Table 1 

Table of optimal allocations of the samples to the training sets 

Optimal number to training set 



n = 200 



Effect = 0.5 
Effect = 1.0 
Effect = 1.5 
Effect = 2.0 



DEG = 50 
170 (86%) 
70+ (>99%) 
30+ (>99%) 
20+ (>99%) 


DEG = 10 
150 (64%) 
130 (94%) 
100 (99%) 
60+ (>99%) 


DEG = 1 
10 (52%) 
150 (69%) 
120 (77%) 
80 (84%) 


n = 100 



DEG = 50 
70 (64%) 
80 (>99%) 
30+ (>99%) 
20+ (>99%) 


DEG = 10 
10 (55%) 
80 (91%) 
70 (99%) 
40+ (>99%) 


DEG = 1 
10 (51%) 
40 (63%) 
80 (77%) 
70 (84%) 


n = 50 



DEG = 50 
10 (59%) 
40 (99%) 
30+ (>99%) 
20+ (>99%) 


DEG = 10 
10 (52%) 
40 (78%) 
40 (98%) 
40 (>99%) 


DEG = 1 
10 (50%) 
10 (54%) 
30 (71%) 
40 (83%) 


Entries in table are where t is the optimal number for the training set and Acc is the average accuracy for a training set of size n. Total sample size is n. "DEG" is the number of independent differentially expressed genes. "Effect" is the standardized fold change for informative genes (difference in mean expression divided by standard deviation). Notation such as "50+" indicates that the MSE was flat, achieving a minimum at t = 50 and remaining at that minimum for t > 50. (Here, "flat" is defined as having a range of MSE values less than 0.0001.) Data generated with dimension P = 22,000. Each table entry based on 1,000 Monte Carlo simulations. Equal prevalence from each of two classes. 

Dobbin and Simon BMC Medical Genomics 2011 4:31 doi:10.1186/17558794431 