Email updates

Keep up to date with the latest news and content from BMC Proceedings and BioMed Central.

This article is part of the supplement: Genetic Analysis Workshop 17: Unraveling Human Exome Data

Open Access Proceedings

Enriching rare variants using family-specific linkage information

Gang Shi*, Jeannette Simino and Dabeeru C Rao

Author Affiliations

Division of Biostatistics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA

For all author emails, please log on.

BMC Proceedings 2011, 5(Suppl 9):S82  doi:10.1186/1753-6561-5-S9-S82

Published: 29 November 2011


Genome-wide association studies have been successful in identifying common variants for common complex traits in recent years. However, common variants have generally failed to explain substantial proportions of the trait heritabilities. Rare variants, structural variations, and gene-gene and gene-environment interactions, among others, have been suggested as potential sources of the so-called missing heritability. With the advent of exome-wide and whole-genome next-generation sequencing technologies, finding rare variants in functionally important sites (e.g., protein-coding regions) becomes feasible. We investigate the role of linkage information to select families enriched for rare variants using the simulated Genetic Analysis Workshop 17 data. In each replicate of simulated phenotypes Q1 and Q2 on 697 subjects in 8 extended pedigrees, we select one pedigree with the largest family-specific LOD score. Across all 200 replications, we compare the probability that rare causal alleles will be carried in the selected pedigree versus a randomly chosen pedigree. One example of successful enrichment was exhibited for gene VEGFC. The causal variant had minor allele frequency of 0.0717% in the simulated unrelated individuals and explained about 0.1% of the phenotypic variance. However, it explained 7.9% of the phenotypic variance in the eight simulated pedigrees and 23.8% in the family that carried the minor allele. The carrier’s family was selected in all 200 replications. Thus our results show that family-specific linkage information is useful for selecting families for sequencing, thus ensuring that rare functional variants are segregating in the sequencing samples.