Email updates

Keep up to date with the latest news and content from BMC Research Notes and BioMed Central.

Open Access Research article

Rationalization of paclitaxel insensitivity of yeast β-tubulin and human βIII-tubulin isotype using principal component analysis

Lalita Das1, Bhabatarak Bhattacharya1 and Gautam Basu2*

Author affiliations

1 Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 70054, India

2 Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 70054, India

For all author emails, please log on.

Citation and License

BMC Research Notes 2012, 5:395  doi:10.1186/1756-0500-5-395

Published: 1 August 2012

Abstract

Background

The chemotherapeutic agent paclitaxel arrests cell division by binding to the hetero-dimeric protein tubulin. Subtle differences in tubulin sequences, across eukaryotes and among β-tubulin isotypes, can have profound impact on paclitaxel-tubulin binding. To capture the experimentally observed paclitaxel-resistance of human βIII tubulin isotype and yeast β-tubulin, within a common theoretical framework, we have performed structural principal component analyses of β-tubulin sequences across eukaryotes.

Results

The paclitaxel-resistance of human βIII tubulin isotype and yeast β-tubulin uniquely mapped on to the lowest two principal components, defining the paclitaxel-binding site residues of β-tubulin. The molecular mechanisms behind paclitaxel-resistance, mediated through key residues, were identified from structural consequences of characteristic mutations that confer paclitaxel-resistance. Specifically, Ala277 in βIII isotype was shown to be crucial for paclitaxel-resistance.

Conclusions

The present analysis captures the origin of two apparently unrelated events, paclitaxel-insensitivity of yeast tubulin and human βIII tubulin isotype, through two common collective sequence vectors.