Email updates

Keep up to date with the latest news and content from BMC Medical Genomics and BioMed Central.

Open Access Highly Accessed Research article

Gene regulatory network reveals oxidative stress as the underlying molecular mechanism of type 2 diabetes and hypertension

Jesmin1*, Mahbubur SM Rashid1, Hasan Jamil2, Raquel Hontecillas3 and Josep Bassaganya-Riera3

Author Affiliations

1 Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh

2 Department of Computer Science, Wayne State University, Michigan, USA

3 Nutritional Immunology and Molecular Nutrition Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

For all author emails, please log on.

BMC Medical Genomics 2010, 3:45  doi:10.1186/1755-8794-3-45

Published: 13 October 2010

Abstract

Background

The prevalence of diabetes is increasing worldwide. It has been long known that increased rates of inflammatory diseases, such as obesity (OBS), hypertension (HT) and cardiovascular diseases (CVD) are highly associated with type 2 diabetes (T2D). T2D and/or OBS can develop independently, due to genetic, behavioral or lifestyle-related variables but both lead to oxidative stress generation. The underlying mechanisms by which theses complications arise and manifest together remain poorly understood. Protein-protein interactions regulate nearly every living process. Availability of high-throughput genomic data has enabled unprecedented views of gene and protein co-expression, co-regulations and interactions in cellular systems.

Methods

The present work, applied a systems biology approach to develop gene interaction network models, comprised of high throughput genomic and PPI data for T2D. The genes differentially regulated through T2D were 'mined' and their 'wirings' were studied to get a more complete understanding of the overall gene network topology and their role in disease progression.

Results

By analyzing the genes related to T2D, HT and OBS, a highly regulated gene-disease integrated network model has been developed that provides useful functional linkages among groups of genes and thus addressing how different inflammatory diseases are connected and propagated at genetic level. Based on the investigations around the 'hubs' that provided more meaningful insights about the cross-talk within gene-disease networks in terms of disease phenotype association with oxidative stress and inflammation, a hypothetical co-regulation disease mechanism model been proposed. The results from this study revealed that the oxidative stress mediated regulation cascade is the common mechanistic link among the pathogenesis of T2D, HT and other inflammatory diseases such as OBS.

Conclusion

The findings provide a novel comprehensive approach for understanding the pathogenesis of various co-associated chronic inflammatory diseases by combining the power of pathway analysis with gene regulatory network evaluation.