Email updates

Keep up to date with the latest news and content from BMC Medical Genomics and BioMed Central.

Open Access Highly Accessed Research article

Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: Efficient identification of known microduplications and identification of a novel microduplication in ASMT

Guiqing Cai123, Lisa Edelmann4, Juliet E Goldsmith123, Ninette Cohen4, Alisa Nakamine123, Jennifer G Reichert123, Ellen J Hoffman123, Danielle M Zurawiecki123, Jeremy M Silverman23, Eric Hollander23, Latha Soorya23, Evdokia Anagnostou238, Catalina Betancur56 and Joseph D Buxbaum12347*

Author Affiliations

1 Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA

2 Seaver Autism Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA

3 Departments of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA

4 Deparment of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA

5 INSERM U513, Paris, France

6 Université Pierre et Marie Curie, Paris, France

7 Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA

8 University of Toronto, Bloorview Kids Rehab, 150 Kilgour Road, Toronto, ON, M4G1R8, Canada

For all author emails, please log on.

BMC Medical Genomics 2008, 1:50  doi:10.1186/1755-8794-1-50

Published: 16 October 2008

Abstract

Background

It has previously been shown that specific microdeletions and microduplications, many of which also associated with cognitive impairment (CI), can present with autism spectrum disorders (ASDs). Multiplex ligation-dependent probe amplification (MLPA) represents an efficient method to screen for such recurrent microdeletions and microduplications.

Methods

In the current study, a total of 279 unrelated subjects ascertained for ASDs were screened for genomic disorders associated with CI using MLPA. Fluorescence in situ hybridization (FISH), quantitative polymerase chain reaction (Q-PCR) and/or direct DNA sequencing were used to validate potential microdeletions and microduplications. Methylation-sensitive MLPA was used to characterize individuals with duplications in the Prader-Willi/Angelman (PWA) region.

Results

MLPA showed two subjects with typical ASD-associated interstitial duplications of the 15q11-q13 PWA region of maternal origin. Two additional subjects showed smaller, de novo duplications of the PWA region that had not been previously characterized. Genes in these two novel duplications include GABRB3 and ATP10A in one case, and MKRN3, MAGEL2 and NDN in the other. In addition, two subjects showed duplications of the 22q11/DiGeorge syndrome region. One individual was found to carry a 12 kb deletion in one copy of the ASPA gene on 17p13, which when mutated in both alleles leads to Canavan disease. Two subjects showed partial duplication of the TM4SF2 gene on Xp11.4, previously implicated in X-linked non-specific mental retardation, but in our subsequent analyses such variants were also found in controls. A partial duplication in the ASMT gene, located in the pseudoautosomal region 1 (PAR1) of the sex chromosomes and previously suggested to be involved in ASD susceptibility, was observed in 6–7% of the cases but in only 2% of controls (P = 0.003).

Conclusion

MLPA proves to be an efficient method to screen for chromosomal abnormalities. We identified duplications in 15q11-q13 and in 22q11, including new de novo small duplications, as likely contributing to ASD in the current sample by increasing liability and/or exacerbating symptoms. Our data indicate that duplications in TM4SF2 are not associated with the phenotype given their presence in controls. The results in PAR1/PAR2 are the first large-scale studies of gene dosage in these regions, and the findings at the ASMT locus indicate that further studies of the duplication of the ASMT gene are needed in order to gain insight into its potential involvement in ASD. Our studies also identify some limitations of MLPA, where single base changes in probe binding sequences alter results. In summary, our studies indicate that MLPA, with a focus on accepted medical genetic conditions, may be an inexpensive method for detection of microdeletions and microduplications in ASD patients for purposes of genetic counselling if MLPA-identified deletions are validated by additional methods.