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Abstract
Background: With the recent development of microarray technologies, the comparability of gene
expression data obtained from different platforms poses an important problem. We evaluated two
widely used platforms, Affymetrix U133 Plus 2.0 and the Illumina HumanRef-8 v2 Expression Bead
Chips, for comparability in a biological system in which changes may be subtle, namely fetal lung
tissue as a function of gestational age.

Results: We performed the comparison via sequence-based probe matching between the two
platforms. "Significance grouping" was defined as a measure of comparability. Using both expression
correlation and significance grouping as measures of comparability, we demonstrated that despite
overall cross-platform differences at the single gene level, increased correlation between the two
platforms was found in genes with higher expression level, higher probe overlap, and lower p-value.
We also demonstrated that biological function as determined via KEGG pathways or GO
categories is more consistent across platforms than single gene analysis.

Conclusion: We conclude that while the comparability of the platforms at the single gene level
may be increased by increasing sample size, they are highly comparable ontologically even for subtle
differences in a relatively small sample size. Biologically relevant inference should therefore be
reproducible across laboratories using different platforms.
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Background
The rapid development of microarray technologies has
resulted in numerous microarray platforms that are ana-
lyzed using different protocols across laboratories. Most
recently, microarrays by Affymetrix and Illumina have
become widely used. While both platforms rely on DNA
oligonucleotides as probes, they are fundamentally differ-
ent in hybridization technology and data preprocessing
protocols. Affymetrix arrays use in situ synthesis of 25-
mer oligonucleotides while Illumina arrays are based on
microbeads which self-assemble onto the array. Each
Affymetrix probe is therefore hybridized to a predefined
location [1] while the location of each probe on the Illu-
mina array has to be determined using a molecular
address [2]. Aside from physical differences, the two plat-
forms also differ in the way in which probes are designed.
In general, while Affymetrix uses multiple 25-mer probes
for each gene, Illumina uses, on average, 30 copies of the
same 50-mer probe (bead-type) for each gene. Finally,
while Affymetrix arrays are processed individually, Illu-
mina arrays contain multiple arrays on a single chip, thus
allowing for parallel processing. These differences have
resulted in challenges in comparing data sets across plat-
forms and across laboratories using different platforms.

A number of prior studies have been done in an attempt
to evaluate the comparability of these and other microar-
ray platforms [3-6]. These studies have mainly focused on
comparing two very different samples such as different tis-
sues [3,5], tumors [4], and treatment effects on tumors
[6]. In this paper, we perform a cross-platform compari-
son on a single tissue type over time, namely, fetal lung
tissue as a function of gestational age. The sample group
used in this study is more closely related to experimental
settings in which the differences among groups are not
large, hence we do not expect large differences in expres-
sion among samples. However, this allows us to evaluate
the robustness of the effects of different factors on cross-
platform comparability in the presence of subtle differ-
ences among samples. To do so, we perform both statisti-
cal and functional analyses to evaluate for statistical
comparisons, as well as, biologically relevant effects. We
found that the correlation between the Affymetrix and
Illumina platforms at the individual gene level is related
to expression level, probe overlap, and p-value ranking
within each platform and that the comparability is further
improved when considered on a gene-set level using GO
categories and KEGG pathways.

Results
Performing probe matching reduces the discrepancy 
between Affymetrix and Illumina platforms
In the following results and discussion, we will refer to
unique probe sequences as "probes". In the Illumina plat-
form, there are multiple copies of each bead-type (corre-
sponding to a probe sequence) that has been summarized

into a single probe expression by Illumina's BeadStudio
software. For simplicity, we will refer to each bead-type as
"probe". If no probe matching was taken into account and
all probes (i.e. probe sequences) in both the Illumina
chips and Affymetrix chips were used, then there was a
large (nearly 15-fold) discrepancy between the number of
significant genes, i.e. differentially expressed genes, in
Illumina (n = 679) compared to Affymetrix (n = 10074),
much larger than the ratio of the number of Affymetrix
probe sets to number of Illumina probes (2.3-fold). In
order to isolate the platform-dependent effects that are
independent of the different sets and number of genes for
each chip, we created a one-to-one mapping between
Affymetrix and Illumina chips based on sequence map-
ping to RefSeq transcripts (see Methods for details).

With probe matching, the discrepancy in the number of
significant genes decreased (Figure 1). Affymetrix chips
are commonly preprocessed with the Robust Multichip
Average (RMA) algorithm [7]. This includes a summariza-
tion step that is unique to Affymetrix chips in which the
multiple probe intensities within each probe set are com-
bined to obtain an expression value for that probe set. In
order to see what the effects of having multiple probes and
a different normalization scheme would be, i.e. RMA
applied to the Affymetrix chips, we compared the Illu-
mina chips using quantile normalization to Affymetrix
normalized using both RMA (Affymetrix RMA) and quan-
tile normalization (without summarization) of the best-
matched probes in the Affymetrix probe sets (Affymetrix
QN). The use of the Affymetrix QN preprocessing scheme
also gives us an idea regarding the effects of the different
normalization schemes and what the "best" case scenario
could be when comparing Illumina and Affymetrix chips.
After probe mapping, the discrepancy between the
number of Affymetrix (RMA n = 3685; QN n = 2088) and
Illumina (n = 643) significant genes is reduced to 5.7-fold
and 3.2-fold, respectively.

Number of differentially expressed genes in Illumina and AffymetrixFigure 1
Number of differentially expressed genes in Illumina 
and Affymetrix. Affymetrix RMA was preprocessed using 
the Robust Multichip Average (RMA) algorithm. Affymetrix 
QN and Illumina were normalized using quantile normaliza-
tion.
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To perform the cross-platform comparisons, we used 
differentially expressed genes and gene expression 
correlation as measures of comparability
In order to perform cross-platform comparisons, we used
two different measures of similarity. The first measure of
comparability is gene-wise correlation, a commonly used
means of comparing different platforms. High correlation
implies good comparability of two platforms for that gene
regardless of whether or not it is differentially expressed.
The second measure of comparability is the similarity or
differences in the statistically significant differentially
expressed genes. There are 4 groups of genes: 1) genes that
demonstrate statistically significant differential expres-
sion with lung development on both platforms (common
significant genes, Gai), 2) genes that are significantly dif-
ferentially expressed on Illumina but not Affymetrix (Gi),
3) genes that are significantly differentially expressed on
Affymetrix but not on Illumina (Ga), and 4) genes that are
not significantly differentially expressed on either plat-
form (Gns). We will refer to these 4 categories as signifi-
cance groups. The difference between the two platforms
lies mainly in the two groups in which genes are signifi-
cant in one platform but not in the other. Two perfectly
compatible platforms will only have genes in Gai and Gns
and no gene in Ga or Gi. When two platforms are not per-
fectly comparable, knowing what features predicts which
significance category a gene belongs to allow us to inter-
pret results of one platform without having data from the
other platform.

Performing single probe matches between Affymetrix and 
Illumina using quantile normalizations does not 
significantly change the comparability of the two 
platforms compared to using RMA normalization for 
Affymetrix
Illumina and Affymetrix RMA identified 513 differentially
expressed genes in common, whereas 324 common sig-
nificant genes were identified between Illumina and
Affymetrix QN. Part of the reason for the larger number of
significant Affymetrix genes can be seen from the adjusted
p-value distribution (i.e. p-value after correcting for mul-
tiple testing) (Figure 2). While most Illumina genes have
high adjusted p-values, most Affymetrix genes have low p-
values. The normalization method in Affymetrix does not
affect the overall distribution pattern of the p-values, how-
ever. The mean Spearman correlation between Illumina
and Affymetrix RMA is 0.22 and that between Illumina
and Affymetrix QN is 0.15. The low correlation is some-
what lower than some prior studies in which the correla-
tion between Affymetrix and Illumina platforms was
closer to 0.5 [8,9]. The reason for such a low correlation is
the large proportion of nonsignificant genes in both plat-
forms, which is a property of the biological system, stud-
ied, that is, the changes in a single organ over time. As will
be shown below, genes that are significant in both plat-

forms have a much higher correlation. The correlation
between the two Affymetrix normalizations is higher at
0.49. From these initial results, we see that the two differ-
ent normalizations for Affymetrix do not lead to large dif-
ferences in correlation between Affymetrix and Illumina
platforms. Restricting the Affymetrix probes to only the
best matched probes rather than using RMA normaliza-
tion does not lead to increased correlation or increased
overlap in significant in genes with Illumina. Thus the
main differences between Affymetrix and Illumina cannot
be accounted for by using the same normalization scheme
for both. We will therefore restrict the remainder of our
analysis to the comparison of Affymetrix RMA and Illu-
mina, which utilize commonly used normalization meth-
ods for both platforms.

Genes that are identified as differentially expressed in 
both platforms have the highest correlations, while genes 
that are identified as differentially expressed in only one 
platform have intermediate correlations and genes that 
are not identified as differentially expressed in any 
platform have the lowest correlations
First we examined the relationship between the two meas-
ures we are using for comparison: correlation and signifi-
cance class (Figure 3). Genes that are common to both
Affymetrix and Illumina, Gai, have very high correlation of

Distribution of adjusted p-values for Illumina, Affymetrix RMA, and Affymetrix QNFigure 2
Distribution of adjusted p-values for Illumina, 
Affymetrix RMA, and Affymetrix QN. P-values have 
been adjusted for multiple testing via the Benjamini and 
Hochberg method. Prior to adjusting for multiple testing, the 
distributions were similar in appearance with a lower density 
of Illumina p-values near 0 compared to Affymetrix. The rela-
tively lower density of Illumina adjusted p-values near 0 
explains why there are many more differentially expressed 
genes in Affymetrix compared to Illumina.
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0.70 ± 0.12 and a narrow distribution. Genes that are sig-
nificant in Illumina only, Gi, have correlations of 0.36 ±
0.24 and those that are significant on Affymetrix only, Ga,
have correlations of 0.34 ± 0.25. Genes that are not signif-
icant in either platform, Gns, have a low correlation of
0.16 ± 0.26. Note that the distribution is much broader for
Gi, Ga, and Gns. Using the t-test, the differences in correla-
tion between Gai and both Gi and Ga are significant (p <
2.2 × 10-16). Similarly, genes that are not significant in
either platform, Gns, are also significantly different from
Gi and Ga (p = 9.5 × 10-16 and < 2.2 × 10-16, respectively).
Thus while the correlations of genes that are significant in
only one platform is much smaller than correlations of
genes that are significant in both platforms, significance
in at least one platform distinguishes a gene from genes
that are not significant in any platform. In addition, this
relationship demonstrates that the two measures of com-
parability that we are using, namely, significance class and
correlation, are consistent but not the same.

Our goal is to determine factors that will let us predict
which genes are consistently identified as differentially
expressed between the platforms, either by predicting the
significance category to which individual genes belong or
by predicting its level of correlation with the other plat-
form. We will examine both of these factors with respect
to expression level, probe overlap/distance, and the signif-
icance rank of genes.

Expression level, probe distance, and p-value rankings are 
associated with highly correlated genes and genes in Gai
We demonstrate in the sections below the associations
between expression level, probe distance, and p-value
rankings with correlation and significance categories
(Tables 1 and 2). Although there were statistically signifi-
cant associations found for all three features, the distribu-
tion of each over correlation and significance categories
was very broad, which is likely reflective of the biological
system studied, that is, subtle changes that occur over ges-
tational age.

Expression level
Genes with low expression are generally thought to lack
statistical significance as their signals cannot be readily
distinguished from noise. As a result, many expression
analyses are performed with low expression genes filtered
out. One may therefore anticipate that high expression
genes are more comparable between platforms. We exam-
ined the effect of gene expression level on the comparabil-
ity of the two platforms via gene-gene correlation and
significance category.

The distribution over mean Illumina and Affymetrix
expression versus gene-gene correlation demonstrates that
genes with high correlations tend to have higher levels of
expression (Figure 4, Additional File 1) [10]. High and
low correlation genes (corr ≥ 0.5 and <0.5) have signifi-
cantly different mean expressions of 7.703 ± 1.890 and
6.467 ± 2.280, respectively (Wilcoxon rank sum, p < 2.2 ×
10-6). However, the distributions are very broad with the
distribution for low correlation genes being bimodal.
Conversely, genes with high expressions (≥ 6) in either
platform have higher correlations. The mean correlations
for highly expressed and lowly expressed Illumina genes
are 0.296 ± 0.264 and 0.099 ± 0.252 (t-test, p-value < 2.2
× 10-6). Similarly, the mean correlations for highly and
lowly expressed Affymetrix genes are 0.279 ± 0.266 and
0.136 ± 0.269 (t-test, p-value < 2.2 × 10-6). Of note,
although high expression does imply higher correlation,
the level of correlation for highly expressed genes is not as
high as that of the genes in Gai.

Similarly, we examined the distribution over expression
levels of Affymetrix and Illumina in different significance
categories (Figure 4, Additional File 1). Although Gai and

Distribution of gene-wise correlations between Affymetrix RMA and IlluminaFigure 3
Distribution of gene-wise correlations between 
Affymetrix RMA and Illumina. Genes were divided into 
four groups: genes that were significant (differentially 
expressed) in both Affymetrix and Illumina (Gai), genes that 
were significant in Illumina only (Gi), genes that were signifi-
cant in Affymetrix only (Ga), and genes that were not signifi-
cant in either platform (Gns). The mean correlations for the 
four groups were 0.700, 0.358, 0.337, and 0.160, respectively. 
The variances of the distributions for the four groups were 
0.013, 0.060, 0.065, and 0.065, respectively. Using the t-test, 
Gai is significantly different from Gi and Ga (p < 2.2 × 10-16 for 
both). Similarly, Gns is significantly different from Gi and Ga (p 
= 9.463 × 10-16 and < 2.2 × 10-16). The correlations were 
highest in genes that were significant in both platforms and 
lowest in genes that were insignificant in both platforms.
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Gns have distinct distributions with respect to expression
levels, the distribution for Gns is bimodal and both distri-
butions are very broad. The distribution of the Gi and Ga
genes are similarly broad with Gi more similar to Gns and
Ga more similar to Gai. Furthermore, although genes in Gai
are associated with higher expression, so are genes in Ga.
Thus, while t-tests revealed the mean expressions of Ga
and Gi to be statistically different from both Gai and Gns,
the broad distributions and the similarly high expression
of Ga genes prevents using expression levels as a practical
tool in predicting which significance group a gene belongs
to.

Probe distance
We now turn to probe matching or overlap as a means of
predicting a gene's significance group and cross-platform
correlation. Intuitively, we expect that probes that corre-
spond to the same segment of a gene will have better
cross-platform comparability. We had defined perfectly
matched probes to be the Affymetrix probeset that con-
tains a probe whose sequence matches that of the corre-
sponding Illumina probe maximally (see Methods for
details). Because Illumina probes are 50-mers and
Affymetrix probes are 25-mers, the maximum probe over-
lap is 25. Using these criteria, 45% (6855 out of 15348)
are considered perfectly matched.

The overall trend of correlation and probe distance in
each significance category is shown in Figure 5 and Addi-
tional File 2. Highly correlated genes (corr ≥ 0.5) have
higher overlap (lower distance) with the mean probe dis-

tance of 64.8 ± 375, while genes with low correlations
(corr < 0.5) have lower overlap (higher distance) with a
mean probe distance of 208.1 ± 951 (t-test, p-value < 2.2
× 10-6). Conversely, when we examined the correlation
distribution of genes based on their overlap, we found
that genes with perfectly matched probes have the highest
correlations (corr = 0.251 ± 0.280), while genes with par-
tially overlapped probed have lower correlations (corr =
0.215 ± 0.278), and genes with no overlap have the lowest
correlations (corr = 0.169 ± 0.265). Although the differ-
ences in mean correlation of each group of genes based on
overlap/distance are statistically significant, the large vari-
ances of the distributions and the small differences in
means renders the degree of probe overlap ineffective as a
predictor of cross-platform correlation.

The distribution of each significance category over probe
overlap/distance demonstrates that genes that are com-
mon in significance to both platforms, Gai and Gns, have
higher overlaps, than those that differ between platforms,
Gi and Ga (Figure 5, Additional File 2). The mean inter-
platform probe distance for Gai, Gi, Ga, and Gns are 109,
251, 220, and 175, respectively. The distributions are nar-
rowest for Gai. Thus higher overlap/lower distance seems
to be associated with the Gai significance group. When we
perform a χ2 test between overlap and significance group,
we found that there was an association between the two
factors (p = 0.006). However, restricting the set of probes
to perfectly matched probes does not change the fraction
of genes that are in each significance group sufficiently to

Table 1: Summary of single gene analysis for genes in different significance groups and with high/low correlations

High correlation 
(≥ 0.5)

Low correlation 
(< 0.5)

Gai Gi Ga Gns

Mean expression 7.703 ± 1.890 6.467 ± 2.280 7.358 ± 1.818 5.579 ± 1.611 7.609 ± 2.059 6.412 ± 2.269
Mean probe distance 64.8 ± 375 208.1 ± 951 109 ± 464 251 ± 785 220 ± 1475 175 ± 643
Median probe distance -25 -21 -25 -20 -22 -22
Mean Illumina p-value rank 3956 ± 3817 8466 ± 4140 306 ± 186 385 ± 170 6277 ± 4424 8469 ± 4069
Mean Affymetrix p-value 
rank

4664 ± 4244 8315 ± 4200 915 ± 915 7763 ± 3548 1993 ± 1009 9537 ± 3360

Table 2: Summary of mean correlation in single gene analysis

Mean correlation P-value*

High Illumina expression (≥ 6) 0.296 ± 0.264 p < 2.2 × 10-6

Low Illumina expression (< 6) 0.099 ± 0.252
High Affymetrix expression (≥ 6) 0.279 ± 0.266 p < 2.2 × 10-6

Low Affymetrix expression (< 6) 0.136 ± 0.269
Perfect match 0.251 ± 0.280 pperfect match, partial overlap = 6.097 × 10-10

Partial overlap 0.215 ± 0.278 pperfect match, no overlap < 2.2 × 10-16

No overlap 0.169 ± 0.265 ppartial overlap, no overlap = 3.202 097 × 10-14

* p-values were obtained using the t-test
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Associations between expression level and gene-wise correlation and significance groupFigure 4
Associations between expression level and gene-wise correlation and significance group. A) Two-dimensional den-
sity plots of expression value versus correlation in different significance groups. B) Two-dimensional density plots of Illumina 
expression value versus p-value ranks in different significance groups. The density plot for Affymetrix expression value versus 
p-value ranks is shown in Additional File 1. There are proportionately more genes in Gns in the low-expression group com-
pared to the high expression group. The converse is true for Gai. The density plots were obtained via the MASS package in R 
[10]. The bimodal distribution is most noticeable in Gns.
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be a useful tool for discriminating between significance
groups.

P-value ranking
The p-value profile of Illumina and Affymetrix (Figure 2)
suggests that a reason for the low correlation may be the
difference in threshold for significance because of a spe-
cific p-value cutoff. To circumvent the p-value cutoff, we
will examine the p-value rankings in each platform as a
predictor of highly correlated genes and of significance
class.

Genes with high correlation are associated with lower
ranks in both Illumina and Affymetrix (Figure 6, Addi-
tional File 3). The mean Illumina ranks of genes with high
and low correlations are 3956 and 8466, and the mean
Affymetrix ranks of genes with high and low correlations

are 4664 and 8315. Both differences are statistically signif-
icant with Wilcoxon rank sum p-values of < 2.2 × 10-6. Of
note, the mean Affymetrix ranks for genes with high and
low correlations are very similar to mean Illumina ranks
for those genes.

When we examine the significance of the genes with
respect to their p-value ranking in one platform, we find
that those genes, which are significant only in the other
platform, tend to have lower ranks. The mean Illumina
ranks for Gai, Gi, Ga, and Gns are 306, 385, 6277, and
8469, respectively (Figure 6). The mean Affymetrix ranks
for Gai, Ga, Gi, and Gns are 915, 1993, 7763, and 9537,
respectively. The difference in mean Illumina ranks
between Gai and Gi is much less than the difference in
mean Affymetrix ranks between Gai and Ga. Using the Wil-
coxon rank sum test, we found that both Gi and Ga are sta-

Associations between probe distance between the best-matched Affymetrix and Illumina probes and their significance group and correlationFigure 5
Associations between probe distance between the best-matched Affymetrix and Illumina probes and their sig-
nificance group and correlation. A) Two-dimensional density plots of probe distance versus correlation in different signifi-
cance groups. B) Two-dimensional density plots of probe distance versus p-value ranks in different significance groups. 
Distance less than 0 indicates overlap between probes. Probes corresponding to genes in Gai and Gns have the greatest over-
laps.
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Associations between p-value rankings and significance groups and correlationFigure 6
Associations between p-value rankings and significance groups and correlation. A) Two-dimensional density plot of 
correlation versus p-value ranking (Illumina and Affymetrix) for different significance groups. B, C) Genes in Gai and Gns have 
the lowest and highest p-value rankings for both Affymetrix and Illumina while those in Gi and Ga have intermediate rankings. 
The mean Illumina ranks for Gai, Gi, Ga, and Gns are 306, 385, 6277, and 8469, respectively. The mean Affymetrix ranks for Gai, 
Ga, Gi, and Gns are 915, 1993, 7763, and 9537, respectively. Using the Wilcoxon rank sum test, the Illumina p-value ranking for 
Gai is significantly different from Gi and Ga (p = 1.517 × 10-5 < 2.2 × 10-6). Similarly, the Illumina p-value ranking for Gns is signif-
icantly different from Gi and Ga (p < 2.2 × 10-16 for both). The Affymetrix p-value ranking for Gai is significantly different from Gi 
and Ga (p < 2.2 × 10-16 for both). Similarly, the Affymetrix p-value ranking for Gns is significantly different from Gi and Ga (p = 
2.338 × 10-9 and < 2.2 × 10-16).
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tistically different from Gai and Gns for both Illumina and
Affymetrix rankings. In particular, when examining Illu-
mina ranks, Gi is statistically different from Gai with a p-
value of 1.517 × 10-5, and Ga statistically different from
Gns with a p-value of < 2.2 × 10-6. Similarly, when exam-
ining Affymetrix ranks, Ga is statistically different from Gai
with a p-value of < 2.2 × 10-6, and Gi statistically different
from Gns with a p-value of 2.338 × 10-9. These distribu-
tions demonstrate that the common significant genes, Gai,
have the lowest rankings (most significant). More interest-
ingly, we also see that the genes that are significant in only
one platform have the next higher ranking in that plat-
form. It is also important to note that although genes that
are significant only in the other platform are distributed
throughout the rankings, they are concentrated at the
lower rankings when compared to nonsignificant genes.

Gene sets using GO categories and KEGG pathways are 
more consistent between platforms than the number of 
significant individual genes
Significant GO categories and KEGG pathways were deter-
mined using SAFE [11] correcting for multiple testing via
the method of Westfall and Young [12]. However, correct-
ing for multiple testing yielded no significant results. We
therefore proceeded to examine the results based upon
the empirical p-values alone. This is similar to analyzing
the gene sets based on gene rankings.

The effects of consolidating genes into gene sets can be
seen even before probe matching. While the number of
significant genes in Affymetrix RMA and Illumina differ by
nearly 15-fold when examining single genes, grouping the
genes attenuates the discrepancy. There are approximately
twice as many significant GO categories and KEGG path-
ways in Affymetrix RMA than in Illumina prior to probe
matching.

Probe matching reduces the discrepancy even further with
the number of GO categories and KEGG pathways for the
two platforms being within 20% of each other (Figures 7,

8). GO categories are not as effective as KEGG pathways,
however, in capturing the same biology between the two
platforms. While only about 30% of the significant GO
categories are common to the two platforms, about 50%
of the KEGG categories are. However, if we analyze the
ancestral terms of the GO categories as derived from the
GO slim subset obtained via cateGOrizer (http://
www.animalgenome.org, December 3, 2008) [13], count-
ing only one path between a parent and child term, we
found that the ten most frequent ancestral terms are the
same between Affymetrix and Illumina (Additional File
4). There was only one significant GO category in Illu-
mina that was not part of GO slim, GO:003326, and two
terms in Affymetrix that were not part of GO slim,
GO:0022884 and GO:0033261.

The proportions of significant GO categories are similar in 
Illumina and Affymetrix but significantly different from the 
distribution of all GO categories
While the fraction of biological processes (BP) in Illumina
and Affymetrix is very similar to that over all GO terms,
the proportion of significant GO terms in cellular compo-
nents (CC) is more than twice as high in Illumina and
Affymetrix than over all GO terms (0.19 and 0.18 vs. 0.08)
while the fraction of molecular function (MF) is less than
2/3 of all GO terms (0.22 and 0.22 vs. 0.33) (Figure 9).
Using Pearson's χ2 test over all 3 categories, both Illumina
and Affymetrix are significantly different from the set of
all GO terms (p = 6.19 × 10-6 and 6.6 × 10-6), whereas the
difference between Affymetrix and Illumina is not signifi-
cantly different from each other (p = 0.9743).

Most locally significant genes in significant KEGG 
pathways or GO categories in Illumina are also significant 
in Affymetrix. These common significant genes are highly 
correlated
There are 6 common significant KEGG categories for Illu-
mina and Affymetrix and 48 common significant GO cat-
egories (Additional File 5). For each category, we

Number of significant GO categories in Affymetrix and Illu-minaFigure 7
Number of significant GO categories in Affymetrix 
and Illumina.

Number of significant KEGG pathways in Affymetrix and Illu-minaFigure 8
Number of significant KEGG pathways in Affymetrix 
and Illumina.
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examined the locally significant genes. 78% and 83% of
the genes significant in Illumina are also significant in
Affymetrix over all KEGG pathways and GO categories,
respectively. Because there are slightly more significant
genes in Affymetrix (213 and 1562) than Illumina (190
and 1289) in the significant KEGG pathways and GO cat-
egories, the percentage of genes significant in Affymetrix
that are also significant in Illumina is smaller (69% and
68%). There are 148 and 1066 such common significant
genes identified in the KEGG pathways and GO catego-
ries, respectively. Since some of these genes are in multiple
KEGG pathways, the number of unique common signifi-
cant genes is 112 (KEGG) and 417 (GO). These common
significant genes as determined from significant KEGG
pathways are highly correlated between Illumina and
Affymetrix with a correlation of 0.59 (KEGG) and 0.55
(GO). Of note, these are not the same genes as those
found using single gene analysis. In fact, only 37 of the
112 genes in the KEGG pathways and 116 of 417 genes in
the GO categories also belong to the common significant
genes from the single gene analysis (Figure 10). Similarly,
there is an overlap of 72 genes between the common sig-
nificant genes derived from the GO and KEGG pathways.

Because of the large proportion of genes that are signifi-
cant in only one analysis, that is, linear regression, GO cat-
egories, or KEGG pathways, common significant genes
between Affymetrix and Illumina from each analysis are
not predictive of the common significant genes in the
other two analyses.

qPCR results of Gai and Gns genes were consistent with 
Affymetrix and Illumina gene expression
To validate results from the microarrays, the same analysis
was done using the piecewise constant model on ΔCt
from qPCR results from Kho et al (Kho AT, Bhattacharya
S, Tantisira KG, Carey VJ, Gaedigk R, Leeder JS, Kohane IS,
Weiss ST, Mariani TJ: Transcriptomic Analysis Identifies
Molecular Phases of Human Lung Development, unpub-
lished). Genes that were significant in both Affymetrix
and Illumina were also significant by qPCR (Additional
File 6).

Discussion
Given the emergence of multiple platforms for perform-
ing microarray analysis, many cross-platforms studies
have been done in order to identify characteristics in the
platforms that will allow the comparison of data, and pos-
sibly the ability to combine data from different platforms.
Most such studies involve two very distinct contrasting
groups. In this study, we performed a cross-platform anal-
ysis across samples that differ with respect to gestational
age to evaluate the robustness of cross-platform compari-
sons under subtle changes in biological conditions. When
compared to other studies that have interrogated both
Affymetrix and Illumina platforms, including the Micro-
Array Quality Control (MAQC) project, we noted in our

Distribution of GO categories in Illumina and Affymetrix compared to all GO termsFigure 9
Distribution of GO categories in Illumina and 
Affymetrix compared to all GO terms. The proportion 
of significant GO categories under cellular components is 
more than twice as high in Affymetrix and Illumina than over 
all GO terms while the proportion of categories under 
molecular function is less than 2/3 compared to all GO 
terms. CC = cellular component, BP = biological processes, 
MF = molecular function.
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Number of significant genes common to both Affymetrix and Illumina that were obtained via a categorical linear model (SAFE [11] package from Bioconductor), from significant KEGG pathways and from significant GO categoriesFigure 10
Number of significant genes common to both 
Affymetrix and Illumina that were obtained via a cat-
egorical linear model (SAFE [11]package from Bio-
conductor), from significant KEGG pathways and 
from significant GO categories.
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biologic model a disproportionate representation of sig-
nificant Affymetrix probes, when compared to Illumina.
Despite these differences, detection of ontologic pathways
was similar in both platforms, suggesting that both plat-
forms suitably detect the same underlying biologic proc-
esses.

The discrepancy between Affymetrix and Illumina chips
prior to probe mapping is striking in our dataset with a
nearly 15-fold difference in the number of differentially
expressed genes over gestational age. Limiting the analysis
to matched probes between the two platforms largely
decreases this discrepancy. To confirm that this discrep-
ancy is present even when done using a different preproc-
essing method, we applied cubic spline normalization to
Illumina and probe logarithmic intensity error estimation
(PLIER) to Affymetrix data (data not shown), as done in
the MAQC project [5]. This approach did not significantly
impact the relative preponderance of Affymetrix signifi-
cant genes.

Our goal was then to perform the cross-platform compar-
ison using common preprocessing schemes for each type
of chip, namely, RMA for Affymetrix chips and quantile
normalization for Illumina chips, so that our results
would be applicable to the situation commonly encoun-
tered in practice when comparisons need to be made
between laboratories. However, since these two preproc-
essing methods are considerably different, we first
assessed the effects of performing the exact preprocessing
methods on both types of chips.

If we were to take the Affymetrix genes and normalize them
in the same way as RMA but without the summarization, we
would have a normalization scheme that one often uses on
Illumina chips in which RMA summarization is not applica-
ble. In this way, the quantile normalized (but not summa-
rized) Affymetrix data can serve as the most comparable way
by which we can compare the Illumina data to the Affymetrix
data. We found the correlation between Illumina and
Affymetrix chips to be low, regardless of the normalization
used on Affymetrix. The correlation is much lower than that
between the two Affymetrix normalizations. The correlation
between Affymetrix quantile normalization and RMA dem-
onstrates how the difference in normalization schemes is
sufficient to reduce the correlation to less than 0.5. However,
the difference between Affymetrix and Illumina is more than
just the normalization scheme. Even with sequence-based
probe matching and the same normalization scheme, the
correlation between Affymetrix and Illumina remains low.

One reason for the difference between Affymetrix and Illu-
mina can be seen from the p-value distribution of the two
platforms. While most genes in Illumina have very high p-
values, most genes in Affymetrix have very low p-values.
This also explains why most significant Illumina genes are

a subset of the significant Affymetrix genes but not vice
versa. This is consistent with Illumina being more specific
and Affymetrix being more sensitive, similar to findings of
Chen et al [14]. The difference in platforms accentuates
the need for cross-platform comparisons. Our goal was to
evaluate which features of the Affymetrix and Illumina
platforms would give us the most comparable and con-
sistent data between the two platforms.

In order to compare the two platforms for compatibility,
we used two different measures for quantifying the "dis-
tance" between platforms, namely, the significance cate-
gories and gene-wise correlation. The significance
categories divide genes into those which are significantly
dependent on gestational age in both platforms, not sig-
nificant in either platform, or significant in one platform
but not the other. These categories are different from but
complementary to gene-wise correlations as one is cate-
gorical while the other is continuous. If the correlation
distribution of each significance group were narrow and
distinct, the two measures of platform comparability
would approach one another.

One reason for the low overall correlation between the
platforms is the presence of a large number of genes that
are not differentially expressed during lung development.
Restricting the set of genes to Gai versus Gi or Ga increases
the correlation by variable amounts. As one would expect,
genes in Gai have the highest correlations while those in
Gns have the lowest correlations. The distribution of corre-
lation is very broad, however. Therefore, we have used
both measures in our analyses.

A common practice in microarray analysis is the filtering
out of genes with low expression values [15-17]. The
effects of filtering were evaluated by retaining genes with
median absolute deviations in the top 20% (data not
shown). Again, a larger number of significant Affymetrix
genes remained despite the filtering. Our final analysis,
therefore, was based on unfiltered data. This also allowed
us to evaluate the contribution of the low expression
genes. Barnes et al. have previously shown that correlation
between genes is associated with higher expression levels
[3]. While we found that the mean expression for genes in
Ga and Gi are statistically different from those in Gai and
Gns, the expression distribution is so broad and some-
times bimodal that one cannot use expression to predict
significance group. The same is true for using expression
to predict correlation. On the other hand, genes with low
correlation or those in Gns have a bimodal distribution
over expression. This means that while filtering does pref-
erentially eliminate genes that are nonsignificant or have
low correlation between the platforms, eliminating low
expression genes will also eliminate some highly corre-
lated or significant genes.
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Mecham et al. previously found that the degree of probe
overlap between two platforms is associated with correla-
tion [18]. We found, as one would expect, that probes for
genes in Gai and Gns have higher overlaps (lower distance)
than those in Ga and Gi. Similarly, genes that are highly
correlated between the two platforms also have higher
overlaps. However, similar to the scenario with expression
levels, the overlap/distance distributions are very broad.
Thus while we have statistical difference in terms of corre-
lation or significance group, we cannot use the degree of
probe overlap/distance to predict highly correlated genes
or their significance group using our dataset. This may
improve as the number of samples increases, thereby giv-
ing higher power to the analysis.

Lastly, we had examined correlation and significance
group with respect to p-value ranking. Although the rank
distributions are more distinct between groups compared
to overlap or expression distribution, they are also broad
and cannot be used reliably to predict either correlation or
significance group. We thus face similar issues when
attempting to use probe overlap/distance, expression
level, or p-value ranking in determining which genes are
comparable across platforms despite obvious trends. The
broadness of the distributions may be specific to our data-
set, however. First, it is a relatively small sample size, espe-
cially with respect to each age group. With increased
sample size, many of the variances of the different distri-
butions may decrease, rendering each factor more predic-
tive of a gene's cross-platform comparability. In addition,
unlike most other cross-platform studies, we are examin-
ing gene expression as a continuous variable – a more
gradual change in lung tissue gene expression over gesta-
tional age, rather than as a dichotomous variable – com-
paring two vastly different tissues such as normal versus
tumor tissues, for example. There are two implications
from assessing change over time. First, there is biological
noise, that is, potential errors in reporting gestational age.
Second, significant genes over time may follow a subtle
trend rather than having two very different expression lev-
els between two groups. This may result in the smaller dif-
ferences in mean overlap/distance, expression, or p-value
ranking than if we had very different control and experi-
mental groups.

Although examining the lowest ranking genes in the
Affymetrix platform can reduce the discrepancy between
the Affymetrix and Illumina platforms at the single gene
level, the cutoff is difficult to determine ahead of time. To
address this problem, we performed a gene set (GO and
KEGG) enrichment analysis to determine if the biologi-
cally relevant gene sets are comparable between the two
platforms. Maouche et al. utilized a post hoc test for the
relative enrichment of a gene category within the list of
significant genes to look for biological function and rele-
vance [19]. We used the SAFE package from Bioconductor

which accounts for the unknown correlation among genes
[11]. We found that consolidating genes into gene sets
removes the large discrepancy in the number of significant
genes as was found when single gene analysis was done.
The number of significant categories is similar across the
Illumina and Affymetrix platforms. This is true for group-
ing genes into gene sets as defined by KEGG pathways and
ancestral terms of the GO categories (Additional File 4).
The similar number of significant KEGG pathways and
GO categories in both Affymetrix and Illumina and high
percent of overlap between them (about 50%) implies a
higher degree of consistency between the platforms when
biological function is considered rather than single genes.
The relative contribution of each gene in a category can be
seen from the empirical distribution function of the
ranked local statistics (statistics of a single gene consid-
ered independently of its category) (Additional File 7).
Because the overall contribution of all genes within a cat-
egory is taken into consideration, variations in p-values of
individual genes are less likely to affect the significance of
a category, thereby rendering gene set analysis more
robust and less susceptible to cross-platform variation
than single-gene analysis.

Conversely, most locally significant genes in each com-
mon significant KEGG pathways or GO categories in Illu-
mina are also significant in Affymetrix and vice versa.
Furthermore, these common significant genes as deter-
mined by the common KEGG pathways and GO catego-
ries are highly correlated. This supports the notion that
the KEGG pathways and GO categories bring out not only
the relevant biological functions but also the genes associ-
ated with them.

One should note, however, that the common significant
genes arrived at via single gene analysis, via KEGG pathways
and via GO categories are largely nonoverlapping. This
explains why the distribution of correlation of the non-com-
mon significant genes from the single gene analysis is a
bimodal distribution. Given the high correlation of these
genes between two very different platforms, one cannot dis-
miss one set or the other. This brings out the complexity of
the biology. There are genes that are best characterized as sin-
gle genes, in terms of GO categories, and/or in terms of
KEGG pathways. It emphasizes our incomplete understand-
ing of the gene networks that are clearly not completely char-
acterized by known KEGG pathways or GO categories. While
the grouping of genes into gene sets creates a more consistent
interplatform picture, the analysis should in no way be lim-
ited to any particular set.

Conclusion
Although there are differences in the Affymetrix and Illu-
mina technology and the number of differentially
expressed genes in each platform, there are many compa-
rable features between the two platforms. Gene-wise com-
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parisons demonstrate that there is a relationship between
expression level, probe overlap/distance, and p-value
ranking with a gene's significance class. Functional analy-
sis using GO categories and KEGG pathways show that
despite the differences at the single gene level, the two
platforms are very comparable in terms of biologically rel-
evant variables. Neither platform can be clearly consid-
ered superior to the other based on this analysis.

Methods
RNA was isolated from normal fetal human lung tissue sam-
ples obtained from two NICHD-supported tissue services,
the Center for Birth Defects Research at the University of
Washington, and the University of Maryland Brain and Tis-
sue Bank for Developmental Disorders. The post mortem
interval was <2 hr for all samples from the University of
Washington and <6 hours for the samples from the Univer-
sity of Maryland. The collection of tissues was approved by
the University of Missouri-Kansas City Pediatric Institutional
Review Board. Gene expression data from 32 RNA samples
from different stages of human lung development (53 days
to 153 days estimated gestational age) were obtained for
both the Affymetrix U133 Plus 2.0 (Affymetrix, Santa Clara,
CA) and the Illumina HumanRef-8 v2 Expression Bead
Chips (Illumina, San Diego, CA). Gene expression data for
the Affymetrix chip was obtained from Kho et al [20]. The
Affymetrix Human Genome U133 Plus 2.0 Array has 54,675
probe sets and 604,258 probes while the Illumina chip has
23,811 bead-types (each corresponding to a probe
sequence). For simplification, we will refer to the Illumina
bead-types as probes. Summarized, but unnormalized,
bead-type data was obtained from Illumina's BeadStudio
software. Expression sets for Affymetrix and Illumina were
obtained via the affy [21] and lumi [22] packages from Bio-
conductor.

Validation of gene expression was done via quantitative
PCR (qPCR) on a subset of 7 genes at 27 time points from
53 to 154 days of gestational age. The genes were selected
for their association with immunologic response or sur-
factants, as well as, their significance (or lack thereof) in
both Affymetrix and Illumina platforms. qPCR was per-
formed on a Stratagene M X3000P using Taqman chemis-
try previously described in Simon et al [23]. Inventoried
(pre-developed) gene-specific assays for measuring gene
expression were obtained from Applied Biosystems. Gene
expression levels (ΔCt) were obtained from Kho et al. and
were calculated relative to the measured Ct value of PPIA
(peptidyl prolyl isomerase A or cyclophilin A) as an inter-
nal, endogenous control [20]. For each gene, we com-
puted the p-value for the ΔCt over gestational age using a
piecewise constant model (see below).

Probe mapping
In order to perform the cross-platform comparison, we
obtained a one-to-one map between the Illumina probes

and the Affymetrix probe sets. We started with the probe
map provided by Illumina from HumanRef-6 v2 to
Affymetrix HGU133 Plus 2.0 with RefSeq IDs (http://
www.switchtoi.com/probemapping.ilmn, Illumina
Human-6v2 to Affymetrix U133Plus2.0). RefSeq
sequences were obtained by querying NCBI Entrez Nucle-
otide on 5/21/2008. To obtain the initial probe map the
manufacturer used transcript sequences from RefSeq
Release 20. For both platforms, only probes that perfectly
matched a unique RefSeq transcript were retained.
Affymetrix probe sets were considered valid if at least 80%
of the probes within the set were valid. If a transcript con-
tained more than one probe or probe set, the one closest
to the 3' end was retained. We verified the probes and
probe sets provided by the manufacturer with the most
recent RefSeq transcripts. Using the same criteria as the
manufacturer, we found 221 mismatched Illumina
sequences. After eliminating these sequences, there were 3
mismatched Affymetrix probe sets. In addition, there were
two probe/probe sets that mapped to different RefSeq IDs.

Using the above probe map, we proceeded to probe-level
matching of Affymetrix to Illumina probes. This was done
by defining the distance between two probes as the dis-
tance apart subtracted by the overlap. Hence a positive
distance implies no overlap and any overlap gives a nega-
tive distance. The best matching Affymetrix probe in the
probe set was defined as the one with the maximum over-
lap with the Illumina probe. If there was no overlap, then
the best-matched probe was the one with the minimum
distance apart from the Illumina probe. If two Affymetrix
probes had the same overlap or distance apart from the
corresponding Illumina probe, then the probe that was
closest to the 3' end was selected. Using the above algo-
rithm, 15,348 matching Affymetrix-Illumina probe sets,
as well as, the best matching probe within the Affymetrix
probe set were obtained.

Data Preprocessing
Two different normalizations were used for Affymetrix
chips and one for Illumina chips. Robust Multichip Aver-
age (RMA) preprocessing was done over the entire
Affymetrix chip set, followed by selection of the matching
probe set. This expression data set will be referred to as
Affymetrix RMA. A second normalization, which was
done for both the best matched Affymetrix probes and the
Illumina probes, involved background correction, log
transformation, retaining PM only Affymetrix probes, and
quantile normalization. The Affymetrix expression set
normalized and probe-matched in this manner will be
referred to as Affymetrix QN.

Data Analysis
Because of distinct temporal expression patterns in fetal
lung development [24], we divided the gestational age of
the samples into 5 groups to allow for higher order age
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effects. To allow for more complex dependence on age, a
piecewise constant model was used. Age was divided into
five quantiles, based upon estimated days post-concep-
tion: (52.9,76], (76,87.8], (87.8,102], (102,121], and
(121,154]. The expression values were then fitted to a
piecewise constant mean value within each age group and
evaluated using empirical Bayes moderated F-statistics
using Bioconductor's limma package for a categorical lin-
ear model (Additional File 8) [25]. The Benjamini and
Hochberg method was used to account for the multiple
testing [26]. Significant genes were defined as those with
adjusted p-values of less than 0.05. Spearman's correla-
tion was applied. Unique RefSeq IDs which map to differ-
ent transcripts of the same genes were counted as different
genes.

Gene set enrichment analysis was done using the SAFE
package in Bioconductor for both KEGG pathways (Octo-
ber 7, 2007 build) and GO categories (April 7, 2008
build), using the permutation method [11]. Multiple test-
ing was done via Westfall and Young method with a fam-
ily-wise error rate of 0.1. In the SAFE package, two kinds
of statistics were obtained, local statistics and global sta-
tistics, which we will describe briefly below. The detailed
description can be found in Barry et al [11]. Local statistics
assesses the association between the expression of a single
gene against age using linear regression. Global statistics
measures how the distribution of local statistics of genes
within a category (KEGG pathway or GO category) differs
from the local statistics outside of the category, and is
determined via the Wilcoxon rank sum statistic.

Abbreviations
BP: biological processes; CC: cellular components; GO:
gene ontology; KEGG: Kyoto Encyclopedia of Genes and
Genomes; MAQC: MicroArray Quality Control; MF:
molecular function; PLIER: probe logarithmic intensity
error estimation; PPIA: peptidyl prolyl isomerase A or
cyclophilin A; QN: Quantile Normalization; qPCR: quan-
titative polymerase chain reaction; RMA: Robust Multi-
chip Average; SAFE: Significance Analysis of Function and
Expression.
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Additional material

Additional file 1
Relationship between gene-wise correlation, significance group, and 
expression level. A) Density plot over mean Affymetrix and Illumina 
expression level for high- and low-correlation genes. While highly corre-
lated genes have higher expression overall, genes with low correlation have 
a bimodal distribution with respect to expression level. The mean expres-
sion levels for high- and low-correlation genes are 7.703 and 6.467, 
respectively. The difference in mean expression between high- and low-
correlation genes is significant (p < 2.2 × 10-16, Wilcoxon sum rank test). 
B) Density of correlation in high- and low-expression genes. Genes that 
are highly expressed have higher correlation. The mean correlation for 
genes with Illumina expression ≥ 6 and < 6 are 0.296 and 0.099, respec-
tively (p < 2.2 × 10-16, t-test). The variances of the high and low Illumina 
expression genes are 0.070 and 0.063. The mean correlation for genes 
with Affymetrix expression ≥ 6 and < 6 are 0.279 and 0.136, respectively 
(p < 2.2 × 10-16, t-test). The variances of the high and low Affymetrix 
expression genes are 0.071 and 0.072. C) Two-dimensional density plots 
of Affymetrix expression value versus p-value ranks in different signifi-
cance groups. D) Distribution of mean expression level for each signifi-
cance group. Gai and Gns have distinct but broad and overlapping 
distributions. The mean expression levels for Gai, Gi, Ga, and Gns are 
7.358, 5.579, 7.609, and 6.412, respectively. The variances for Gai, Gi, 
Ga, and Gns are 3.30, 2.59, 4.24, and 5.15, respectively. Using the t-test, 
Gai is significantly different from Gi and Ga (p < 2.2 × 10-16 and = 0.005). 
Similarly, Gns is significantly different from Gi and Ga (p = 3.836 × 10-8 

and < 2.2 × 10-16). E) Distribution of high- and low-expression genes over 
the significance groups.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-189-S1.pdf]

Additional file 2
Relationship between gene-wise correlation and probe distance 
between the best-matched Affymetrix and Illumina probes. A) Distri-
bution of probe distance for high- and low-correlation genes. Genes that 
are highly correlated have greater probe overlap. The median probe dis-
tances for high- and low-correlation genes are -25 and -21, respectively (p 
< 2.2 × 10-16, t-test). B) Distribution over correlation for probes in which 
the best-matched Affymetrix and Illumina probes are perfectly matched, 
partially overlapped, and non-overlapping. Correlation increases as the 
degree of probe overlap increases. The mean correlation for the perfectly 
matched, partially overlapped, and non-overlapping probes are 0.251, 
0.215, and 0.169, respectively. The variances are 0.078, 0.077, and 
0.070, respectively. Using the t-test, p perfect match, partial overlap = 
6.097 × 10-10, p perfect match, no overlap < 2.2 × 10-16, and p partial 
overlap, no overlap = 3.202 097 × 10-14. C) Distribution of probe distance 
for each significance group. The mean probe distance for Gai, Gi, Ga, and 
Gns are 109.1, 250.7, 219.5, and 175.4, respectively. The variances are 
2.15 × 105, 6.16 × 105, 2.18 × 105, and 4.14 × 105, respectively. D) 
Distribution of best-matched probes that are perfectly matched, partially 
overlapped, and non-overlapping between Affymetrix and Illumina over 
significance group. Although the distributions over the different probe dis-
tances appear similar, the χ2 test between probe distance and significance 
group showed an association between the two factors with p = 0.006.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-189-S2.pdf]
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Additional file 3
Distribution over p-value rankings for high- and low-correlation 
genes. Highly correlated genes have lower p-value rankings with similar 
distributions in both Affymetrix and Illumina platforms. The mean Illu-
mina p-value ranking for high- and low-correlation genes are 3956 and 
8466 (p < 2.2 × 10-16, Wilcoxon sum rank test). The mean Affymetrix p-
value ranking for high- and low-correlation genes are 4664 and 8315 (p 
< 2.2 × 10-16, Wilcoxon sum rank test).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-189-S3.pdf]

Additional file 4
Top 10 GO_slim ancestor terms. Comparison of GO_slim ancestor terms 
for Affymetrix and Illumina.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-189-S4.doc]

Additional file 5
Significant KEGG pathways. Comparison of significant KEGG pathways 
between Affymetrix and Illumina.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-189-S5.doc]

Additional file 6
P-values of gene expressions in Affymetrix RMA, Illumina and p-val-
ues of ΔCt in quantitative PCR results. CCL20, CXCL3, and CXCL5 
were not significant in both Affymetrix and Illumina. CD36, SFTPB, 
SFTPC, and TUBB2B were significant in both Affymetrix and Illumina. 
Genes that were significant in both platforms were also significant in 
qPCR.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-189-S6.pdf]

Additional file 7
Local statistics of genes in a significant KEGG pathway. Empirical dis-
tribution function of the ranked local statistics of genes in a significant 
KEGG pathway (KEGG:04110) against that of all genes (A = Affymetrix, 
B = Illumina).
Click here for file
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2105-10-189-S7.pdf]

Additional file 8
Piecewise constant model for gene expression. Affymetrix gene expres-
sion fitted to a piecewise constant model for two genes.
Click here for file
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2105-10-189-S8.pdf]
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