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Abstract
Background: Spectra resulting from Surface-Enhanced Laser Desorption/Ionisation (SELDI) mass
spectrometry measurements are constructed by combining sub-spectra, each of which are the
result of a single firing of the laser responsible for the process of desorption/ionisation. These
firings are performed at different locations of the spot on which the sample is analysed. The final
spectrum is then constructed by summing over all these sub-spectra. This process is sub-optimal
in that it can average out peaks from peptides that are present in low abundance or are unevenly
distributed across the spot, particularly because the amount of noise varies considerably between
sub-spectra. This argues for analysing sub-spectra separately and combining results afterwards.

Results: Here, we propose to analyse these sub-spectra one-by-one and combine the results using
a framework which includes a significance test. This allows one to, for the first time, attach a
confidence measure to detected peaks, based on the signal strength of a peak across sub-spectra.
In a comparison with three other approaches the sub-spectral approach achieves a higher
sensitivity and a low FDR. We further introduce the notion of peak-bags, which provide rich
information about the sub-spectral contributions to a given peak.

Conclusion: The proposed procedure offers better control over the process of distinguishing
signal from noise, resulting in an improved performance over other available methods. Moreover,
our method provides an implicit deconvolution of peaks, yielding insight in the actual shape of a
peak, potentially aiding in a deeper understanding of peak distribution.

Availability: Implementations of the algorithm in R are available upon request.
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Background
Surface-Enhanced Laser Desorption/Ionisation (SELDI)
Time-Of-Flight (TOF) mass spectrometry [1] allows one to
scan the (sub-)proteome of a biological sample. The sam-
ple, e.g., purified serum, is applied to a spot on a chip and
repeatedly irradiated by a laser, which causes peptides
contained in the sample to desorb from the spot and
become ionised (charged), which is crucial for the subse-
quent process of mass-separation and detection.

The used laser beam has, depending on the machine
model employed, either an elliptical or round shape. In
any case, its size does not allow for a full coverage of the
complete spot in one go. Therefore, in order to cover most
of it, the laser probes different positions of the spot, result-
ing in sub-spectra (also termed single-shot spectra or tran-
sients) for each location. By default, a final spectrum is
constructed by summing over all sub-spectra, which is
then presented to the user.

The individual sub-spectra however, contain a wealth of
information, that is normally missed by studying full
spectra only. This includes information on spatial differ-
ences between sub-spectra, such as the total protein and
matrix material content and the amount of noise, which
all can vary considerably between sub-spectra due to, e.g.,
inhomogeneity of the sample and various experimental
factors.

Figure 1a shows sub-spectra of an example spectrum, dis-
playing large global differences in the amount of signal
and noise between spot positions.

This is made more clear in Figure 1b. The first two panels
show sub-spectra at spot positions 9 and 10 for the mass
region corresponding to the ubiquitin protein. This clearly
shows the large possible differences in signal between
spot positions. The third panel shows the full spectrum,
resulting from averaging over all sub-spectra. Indeed, here
the ubiquitin peak is not significantly higher than the
background.

In case of an inhomogeneous distribution of peptides
over the spot, for example in the case of a low abundant
peptide, taking the mean over all sub-spectra with these
highly varying signal and noise levels can average out
peaks, causing only the most abundant peptides to appear
in the final spectrum. In Additional file 1, section 1, we
describe a simple experiment that simulates this behav-
iour, showing that for arbitrary signals with varying noise
levels it is indeed beneficial to study them separately.

We are not alone [2] in believing that the default data
acquisition process is sub-optimal and that it is beneficial
to analyse individual sub-spectra and combining findings
afterwards. Sköld et al. have also analysed sub-spectra
before, mainly within the scope of imputing missing val-
ues, i.e., identifying and recovering saturated spectral
peaks. Our focus is on peak detection. More specifically,
by analysing individual sub-spectra and combining
results afterwards, we account for differences in noise lev-
els between spot positions, decreasing the chance of los-
ing peaks from peptides that are present in low abundance
or are unevenly distributed over the spot.

Examples of sub-spectraFigure 1
Examples of sub-spectra. (a) Example of differences in the amount of signal and noise in sub-spectra resulting from meas-
urements at different spot positions. The spot positions are indicated on the right. (b) Examples of a peak corresponding to 
ubiquitin (mass indicated by red dotted line) in two sub-spectra and the full (aggregated) spectrum.
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Furthermore, we are able to quantify the confidence of
detected peaks being true positives. The analysis of sub-
spectra allows us to test the significance of peaks based on
their amplitude in these sub-spectra, largely eliminating
the need for (arbitrary) parameter settings during the peak
detection process.

Results and discussion
The approach we take involves a low-level analysis of indi-
vidual sub-spectra using wavelets, followed by a method
to assess the significance of peaks detected in the sub-
spectra. We show that our method compares favourably
to a number of existing methods by using spectra resulting
from a carefully designed spiking experiment. Further-
more, we show that our method offers an implicit decon-
volution of peaks through the notion of peak-bags.

Analysis of sub-spectra
SELDI (sub-)spectra exhibit much noise, including a
strong baseline effect caused by the use of energy absorb-
ing matrix material inherent to the technology. Conven-
tionally, this baseline effect is estimated and subtracted
from the data explicitly, using ad hoc baseline correction
algorithms. Methods based on wavelets [3-5] model this
noise implicitly, assuming its frequency and shape is fun-
damentally different from that of the signal.

We use the algorithm proposed by Du et al. [4] to detect
peaks in individual sub-spectra. They use an approach based
on a continuous wavelet transform. By scaling and trans-
lating a so-called mother wavelet function, a spectrum is
decomposed into a 'scale space', where low scales model
high frequency noise and high scales model low fre-
quency global trends in the data. Peaks can be found by
identifying ridges in this scale space, corresponding to

regions where the spectrum is highly correlated with the
wavelet function.

This process is described in more detail in the Methods
section ('Wavelet analysis on full spectrum'). Although we
consider the scale space approach taken by Du et al. to be
elegant, their algorithm employs a number of fairly arbi-
trarily chosen parameters to identify ridges as being peaks.
For instance, the range and number of scales across which
ridges are detected and a signal-to-noise ratio threshold.
Instead, we consider all ridges detected in sub-spectra to
be candidate peaks and use them as input to subsequent
analyses, regardless of these parameters.

Peak significance
Instead of using parameter-based peak-detection, we rely
on a significance test for candidate peaks. The wavelet
analysis yields, for each sub-spectrum, a set of identified
(candidate) peak positions and amplitudes in the form of
peak signal-to-noise ratios (Figure 2a). All these single-
peak amplitudes, i.e., from all sub-spectra, form a peak
distribution P which roughly follows a Gamma distribu-
tion (Figure 2b). This distribution consists of both real
peaks as well as a background distribution. In order to
estimate the background distribution, we use an iterative
procedure of removing high values, i.e., 'real' peaks, and
re-fitting a Gamma distribution, until we obtain a distri-
bution Q of 'noise' peaks (see Methods section ('Estimat-
ing the noise distribution')).

In order to assess peak significance, we aggregate the
wavelet analysis results from all sub-spectra. To obtain the
aggregate spectrum, we sum the sub-spectral values per m/
z value across all sub-spectra (Figure 2c). The significance
of one particular m/z position is assessed by comparing

Combined analysis of sub-spectraFigure 2
Combined analysis of sub-spectra. (a) Peaks detected in each sub-spectrum using the wavelet analysis. We obtain one set 
of peaks for each sub-spectrum, although in this cartoon we show only three, for simplicity. (b) Using the distribution of all 
peaks detected across all sub-spectra (P, solid line), we estimate a distribution of noise peaks (Q, dashed line). (c) Sets of peaks 
obtained in (a) are summed per m/z position and used as input for the significance test.
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the value in the summed peak spectrum to a null distribu-
tion, yielding a p-value. This null distribution is the prob-
ability density function associated with the random
variable which is obtained by summing n (number of sub-
spectra) random variables distributed according to Q. In
other words, this null distribution is a summed sampling
distribution of Q, denoted QΣ. Please refer to the Methods
section ('Peak significance test') for a more elaborate dis-
cussion on this procedure.

Mass spectrometers suffer from a limited mass accuracy.
To account for small deviations in peak positions across
sub-spectra, we extend the significance test to multiple m/
z positions simultaneously, i.e., all positions contained in
a sliding window of size w. For multiple window sizes,
this results in a second scale space of p-values with the m/
z positions of the window on the horizontal axis and the
window size on the vertical axis. Each position contains
the p-value of the test result at that m/z position with the
given window size. All p-values are corrected for multiple
testing per window size (i.e., row-wise) over all non-
empty windows using the procedure proposed by Ben-
jamini and Hochberg [6].

In this second scale space, we now search for clusters con-
taining as many m/z positions as possible that are signifi-
cant and have at most one contribution from each sub-
spectrum. The latter is used to prevent finding clusters
containing peaks for actually different peptides; these
should result in separate clusters. We start the search from
the most significant peak at a minimal window size. In an
iterative process, the window size is gradually increased,
up to the point where either

• the combined values of peaks within the window are not
significant anymore, or

• we include more than one contribution from a single
sub-spectrum.

The results of this procedure we call peak-bags and they
encompass a central peak position, a range of m/z values
in a window centered around this peak position, and a sig-
nal level for each m/z value, also registering which sub-
spectra contributed to this signal. The signal level is a sum-
mation of the wavelet coefficient values for the contribut-
ing sub-spectra.

Figure 3 contains a cartoon of the iterative process to
detect peak-bags. In Panel (a), the position that is signifi-
cant at a minimal window size is Position 10 at window
size 1. At a window size of 3, this is still significant. Also,
the positions within this window (Positions 9, 10 and 11)
contain at most one contribution from each sub-spec-
trum. At a window size of 5 however, a second 'black' peak

is included (Position 12), thereby violating the rules.
Therefore, the window of size 3, centered on Position 10,
is selected as a new peak-bag. In Panel (b), the scale space
elements that will not be used for detecting future peak-
bags are greyed out. These elements are the ones that,
when used as a future window-center, would reference
peak positions already belonging the newly identified
peak-bag. More formally, for each window size w in the
scale space, with xi being the center of the new peak-bag,
this includes positions xi - ((w-1)/2) - ((W-1)/2) to xi+((w-
1)/2)+((W-1)/2), where W is the window size of the new
peak-bag.

The next significant position is Position 5 (window size
3). However, this has two contributions from the same
sub-spectrum (the black peaks). Position 5 alone (i.e., at
window size 1) is not significant. Therefore, no new peak-
bag is defined. However, in Panel (c) the appropriate ele-
ments in the significance scale space are still greyed out.
This is to avoid re-analysis of Position 5. Position 14 at
window size 5 is significant, contains only single contri-
butions and no larger window exists. It is selected as a sec-
ond peak-bag. Panel (d) shows the result of greying out
the appropriate elements again. No significant elements
are remaining, finalising the analysis.

Experiments
We performed SELDI-TOF mass spectrometry twice on 16
samples containing a mixture of 5 spiking peptides. This
way, we obtained 32 full spectra and their respective sub-
spectra. The spiking peptides used are dynorphin (2147.5
Da), ACTH 1–24 (2933.5 Da), β-endorphin (3465.6 Da),
insulin (cow pancreas; 5733.6 Da) and ubiquitin (8564.8
Da).

We employed our sub-spectral analysis method and com-
pared the obtained peak-bags to the results of three meth-
ods for analysing full mass spectra. These are the wavelet-
based method proposed by Du et al. [4], a standard
method implemented in the PROcess R-package and
another method implemented in the MASDA R-package.
MASDA implements an elementary SELDI-TOF analysis
pipeline, used for the comparison of normalisation meth-
ods [7]. Except for the approach presented here, all these
methods employ a signal-to-noise ratio cutoff in order to
detect peaks.

For the comparison of results, we assessed the sensitivity
and False Discovery Rate (FDR) with respect to finding
peaks corresponding to the five spiking peptides. By vary-
ing the parameters that influence the number of detected
peaks (p-value or signal-to-noise ratio) over a wide range
of values, and computing the sensitivity and FDR at every
setting, we can construct and Operating Characteristic
(OC) curve (see Figure 4).
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Ideally, the sensitivity of a method should be as high as
possible, while keeping the FDR as small as possible. In
other words, we would like to be as much as possible
towards the topleft position of the graph in Figure 4.

The sub-spectral analysis clearly outperforms the other
(full spectrum based) methods by achieving both a high
sensitivity and low FDR across a relatively large range of p-
value thresholds. Even when the FDR is high, the sensitiv-
ity of the sub-spectral analysis clearly outperforms all

Cartoon depicting the process used to identifypeak-bagsFigure 3
Cartoon depicting the process used to identifypeak-bags. Each panel shows the same example wavelet analysis output 
(bottom), with peaks coloured corresponding to the originating sub-spectra, and a hypothetical p-value scale space (top), 
where white regions are termed significant. (a) Analysis over multiple window sizes. Window size 5 at m/z = 10 is significant, 
but has multiple contributions from the same sub-spectrum (i.e., the black peaks). Therefore, a window of size 3 is used for the 
new peak-bag, since it is the largest significant window size with at most one contribution from each sub-spectra. Scale space 
elements that, when used as a future window-center, reference peak positions lying in the current window, are greyed out and 
the process restarts. (b) Although the combined peaks are significant, there are again multiple contributions from one sub-
spectrum at window size 3. Position 5 at window size 1 is not significant. (c) Peak-bag at slightly higher scale. Larger windows 
are greyed out, so a new peak-bag is selected with window size 5. (d) No significant elements remaining.
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other approaches. Although it has been shown in the lit-
erature [4,5] that the wavelet-based analysis often outper-
forms the traditional analysis methods, such as the one
implemented in the MASDA package, here it only seems
to outperform the latter in the low FDR range. This is,
however, not so bad, as in most proteomics analyses it is
actually desirable to keep the FDR at a low level. The
PROcess package generally performs the worst. Although
it displays the lowest FDR, its sensitivity is extremely low.

Peak-bags
The methods we compare our approach with do not pro-
vide any information on the shape of peaks. Our method,
based on analysing sub-spectra, yields peak-bags that do
provide this information, as well as a confidence measure
in the form of a p-value. Figure 5 shows part of a spectrum
of a human serum sample (full spectrum is shown in
Additional file 1, section 5) with one large peak and what
seems to be several adduct peaks of the same peptide.

The methods implemented by Du et al. and the PROcess
package find only one peak here, namely the largest one.
The MASDA package finds some of the adduct peaks as
well, albeit at an unrealisticly low signal-to-noise ratio
cutoff. Sub-spectral analysis however, yields multiple
peak-bags. In the figure, each colour represents a peak-bag
with its associated peak positions and amplitudes. Note
that these peak-bags are selected with p < 0.05 and have at

most one contribution from each sub-spectrum, as shown
in Figure 5.

Conclusion
We have shown that analysing sub-spectra allows one to
find real peaks not found by other methods. Our results
are not heavily dependent on parameter settings, such as
a signal-to-noise ratio threshold for detecting peaks.
Instead, for the first time, we provide a confidence meas-
ure for peaks in the form of p-values, reducing the false
positive rate and yielding a better sensitivity.

Furthermore, our notion of peak-bags provides informa-
tion on the variability and distribution of peaks across
sub-spectra and their contribution to the aggregate (full)
spectrum. This provides a more complete representation
of peaks, impossible to obtain using full spectra. Effec-
tively, our approach offers an implicit way of deconvolut-
ing spectra.

Methods
Sample pre-processing
Spiking mixture was freshly prepared from individual
peptides (Ciphergen Biosystems Inc., Freemont, CA,
USA). A 100 μl-stock solution containing a mixture of
dynorphin (2147.5 Da), ACTH 1–24 (2933.5 Da), β-
endorphin (3465.6 Da), insulin (cow pancreas; 5733.6
Da) and ubiquitin (8564.8 Da), each 1 nmol/100 μl, in
deionised water was prepared. In pilot experiments the
optimal dilution for spiking in matrix was assessed, result-
ing in an optimal dilution of 1:1000 when applying 20 μl
of sample and 2 μl of matrix to the chip.

Before the experiment, the serum sample was thawed and
denatured by adding 190 μl of a solution of 9 M urea and
2% CHAPS, (Sigma, St. Louis, MO, USA) to 10 μl of
serum. As energy absorbing matrix a 50% solution of
sinapinic acid (SPA; Ciphergen Biosystems) in 50% ace-
tonitrile (ACN) + 0.5% trifluoracetic acid (TFA) was used.
Spiked matrix was prepared by adding 6 μl of a 1:15 dilu-
tion of spiking solution to a total of 400 μl SPA solution.

We performed SELDI-TOF mass spectrometry (Ciphergen
Biosystems) with CM10 chips (weak cation exchange chip
containing anionic carboxylate groups that bind posi-
tively charged proteins in serum) with a 100 mM sodium
acetate (Sigma) binding buffer, pH 4, and a 50 mM
HEPES wash buffer.

During all steps of the protocol, the bioprocessor was
placed on a platform shaker at 350 rpm. Chips were equil-
ibrated twice with 200 μl of binding buffer for 5 min. Sub-
sequently, 180 μl of binding buffer and 20 μl of denatured
sample were applied to the chip surface. Incubation was
set to 30 min. After binding, the chips were washed twice

Operating Characteristic curvesFigure 4
Operating Characteristic curves. Operating Character-
istic (OC) curves evaluating the performance of four analysis 
methods, including the method proposed here.
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for 5 min with binding buffer, followed by two 5-min
washes with wash buffer. Lastly, chips were rinsed with
deionised water, air-dried and finished with two 1-μl SPA
applications to the sample spots.

Data acquisition
Protein chips were analysed using the PBS-IIC Protein-
Chip Reader (Ciphergen Biosystems). Data were collected
between 0 and 100000 Da, optimisation range from 1500
to 50000 Da, laser intensity 155, detector sensitivity 5 and
laser focusing at 10000 Da. We probed spot positions 20
to 80, with intervals of 5 and with five repeat shots per
position, yielding in total 65 sub-spectra per spot. For
information on how to obtain sub-spectra, please refer to
Additional file 1, section 6.

We performed a two-way ANOVA analysis, with 'spot
position' and 'repeat shot index' as covariates, to test
whether there are significant differences in noise levels
that can be explained by either one of these covariates. We
confirmed the findings of [2] in the sense that in general
we find a significant portion of the variance to be
explained by spot position and not by shot index. This
lead us to the decision to sum sub-spectra on a per-posi-
tion basis, thereby reducing the computational complex-
ity of the study, while still enabling us to show the
potential of our method. This procedure leads to the 13
sub-spectra described in the paper.

Full spectrum approaches
PROcess R-package
We use the PROcess R-package exactly as recommended in
the accompanying documentation (i.e., the R vignette).
The peak discriminating parameter we vary for the per-
formance assessment is the signal-to-noise ratio.

MASDA R-package
An often used method of analysing a mass spectrum is by
extracting the (monotonically decreasing) baseline signal,
normalising the spectrum and detecting peaks above a
certain pre-specified noise level. Normalisation is done
here using a method found to perform well in an earlier
study [7], namely by extracting the mean from a spectrum
and subsequently dividing it by the standard deviation.
Peaks are selected above a threshold (the signal-to-noise
ratio), defined by the mean plus a number of times the
standard devation, both of which are estimated within a
local window of 1000 measurement points. These proce-
dures are implemented in the MASDA R-package for mass
spectrometry data analysis, freely available from [8].

Wavelet analysis on full spectrum
Following [4], we employ a mexican hat mother wavelet,
which is proportional to the second derivative of a Gaus-
sian function and is similar in shape to actual peaks found
in a mass spectrum.

Examples of peak-bags found by our algorithm in a spectrum of human serumFigure 5
Examples of peak-bags found by our algorithm in a spectrum of human serum. (a) Full spectrum (b) Identified peak-
bags with p < 0.05. (c) Details of peak-bags with m/z values, contributing sub-spectra and a graphical representation of the 
peaks in the bag.
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The mother wavelet is scaled and translated over spectra,
during which the inner product between the wavelet and
the signal is calculated, resulting in a scale space of wave-
let coefficients. This scale space is used to extract features,
i.e., peaks, from spectra.

Ridges in this space are identified, by locating local
maxima over scales. Du et al. then filter these according to
a certain parameter set, consisting of, among others, the
range of scales in which peaks are detected, the minimal
length of identified ridges and a signal-to-noise ratio
threshold. The m/z axis locations of the ridges that pass
these filtering steps they label as peak positions. We used
the default parameters, such as used in [4]. Additional file
1 (section 2) contains an illustration of this analyis.

Analysis of sub-spectra
To analyse sub-spectra, we used the same procedure as for
full spectra, except that we do not employ the parameters
proposed by Du et al.. We do not filter ridges at this point
to distinguish 'real' peaks from 'noise' peaks. Rather, we
retain information on all identified ridges, in order to
construct a noise distribution.

Estimating the noise distribution
We have confirmed that the distribution of wavelet coeffi-
cients for an empty spectrum approximately follows a
Gamma distribution (see Additional file 1, section 3). In
order to estimate the noise distribution Q, we iterate over
the following procedure:

1. Q' = P

2. Remove upper 0.01% quantile values from Q'

3. Fit a Gamma distribution to Q'

4. Assess maximum squared error (MSE) between fitted
Gamma and Q'

5. Go to step 2

The Gamma for which the MSE is lowest, i.e., only con-
taining 'noise' peaks, is selected as the noise distribution
Q. Please also refer to Additional file 1 (section 4) for
more information on this. The detection of peaks then fol-
lows the procedure as described in the main text, and
peak-bags are constructed using a significance threshold
(p-value).

Peak significance test
The wavelet analysis results for a random, noise-only,
spectrum can effectively be seen as a sampling from the
estimated distribution Q ~ Γ (k, θ). Per sub-spectrum and
m/z position, one value is drawn from Q. For n acquired

sub-spectra, n values are drawn. The value for one m/z
position in a full (summed) spectrum is therefore approx-
imately the sum of these n values. The random variable
representing this sum follows a summed sampling distribu-
tion, QΣ, of n-summed values drawn from Q. It follows
from the Central Limit Theorem that for large enough n,
the distribution of QΣ approximates a Normal distribu-
tion, defined by N(nkθ, nkθ2), where kθ and kθ2 are the
mean and variance of Q, respectively. For one particular
m/z position, the significance can be assessed by compar-
ing the summed signal of all s peaks at that position, plus
n – s times the mean of Q (i.e., kθ), against QΣ. For multi-
ple m/z positions, i.e., in a sliding window of size w, a
summed sampling distribution is used where n is multi-
plied by the window size w and s is equal to the number
of peaks in the window.

OC curve construction
We assessed the performances of the different peak detec-
tion methods using Operating Characteristic curves. Such
curves are similar to Receiver Operating Characteristics
curves, which register the trade-off between sensitivity and
specificity. OC curves however, utilise the False Discovery
Rate instead of specificity. This is much more useful in the
context of mass spectrometry data, as the presence of real
and noisy peaks is extremely unbalanced, in favour of the
latter.

OC curves register the trade-off between sensitivity (or
True Positive Rate, TPR) and False Discovery Rate (FDR),
defined as follows:

Here, the set of positives (P) consists of all peaks detected
by a method in one run. True positives are peaks corre-
sponding to the mass of the five spiked-in peptides
described earlier. A peak is called a true positive if it lies
within 0.2% [9-11] of the mass of one of these peptides
plus one proton [12]. False negatives are the true positive
peaks not found by a method. False positives are peaks
detected by a method that do not correspond to any one
of the spiked-in peptides.

In order to construct an OC curve, results are obtained for
each method while varying a parameter value that deter-
mines the number of peaks detected by that method. This
threshold is the p-value resulting from the significance test
for the sub-spectra based method and the signal-to-noise
ratio for all other methods. Results from the 32 spectra
assessed are averaged per threshold value and plotted. A
line is fitted through these points using a local running
median function.

TPR TP P

TP TP FN

FDR FP FP TP

=
= +
= +

/

/( )

/( ).
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