Email updates

Keep up to date with the latest news and content from BMC Proceedings and BioMed Central.

This article is part of the supplement: Metabolism, diet and disease

Open Access Poster presentation

“Tasting” fructose with pancreatic beta-cells: modulation of insulin release by sweet taste receptor signaling and its role in metabolic diseases

George A Kyriazis1*, Kathleen R Mosure1, Mangala M Soundarapandian1, Richard E Pratley12 and Björn Tyrberg1

  • * Corresponding author: George A Kyriazis

Author Affiliations

1 Diabetes & Obesity Research Center, Sanford-Burnham Medical Research institute, Orlando, FL 32827, USA

2 Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, USA

For all author emails, please log on.

BMC Proceedings 2012, 6(Suppl 3):P29  doi:10.1186/1753-6561-6-S3-P29

The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1753-6561/6/S3/P29


Published:1 June 2012

© 2012 Kyriazis et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background

Although glucose is indispensable for the stimulation of insulin release, numerous other insulin secretagogues have been identified. For instance, the dietary monosaccharide fructose potentiates insulin secretion in vitro, but the mechanism and physiological significance remains unclear. The T1R2-T1R3 heterodimer of G protein-coupled receptors mediates sweet sensing in the tongue and ablation of either subunit obliterates sweet taste. We hypothesized that the effects of fructose on insulin release may be mediated by sweet taste receptors (TRs) on beta-cells.

Materials and methods

Mice with the homozygous deletion for the T1R2, T1R3, or TRPM5 gene (Dr. Zuker, Columbia University) were bred and genotyped in-house. In vitro static insulin release (ELISA, Mercodia) was assessed using cultured human and mouse islets incubated in custom-made wells with various treatments. Fura-2 based calcium imaging was performed using MIN6 cells or dispersed mouse beta-cells. Phospholipase C (PLC) activation was measured using Total Internal Reflection (TIRF) Microscopy in transfected MIN6 cells with a PHPLCδ1-GFP construct. In vivo experiments were performed with 8-10 week old catheterized conscious male mice on regular chow after 5-hour fasting.

Results

Human and mouse islets express sweet TRs. Fructose (10.0mM) rapidly activated PLC and increased intracellular calcium (Ca2+i) and insulin release at 8.3mM glucose in wild type (WT) islets and MIN6 cells, but these effects were absent in T1R2 knockout (T1R2-/-) islets. Similar to mouse islets, fructose stimulated insulin release in human islets and these effects were blocked by lactisole, a human-specific inhibitor of T1R3. In vivo, an intravenous bolus of fructose (1.0g/kg) rapidly increased plasma insulin in WT, but not in T1R2-/- mice. Glucose-stimulated insulin release (GSIS) in WT mice was potentiated by low physiological concentrations of fructose (3.0mM in vitro; 0.3g/kg in vivo), but these effects were absent in T1R2-/- mice. The transient receptor potential channel M5 (TRPM5) mediates TR signaling in the tongue, contributing to cell membrane depolarization. Islets from TRPM5 knockout mice (TRPM5-/-) failed to increase Ca2+ and insulin release in response to fructose. Finally, the expression of TRs is reduced in islets of diabetic mouse models (db/db) and is associated with impaired fructose-induced insulin release.

Conclusions

Fructose is a natural ligand for functional sweet TRs expressed on mouse and human beta-cells. Pancreatic taste receptors sense circulating fructose and activate a distinct signaling pathway involving PLC, TRPM5 and Ca2+I influx that potentiates GSIS [1]. Our data together with previous reports showing that sweet TRs in the intestinal epithelium stimulate dietary glucose absorption and GLP-1 secretion, suggest a novel TR-dependent intestinopancreatic axis that participates in the regulation of postprandial insulin release by absorbed sugars. These data suggest a potential link between high-fructose consumption and the development of adverse metabolic effects. Interestingly, beta-cell TR expression and function is reduced in diabetic mouse phenotypes, also suggesting that impaired TR signaling may play a role in the pathogenesis of metabolic diseases.

References

  1. Kyriazis GA, Soundarapandian MM, Tyrberg B: Sweet taste receptor signaling in β-cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion.

    Proc Natl Acad Sci USA 2012, 109:E524-32. OpenURL