0.24 0.90 0.00 0.00 CDK2(78) 0.93 0.61 0.78 0.91 0.45 0.07
CK1_group(33) 0.91 0.50 0.12 0.91 0.00 0.00 CK2 alpha(127) 0.94 0.77 0.52 0.93 0.73 0.32
PKA_group(330) 0.95 0.83 0.56 0.96 0.90 0.58 Lyn(48) 0.93 0.81 0.27 0.88 0.00 0.00
PKC alpha(188) 0.93 0.75 0.27 0.92 0.78 0.11 RSK_group(23) 0.95 0.81 0.57 No data
Syk(51) 0.94 0.75 0.53 0.86 0.30 0.07 DNA-PK(21) 0.93 0.60 0.57
Fyn(49) 0.91 0.42 0.10 0.90 0.00 0.00 Aurora(55) 0.93 0.81 0.31
MAPK_group(52) 0.93 0.62 0.50 0.93 1.00 0.22 Met(26) 0.95 0.69 0.85
MAPK3(88) 0.94 0.68 0.69 0.95 0.88 0.55 PHK_group(21) 0.92 0.67 0.29
MAPK1(117) 0.95 0.67 0.76 0.93 0.67 0.42 GRK-2(29) 0.92 1.00 0.10
MAPK8(36) 0.93 0.59 0.61 0.90 0.00 0.00 ROCK_group(23) 0.92 0.67 0.26
Lck(54) 0.93 0.94 0.30 0.90 0.00 0.00 FGFR1(23) 0.90 0.42 0.22
PKC_group(236) 0.93 0.76 0.26 0.93 0.85 0.24 PDGFR(21) 0.94 0.83 0.48
Src(154) 0.92 0.61 0.24 0.90 0.05 0.01 CK1(39) 0.92 0.62 0.21
IGF1R(31) 0.92 0.69 0.58 0.84 0.50 0.09 CDK5(22) 0.95 0.76 0.59
ATM(57) 0.95 0.85 0.60 0.97 0.91 0.75 PAK1(28) 0.91 0.60 0.11

ACC, P, and R indicate accuracy, precision, and recall, respectively. The mean accuracy, precision, and recall of the new method for 36 kinases are
0.93, 0.67, and 0.40, respectively while those of AutoMotif are 0.91, 0.47, and 0.17, respectively. The values in brackets represent number of known
phosphorylation sites in the reference set. Kinase groups which show better performance in our method compared to AutoMotif are bolded.

Table 4: Average performance of 10-fold cross validation.

Kinase New method Kinase New method Kinase New method

ACC P R ACC P R ACC P R

CDK_group 0.92 0.60 0.88 MAPK3 0.93 0.61 0.73 CDK1 0.94 0.63 0.90
GSK-3_group 0.88 0.32 0.17 MAPK1 0.94 0.66 0.80 CDK2 0.94 0.65 0.87
PLK1 0.90 0.00 0.00 MAPK8 0.91 0.53 0.83 CK2 alpha 0.95 0.76 0.66
GRK_group 0.91 0.15 0.07 Lck 0.92 0.75 0.20 Lyn 0.92 0.67 0.23
EGFR 0.92 0.69 0.42 PKC_group 0.92 0.76 0.30 RSK_group 0.96 0.80 0.85
MAPK14 0.93 0.67 0.60 Src 0.92 0.69 0.27 DNA-PK 0.88 0.40 0.35
InsR 0.93 0.62 0.45 IGF1R 0.95 0.76 0.70 Aurora 0.92 0.58 0.26
CK2_group 0.94 0.71 0.58 ATM 0.96 0.87 0.70 Met 0.96 0.80 0.85
AMPK_group 0.94 0.60 0.27 Abl 0.93 0.77 0.30 PHK_group 0.90 0.10 0.05
MAPKAPK2 0.92 0.63 0.33 PDK-1 0.96 0.86 0.67 GRK-2 0.94 0.30 0.15
CK1_group 0.90 0.20 0.10 PKA alpha 0.95 0.78 0.57 ROCK_group 0.94 0.70 0.35
PKA_group 0.95 0.81 0.59 IKK_group 0.91 0.43 0.20 FGFR1 0.89 0.10 0.05
PKC alpha 0.92 0.69 0.28 CaM-KIIalpha 0.94 0.65 0.37 PDGFR 0.94 0.70 0.45
Syk 0.94 0.86 0.54 GSK-3beta 0.90 0.32 0.12 CK1 0.93 0.55 0.23
Fyn 0.90 0.25 0.13 CaM-KII_group 0.92 0.62 0.20 CDK5 0.97 0.87 0.75
MAPK_group 0.92 0.64 0.54 PKB_group 0.94 0.93 0.41 PAK1 0.94 0.50 0.25

The mean accuracy, precision, and recall of the new method for 48 kinases are 0.93, 0.59, and 0.43, respectively.
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contains phosphorylation sites derived from Phospho.
ELM, PhosphoSite, and Swiss-Prot. The advantage of new
test set is unbiased and independent data, and thereby we
can fairly compare several different algorithms. To assess
performance of new test set we generated new reference set
by using remaining data after removing new test set from
PhosPho.ELM.1208. We evaluated the performance by
comparing area of under ROC curves. The results of the six
existing methods reported by Wan et al. [19] were used.

The area of under ROC curves are shown in Table 5. In
table, top two ranked methods are bolded. We noted
that our method was ranked as top or second in four
kinases families. Our method showed better perfor-
mance than GPS, KinasePhos, PredPhospho, and Scan-
site. Especially, compared to GPS designed to search
phosphorylation peptides through sequence similarity
using BLOSUM62 matrix, the performance improvement
in our method indicates that addressing evolutionary
information could be helpful to identity phosphoryla-
tion peptides. Furthermore, compared to PPSP our
method shows significant improved results in CK2
family (6% increased) but similar performance in other
kinase families. To conclude it is hard to say new method
is outstanding compared to other methods but our
method is generally effective to recognize phosphoryla-
tion peptides in four main kinase families.

Web server construction
We constructed the web server to provide an easy access
to our new phosphorylation site prediction method. Our
web server, PostMod (prediction of Post-translational
Modification sites) was implemented with python CGI
scripts and html. Currently we provide prediction of
phosphorylation sites for 48 kinases but our future
direction is to apply the new method to other kinds of
PTM sites. Figure 3 shows the sever input (A) and output
pages (B). The search sequence can be submitted by
pasting it into the text box. The server allows a user to
select one of 48 different kinase types. For the query
sequence the server searches all putative phosphoryla-
tion sites and generates several peptides. Meanwhile, the
server generates PSSM and PSFM matrix of the query

sequence by executing blastpgp 2.2.20. After that, the
sever compares sequence similarity with the peptide
sequences in the reference set which are phosphorylation
and non-phosphorylation sites of the corresponding
kinase type from phospho.ELM database. Figure 3(B) is
the output page for AMPK beta-1 chain (UniProt id is
P80386). All putative 36 phosphorylation sites (S, T)
were shown together with confidence scores. Three
predicted phosphorylation sites were bolded. The con-
fidence score is the fraction of phosphorylation peptides
among the top b hits (see Method section). We set the
threshold value for phosphorylation sites as 0.5 of
confidence score. User can receive search result via email.
The web server is available through our website [23].

Conclusion
The present method is remarkable in the sense that it is
simple and computationally costless, and yet shows the
outstanding performance improvement for the various
kinds of kinases. We showed that when we combined the
BLOSUM62 matrix-based similarity measure and the
profile-profile alignment scores, the recognition results
were significantly improved. Moreover, applying our
noise-reducing system by exploiting indirect relation-
ships effectively eliminated noise, and thereby increased
the overall performance. The overall performance
enhancement on 48 kinds of different kinases suggests
that our method is generally applicable to other types of
PTMs. Furthermore, it is expected that combining our
method with better similarity methods would achieve
higher accuracy for finding phosphorylation sites.

Performance degradation in a conventional sequence
similarity measures is mainly originated from improper
similarity scoring system, which gives higher scores to
unrelated peptides, producing many false positives. The
best solution may be developing new features which well
discriminate positives from negatives. If we do not have
such powerful features, we need to concentrate on
removing noise. In this manner we addressed a concept
of indirect relationships, and we showed that consider-
ing indirect relationships can be a powerful tool to
eliminate the false positives.

To conclude, applying the new method produces good
results without need of sophisticated machine learning
techniques in detecting phosphorylation sites. Further-
more, we expect that applying our new method to other
kinds of biological analysis would achieve high perfor-
mance improvement.
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Table 5: Performance variation with seven methods. The scores
indicate the area under the ROC curves

CDK CK2 PKA PKC

Noise-reducing 0.8826 0.9288 0.8817 0.7995
GPS 0.8761 0.8130 0.8446 0.7574
KinasePhos 0.8713 0.7508 0.8234 0.7440
NetPhoK 0.7767 0.9307 0.8749 0.7581
PPSP 0.8721 0.8767 0.8860 0.7994
PredPhospho 0.8670 0.7791 0.8537 0.7149
Scansite 0.7584 0.7734 0.7656 0.6397
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