Email updates

Keep up to date with the latest news and content from BMC Research Notes and BioMed Central.

Open Access Technical Note

Network inference via adaptive optimal design

Johannes D Stigter* and Jaap Molenaar

Author Affiliations

Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands

For all author emails, please log on.

BMC Research Notes 2012, 5:518  doi:10.1186/1756-0500-5-518

Published: 24 September 2012

Abstract

Background

Current research in network reverse engineering for genetic or metabolic networks very often does not include a proper experimental and/or input design. In this paper we address this issue in more detail and suggest a method that includes an iterative design of experiments based, on the most recent data that become available. The presented approach allows a reliable reconstruction of the network and addresses an important issue, i.e., the analysis and the propagation of uncertainties as they exist in both the data and in our own knowledge. These two types of uncertainties have their immediate ramifications for the uncertainties in the parameter estimates and, hence, are taken into account from the very beginning of our experimental design.

Findings

The method is demonstrated for two small networks that include a genetic network for mRNA synthesis and degradation and an oscillatory network describing a molecular network underlying adenosine 3’-5’ cyclic monophosphate (cAMP) as observed in populations of Dyctyostelium cells. In both cases a substantial reduction in parameter uncertainty was observed. Extension to larger scale networks is possible but needs a more rigorous parameter estimation algorithm that includes sparsity as a constraint in the optimization procedure.

Conclusion

We conclude that a careful experiment design very often (but not always) pays off in terms of reliability in the inferred network topology. For large scale networks a better parameter estimation algorithm is required that includes sparsity as an additional constraint. These algorithms are available in the literature and can also be used in an adaptive optimal design setting as demonstrated in this paper.